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The electrostatic screening of charge in one-dimensional confinement leads to long-range break-
down in electroneutrality within a nanopore. Through a series of continuum simulations, we demon-
strate the principles of electroneutrality breakdown for electrolytes in one dimensional confinement.
We show how interacting pores in a membrane can counteract the phenomenon of electroneutrality
breakdown, eventually returning to electroneutrality. Emphasis is placed on applying simplifying
formulas to reduce the multidimensional partial differential equations into a single ordinary dif-
ferential equation for the electrostatic potential. Dielectric mismatch between the electrolyte and
membrane, pore aspect ratio, and confinement dimensionality are studied independently, outlining
the relevance of electroneutrality breakdown in nanoporous membranes for selective ion transport
and separations.

I. INTRODUCTION

The conduction of ions in nanochannels forms the ba-
sis of electrical signalling in biology [1–6] and of promis-
ing technologies in desalination [7, 8], ionic separations
[9, 10], and nanofluidic transistors [11–13]. As ions
become confined to nanopores, they experience strong
chemical and electrostatic interactions with the pore
walls, leading to membrane selectivity based on charge or
chemical interactions. Nanoporous membranes can even
enter the regime where the double layers emanating from
each charged surface begin to overlap, leading to strong
electrokinetic coupling of fluid flow, electric field, and
ionic fluxes [14–19]. Understanding the electrostatics of
charges in confinement is crucial to determining the flux,
selectivity, and driving force relationship for engineering
applications [20, 21] and for understanding biological
pore systems [22–25].

The unique physics of ionic screening in one dimen-
sional confinement leads to the phenomenon of elec-
troneutrality breakdown, where the number of counter-
charges within a pore does not perfectly counterbalance
the number of fixed charges on the pore walls [26]. One
dimensional (1D) confinement refers to confinement onto
a line, for example, in a cylindrical nanopore connecting
two reservoirs of fixed concentration. In essence, elec-
troneutrality breakdown signifies that a fraction of the
electric field must escape through the pore walls into the
dielectric matrix constituting the membrane. The screen-
ing charge does not exist locally within the pore, but
rather is distributed over the membrane surface in the
reservoirs, outside of the membrane domain. Uniquely,
in 1D confinement, the loss of electroneutrality can ex-
tend to macroscopic scales (beyond length L = 10 µm),
since for strong confinement κDR → 0 the system only
approaches electroneutrality as log(L/R)→∞, where L
is the length of a pore, R is its radius, and κD is the
inverse Debye length. The long-range breakdown of lo-
cal electroneutrality in 1D confinement is surprising, and
many models of electrokinetic phenomena have assumed

pore-wide electroneutrality, even in the limit of strong
double layer overlap [15, 16, 27].

Here, we perform continuum simulations of 1D
nanopores using COMSOL Multiphysics, to confirm the
occurrence of electroneutrality breakdown. We show that
the results for the screening charge within an isolated
1D pore can be captured quantitatively with analytical
formulas. Furthermore, we perform simulations of a pe-
riodic array of channels, a multipore membrane, with
varying spacing between the channels. There, we find
how the interactions of closely-spaced channels can lead
to the return of electroneutrality in the system. In the
limit of strongly interacting channels, the variations in
potential in the axial direction dominate the distribution
of ionic charges within the membrane. Effectively, when
channels are too close to each other, the electric field lines
cannot emanate through the membrane domain.

The continuum simulation results show the ensem-
ble interactions of the channels with each other play a
role in ionic conduction through nanochannels. In mem-
brane applications, the interactions mean that the great-
est ionic selectivity and per-channel-conductivity can be
achieved when channels are close together for the regime
of strong double layer overlap. Further, the results point
to ensemble interactions between 1D-confined channels,
and the importance of electric field spilling into the di-
electric matrix when channels are isolated. The compe-
tition between channel interactions and electroneutrality
breakdown ultimately affects the conductance and selec-
tivity behavior of arrays of nanochannels in the low con-
centration limit.

II. THEORETICAL FRAMEWORK

A. Outline of equations

As explained in more detail in Appendix A, the ionic
flux and selectivity out of equilibrium can be assumed to
be related to the solution of the Poisson-Boltzmann (PB)
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FIG. 1. The simulation configuration in COMSOL (a) with the membrane, pore, and electrolyte (b) for an isolated pore that
does not feel its periodic neighbors and (c) a periodic arrangement of pores on a square lattice. (d) A cross-section of the
system through the center of the cylindrical pore is shown to describe the domains and equations applied in the simulations.
(e) A sample of continuum simulation results showing the progress from non-interacting to interacting channels for small charge
densities. For all channels, the channel radius is 1 nm and the length is 100 nm. The membrane dielectric constant is εm = 10ε0
and the electrolyte dielectric constant is εw = 80ε0. The salt concentration is 1 mM. In order from left to right, the spacing
between the channel centers ` is 129 nm, 77 nm, 46 nm, 28 nm, and 17 nm. Also in order, the amount of charge within the
pore versus on the channel walls, | Qin/Qout | is: 12%,13%, 17%, 26%, and 43%. As the channels become closer together and
more interacting, the system returns closer to electroneutrality, which is evidenced by the higher φ values within the pore.

equation in equilibrium, assuming that both reservoirs
on each side of the membrane have the same concentra-
tion of electrolyte and fluid flow is neglected [14, 15].
As emphasized in Fig. 1, the simulation is composed
of a square membrane domain, Ωm, with side length `,
through which a cylindrical pore of radius R and length L
connects two reservoirs of fixed concentration. The reser-
voirs and pore constitute the electrolyte domain, signified
as Ωw, where w is chosen to signify water.

As exhibited in Fig. 1(a-d), the system of equations
being solved in the electrolyte domain Ωw is:

εw∇2φ = −ρe (1)

with dielectric constant εw, electrostatic potential φ, and
charge density ρe where the ionic concentrations are
Boltzmann-distributed:

ρe =
∑
i

zieci,b exp

(
− zieφ
kBT

)
, (2)

where zi are the ion valencies, e is the elementary charge,
ci,b is the bulk reservoir concentration for ion i, kB is the
Boltzmann constant, and T is the absolute temperature.
Here we neglect any packing [28], correlation [29], or
charge regulation [30] effects in our model. We assume
a 1:1 solution of salt with concentration c0 in units of

number density, such that the PB equation is reduced
to:

εw∇2φ = 2ec0 sinh

(
eφ

kBT

)
(3)

In the membrane domain, we solve the Laplace equa-
tion:

εm∇2φ = 0 (4)

assuming that the membrane is a perfect dielectric ma-
terial with dielectric constant εm.

At the membrane/electrolyte domain interface,
Maxwell’s equation is enforced:

n̂ · [−εm∇φ+ εw∇φ]

∣∣∣∣∣
s

= qs (5)

where n̂ is the unit normal pointing from the electrolyte
to the membrane domain and qs is the surface charge
density. To isolate the electrostatic potential variations
due to fixed charge on the channel walls, qs is assumed to
be zero on the membrane/electrolyte reservoir interfaces,
but is nonzero at the pore walls.

At the lateral boundaries of each cell, symmetry condi-
tions are applied; namely, the electric field at the bound-
ary is zero n̂ · ∇φ = 0. The boundary conditions are
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identical to assuming a periodic array of channels with
regular spacing, consisting of unit cells identical to the
simulation box, as illustrated in Fig. 1(c). At the top and
bottom boundaries of the simulation box, Dirichlet con-
ditions are applied φ = 0. A useful check to ensure that
the simulation box is large enough is to ensure that all
the integrated charges in the electrolyte domain are equal
and opposite to the integrated amount of fixed charges
on the pore walls. For this study, a reservoir height of 20
λD is sufficient to meet this criterion, where the Debye
length, λD is given by:

λD = κD
−1 =

√
εwkBT

2e2c0
(6)

B. Approximate formulas

While we compute the full results of the PB equation
in 3D, we compare the results to mathematical simpli-
fied formulas. As outlined in more detail in Appendices
B and C, we can reduce our partial differential equation
system of the 3D PB and Laplace equations into ordinary
differential equations with appropriate boundary condi-
tions. For small potentials, we then linearize the equa-
tions and get simple analytical formulas for the number
of ionic charges within the membrane. In order to quan-
tify the extent of electroneutrality breakdown, we take
the ratio for the integrated amount of charge within the
pore and the integrated amount of charge on the pore
walls: | Qin/Qout |. In the limit of electroneutrality, we
get | Qin/Qout |→ 1, whereas in the limit of complete
electroneutrality breakdown, we get | Qin/Qout |→ 0.

No end effects: Ignoring end effects, the inner po-
tential can be solved for in terms of only the radial coor-
dinate:

εw
r

d

dr

(
r
dφ

dr

)
= 2ec0 sinh

(
eφ

kBT

)
(7)

with boundary conditions given by:

dφ

dr
(r = R) =

qs
εw
− εm
εw

φ(r = R)

RML/R
,

dφ

dr

(
r =

`

2

)
= 0

(8)
where the constant ML/R is:

ML/R = log

(
2L

πR

)
− γ +

K1( π`2L )

I1( π`2L )
. (9)

with γ = 0.577 signifying the Euler-Mascheroni constant.
Here, we assume circular shape of a unit cell for analytical
simplicity, and the derivation is presented in Appendix
B. Linearizing the equations and solving, we find the foll-
lowing relationship for the amount of charge inside versus
the amount of charge fixed on the pore walls:∣∣∣∣ Qin

Qout

∣∣∣∣ =
1

1 + εm
εw

2
κD

2R2ML/R

(10)

Looking at the form of the above equation, one rec-
ognizes that electroneutrality breakdown is promoted as
κDR → 0. Furthermore, the effect has a weak depen-
dence on the length of non-interacting nanopores, since
the length appears logarithmically in ML/R. However,
the electrostatic interactions of the cylinders with each
other can cause a return to electroneutrality as `/L→ 0.
Furthermore, the amount of charge within the pore is
strongly controlled by the dielectric constant of the mem-
brane (and not necessarily the inner pore dielectric con-
stant).

No radial variations: On the other hand, when
channels become strongly interacting (`/L→ 0), the po-
tential variations happen principally in the axial direc-
tion along the pore, governed by the dimensionless ratio
λD/L. In order to capture the end effects of the channel,
which become important on the scale of the Debye length,
we write down a homogenized equation for the potential
in linear response, which neglects radial variations in the
potential by integrating over the lateral dimensions of a
unit cell:

ε̄
d2φ

dz2
= −2qs

R
+ 2ec0 sinh

(
φe

kBT

)
(11)

ε̄ = εw − εm + εm

(
`

πR

)2

(12)

The linear response boundary conditions are given by:

dφ

dz
(z = 0, L) = ±εw

ε̄

`2

πR2

φ (z = 0, L)

λD
. (13)

Solving the set of equations, we get the following fraction
of charge inside the pore.∣∣∣∣ Qin

Qout

∣∣∣∣ =
1− (γ − p) tanh(1/γ)

1 + p tanh(1/γ)
(14)

with constants

γ = 2

√
ε̄

εw

λD
L
, p =

(
ε̄

εw

πR2

`2
πR2

(`2 − πR2)

)1/2

(15)

For strongly interacting channels, the electroneutrality
condition is controlled by the ratio of λD/L. As λD/L→
0, the system returns to overall electroneutrality within
the pore.

Following the theoretical argument, a comprehensive
set of numerical simulations is presented to validate the
above formulas in their regime of validity, focusing on the
linear regime with small but finite surface charge, qs →
0. The standard conditions chosen for the simulations,
unless otherwise stated, are a pore length of 100 nm, a
pore radius of 1 nm, a membrane permittivity of εm =
10ε0, an electrolyte permittivity of εw = 80ε0. Finally, a
comparison is also made to the nonlinear solution of the
full 3D equations.
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FIG. 2. The results for an isolated pore with overlapping and non-overlapping double layers within the pore. (a) plot of the
potential profile for overlapping double layers at c0 = 1 mM (κDR ≈ 0.1) (a) versus less overlapping double layers at c0 = 100
mM (κDR ≈ 1)(b). The same parameters are used as in Fig. 1(e), except the center to center distance between pores is 500
nm such that the periodic channels are not interacting. For (a) 12% of the charge is contained within the pore, whereas for
(b) 91% of the charge is contained within the pore.(c) The charge within the pore versus on the pore walls as a function of
κDR for the same channel in parts (a) and (b). Electroneutrality breakdown occurs in the region of strong double layer overlap
κDR→ 0. For (c) the markers are the COMSOL simulations, whereas the line is the application of the approximate formula in
equation 10. (d-e) The integrated ionic charge as a function of the lateral position for c0 = 1 mM and 100 mM. The charge is
distributed over a wide area O(L) extending beyond the pore mouth when electroneutrality is broken (c0=1 mM), but is more
localized when electroneutrality is maintained (c0=100 mM) . (e) Quantification of end effects for two different concentrations.
The electrostatic potential is plotted as a function of the z coordinate, evaluated at the center axis of the channel. End effects
are not significant for isolated channels.

The results are presented with a number of dimension-
less numbers, so a reader can easily interpret the plots.
First, the dimensionless number κDR indicates the extent
of double layer overlap within the channel. κDR → 0
indicates strong double layer overlap while κDR → ∞
indicates thin double layers relative to the pore radius.
`/L is the ratio of the center to center spacing between
channels to the length of the channels. In plotting, the
potential is normalized by the charge per unit length of
a cylinder:

φ̃ =
φεwR

2qsλ2D
(16)

One can roughly interpret these graphs as φ̃ ≈ 1 means
local electroneutrality in a give cross section of the pore,
and φ̃ ≈ 0 as local electroneutrality within the pore. Fur-
ther, the depth-integrated charge density is plotted as a
function of lateral position, to illustrate the extent of
screening charges at the membrane/reservoir interfaces:

ρ̄e(x, y) =

∫
ρe(x, y, z)dz

L
. (17)

III. RESULTS AND DISCUSSION

First, Fig. 1(e) summarizes the main trends seen in
the simulations, where the potential is plotted as a func-
tion of position around the pore, as the spacing between
pores is modified. When channels are isolated (` = 129
nm), the potential within the channel is fairly constant.
The variations in the potential in the radial direction are
dominant. For the parameters chosen (κDR = 0.1, c0 =
1 mM), the amount of charge within the channel is only
12% of the charge on the pore walls. However, as the
size of a unit cell is reduced (` = 17 nm) the variations
in the potential become dominant in the axial direction,
and edge effects become more pronounced. Furthermore,
the potential does not vary significantly in the radial di-
rection from the channel center axis. The close channel
spacing also limits the amount of field that can escape
out of the pore, meaning that more charges are present
within the channel, 43%.

The trends in the potential profiles as a function of
the salt concentration are shown in Fig. 2. Fig. 2(a)
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FIG. 3. Extent of electroneutrality breakdown for channels of different center-to-center separation distances on a lattice. (a)
| Qin/Qout | versus κDR for `/L = 5, `/L = 1, `/L = 0.1. (c) | Qin/Qout | versus `/L for c0 = 0.01, 1, 100 mM for `/L = 0.02
to `/L = 0.5. For both (a) and (c), the markers are the COMSOL simulations, whereas the solid lines are the application
of the approximate formula in equation 10 and the dotted lines are the application of the approximate formula in equation
14. (b) The integrated ionic charge as a function of the lateral position for `/L = 5 and 0.05, with c0 = 1 mM. The charge
is distributed over a wide area when channels are isolated, but is localized when the channels are closely spaced and strongly
interacting. (d) Quantification of end effects for two different lattice spacings with c0 = 1 mM. The electrostatic potential is
plotted as a function of the z coordinate, evaluated at the center axis of the channel. End effects are significant when the
channels are interacting.

corresponds to κDR = 0.1 or c0=1 mM, and 2(b) cor-
responds to κDR = 1 of c0 = 100 mM, illustrating that
electroneutrality is restored as the concentration is in-
creased. The solid line in Fig. 2(c) given by equation
10 coincides quite closely with the results of the con-
tinuum simulations for the isolated channels. For these
cases, neglecting end effects is a reasonable approxima-
tion for determining the number of charges within the
pore, which is confirmed via the plot of the potential as
a function of position along the center axis of the pore
in Fig. 2(f). The ‘plumes’ of screening charge near the
pore mouth are not immediately visible in the plots of
the electrostatic potential, since the charges are far less
concentrated outside of the pore. We can ascertain the
extent of the screening at the membrane interfaces by an-
alyzing the depth-integrated charge density. In Fig. 2(d-
e), the depth-integrated charge density, ρ̄e, is plotted as
a function of the x and y coordinate. When electroneu-
trality is broken within the pore, the screening charge is
distributed over the membrane surface over a distance
that is on the order of the channel length, L. However,
if electroneutrality is maintained, the screening charge is
localized within the channel, and does not extend very

far beyond the pore mouth.

Next, we isolate the influence of channels interacting
through the membrane domain, via modifying the ra-
tio `/L in Fig. 3. As channels are closer together,
`/L → 0, the amount of charge within the channel is
increased closer towards electroneutrality. We also see
a clear difference between the predictions neglecting end
effects (equation 10) in solid lines and the predictions
neglecting radial variations (equation 14) in dotted lines.
As `/L � 1, the predictions of the model neglecting ra-
dial variations become superior. However, when `/L is 1
or greater, the predictions of the model that neglects end
effects are superior. Such a result is expected, given the
illustrative example in Fig. 1(e), where the importance
of end effects are visible on the plot when channels are
close together. For further confirmation, the magnitude
of the electric field is plotted as a function of position
for varying channel spacings in Fig. S2, exhibiting the
importance of end effects for closely spaced channels. In
Fig. 3(d), the potential plotted as a function of posi-
tion on the center axis of the nanopore shows significant
end effects for closely spaced channels (`/L=0.05). Also,
the closely spaced channels localize the screening charge
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FIG. 4. Role of dielectric mismatch on extent of electroneutrality breakdown. (a)Results for isolated pore with same properties
as in Fig. 1 (e), but with εm = ε0, εm = 10ε0, and εm = 100ε0. (b) | Qin/Qout | versus κDR for varying εm. (b) | Qin/Qout |
versus `/L with c0 = 1 mM for varying εm.For both (b) and (c), the markers are the COMSOL simulations, whereas the solid
lines are the application of the approximate formula in equation 10 and the dotted lines are the application of the approximate
formula in equation 14.

near the pore mouth, as evidenced by the depth-averaged
charge density in Fig. 3(b).

The interactions of channels has a profound impact
on the selectivity of a multipore dielectric membrane.
The ensemble interactions can lead to a return to elec-
troneutrality in strongly confined systems, leading to
more charge selectivity and higher channel conductance.
The extent of electrokinetic couplings are also maximized
when the amount of ionic charge within the pore is higher
[15, 31]. Such a design principle could be used to pro-
mote higher electrokinetic conversion efficiencies in “blue
energy” harvesting of salinity gradients [32, 33].

Another important design parameter is the dielectric
constant of the membrane matrix. In Figure 4, we exam-
ine the influence of the membrane dielectric constant on
the extent of electroneutrality breakdown. As the mem-
brane dielectric constant decreases, the system moves
closer towards electroneutrality in the pore. Again, the
predictions from equations 10 and 14 seem to describe the
data quite well within their respective realms of validity.

A critical question remains to understand the influ-
ence of the aspect ratio on the extent of electroneutral-
ity breakdown, the subject of Figure 5. Again observing
equation 10, for an isolated channel, the electroneutrality

is enforced as log(L/R)→∞. Therefore, the electroneu-
trality breakdown is only weakly affected by the length of
the channel. As shown in Figure 5(b), we see only small
shifts in the extent of electroneutrality breakdown with
increasing channel length, L. Furthermore, the channels
exhibit similar behavior with varying channel spacing, `.
Such results arise from the exponentially long screening
length in one dimensional confinement [26]. The weak
dependence of the extent of electroneutrality on the as-
pect ratio is a hallmark of electroneutrality breakdown
in 1D channels.

As a point of comparison, it is instructive to perform
the same analysis for two dimensional confinement, or slit
pore geometry. Here, we perform analogous continuum
simulations to the 1D confinement case. In Figure 6, we
have simulated a slit pore with width 2R and length L,
with channel center to channel center distances of `. We
compare the simulation results to two analytical formu-
las, one where we have neglected end effects, and one
where we have neglected normal variations in the poten-
tial to the pore walls (again termed “neglecting ‘radial’
variations”), similar to the analysis for 1D confinement,
as outlined below.

The extent of electroneutrality breakdown in 2D con-
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FIG. 5. Role of aspect ratio on extent of electroneutrality breakdown. (a)Results for isolated pore with same properties as
in Fig. 1 (e), but with L = 10 nm, L = 100 nm, and L = 1000 nm, also with c0 = 1 mM. (b) | Qin/Qout | versus κDR for
varying L, with `/L = 5. (b) | Qin/Qout | versus `/L with c0 = 1 mM for varying L. For both (b) and (c), the markers are the
COMSOL simulations, whereas the solid lines are the application of the approximate formula in equation 10 and the dotted
lines are the application of the approximate formula in equation 14.

finement, ignoring edge effects, is:∣∣∣∣ Qin

Qout

∣∣∣∣ =
1

1 + εm
εw

1
κD

2R2ML/R

(18)

with modified constant ML/R given by:

ML/R =
L

πR
coth

(π
L

(`/2−R)
)

(19)

Observing the form of the 2D ML/R in this scenario, it is
apparent that electroneutrality is enforced as L/R→∞.
This means that electroneutrality will be much more
strongly upheld in 2D confinement compared to 1D con-
finement.

When `/L becomes smaller, the potential variations in
the axial direction of the 2D slit pore become dominant,
similar to 1D confinement. The extent of electroneutral-
ity breakdown neglecting ‘radial’ variations is given
identically by equation 14, but with constants

γ = 2

√
ε̄

εw

λD
L
, p =

(
ε̄

εw

4R2

`2

)1/2

(20)

where

ε̄ = εw − εm + εm

(
`

2R

)
. (21)

The progression towards electroneutrality breakdown for
2D confinement is similar to 1D confinement when the
channel spacing is close together.

In Fig. 6(b-e), we see that the propensity towards elec-
troneutrality is much stronger in 2D confinement than in
1D confinement. We find that, similar to 1D confine-
ment, electroneutrality is promoted when channels are
strongly interacting. We also find that the extent of elec-
troneutrality breakdown is extremely sensitive the to the
length of the channel domain, especially as compared to
1D confinement, as emphasized by comparing Fig. 6(d-
e) to Fig. 6(b-c). Note that the normalization of the
potential in Fig. 6(a) is adjusted from the definition in
equation 16 due to the difference in geometry.

So far, we have examined the linear regime with small
but finite values of qs. Evidently, the nonlinearity in the
equations will affect the validity of our approximations
in equations 10 and 14. In Fig. 7, we show that as
the charge density is increased into the nonlinear regime,
the system moves closer towards electroneutrality. The
approximations we derived earlier are insufficient to de-
scribe the extent of electroneutrality breakdown in the
nonlinear limit. It is particularly difficult to derive an-
alytical approximations in the nonlinear limit, so we do
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FIG. 6. Role of dimensionality of confinement by inspecting a slit pore geometry. (a)Results for isolated pore with same
properties as in Fig. 1 (e), but for a slit pore. (b) | Qin/Qout | versus κDR for varying `/L. (c) | Qin/Qout | versus `/L for
varying c0. (d-e) The same as (b-c) but with L = 1000 nm. For (b), (c), (d), and (e), the markers are the COMSOL simulations,
whereas the solid lines are the application of the approximate formula in equation 18 and the dotted lines are equation 14 with
constants given by equations 20 and 21.

not explore such approximations here. Even so, for iso-
lated channels, the electroneutrality breakdown emerges
as a function of the ratio of the Gouy-Chapman length
to the pore radius in this limit [26].

Finally, we preview the possible manifestations of elec-
troneutrality breakdown that could be observed in ex-
periments: single channel conductance and transference
number, using the simplified formulas in equation 10 and
equation 14. We assume a KCl solution with fixed and
equal mobilites, equal to the bulk value of D = D+ =
D− = 2×10−9 m2/s. For an uncharged pore, the fraction

of current carried by each ion would be 50%. However,
in this case, we assume that the pore walls are negatively
charged with a value of qs = −0.001 C/m2. Therefore, we
approximate the anion and cation concentrations within
the channel as:

c+ = c0 +
2 | qs |
eR

| Qin |
| Qout |

, c− = c0 (22)

We approximate the overall channel conductance as:

G =
2πDR2e2c0
kBTL

+
2πDRe | qs |

kBTL

| Qin |
| Qout |

(23)
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FIG. 7. Role of nonlinearity on extent of electroneutrality breakdown. (a)Results for isolated pore with same properties as in
Fig. 1 (e), but with qs → 0, qs = 0.001 C/m2, and qs = 0.01 C/m2 with c0 = 1 mM. (b) | Qin/Qout | versus κDR for varying qs.
(b) | Qin/Qout | versus `/L with c0 = 1 mM for varying qs. For both (b) and (c), the markers are the COMSOL simulations,
whereas the solid line is the application of the approximate formula in equation 10 and the dotted line is the application of the
approximate formula in equation 14.

which can be rendered dimensionless:

G̃ = G/

(
2πDR2e2cref

kBTL

)
=

c0
cref

+
| qs |
Recref

| Qin |
| Qout |

(24)

where cref is arbitrarily chosen to be 1 mM. The corre-
sponding cation transference number, or fraction of cur-
rent carried by the cation, is:

t+ =

(
c0 +

2 | qs |
eR

| Qin |
| Qout |

)
/

(
2c0 +

2 | qs |
eR

| Qin |
| Qout |

)
.

(25)
The dimensionless conductance and cation transference
number are shown in Fig. 8, for a channel with the sam-
ple parameters: L = 100 nm, R = 1 nm, εm = 10ε0,
εw = 80ε0, and T = 300 K. The plateau in conduc-
tance does not occur when electroneutrality breakdown is
present. The decrease in conductance at low concentra-
tion has been experimentally observed in Refs. [27] and
[34], but the effects were ascribed to surface reactions
and electrokinetic coupling, respectively. Here, the large
resistance through the pore is expected at low concen-
tration due to electroneutrality breakdown, since fewer
counterions are present as charge carriers. As channels
become closely spaced or strongly interacting, their be-
havior returns to the plateau behavior. The presence of
electroneutrality breakdown does not rule out the pre-
vious explanations for deviations from the conductance

plateau at low concentrations. However, the charge reg-
ulation reactions and electrokinetic effects might be less
sensitive to the interactions of the pores. In addition
to electroneutrality breakdown, experiments might also
include resistances incurred from microchannel domains
that connect to the nanopore.[35, 36] In terms of the
transference number, electroneutrality breakdown at low
concentrations leads to a cation transference number that
does not saturate at t+ = 1, again due to the reduction
in screening counterions. Another practically significant
quantity is the capacitance of a conducting nanotube
embedded in a membrane dielectric medium, which is
explored in the Supplemental Information. Electroneu-
trality breakdown can be used to increase the effective
capacitance per unit pore area at low ionic concentra-
tions. However, the capacitance per total membrane area
and per total membrane volume do not benefit from elec-
troneutrality breakdown, since the dense channel spacing
reduces the effectiveness of electroneutrality breakdown.

Nanoconfined domains are most ubiquitous in biolog-
ical membranes, where protein channels selectively con-
duct specific ions. The selectivity filter in ion channels
are at the molecular scale, with a radii on the order of
single angstroms [37]. In our model thus far, the ra-
dius of the channel signifies the accessible area for the
ion centers, which becomes negligible in true molecular
confinement, R → 0. Therefore, we expect electroneu-
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trality breakdown to be critical in describing the conduc-
tion of ions through protein channels. In the absence of
an electroneutrality constraint, molecular separation in
the selectivity filter would instead rely on specific chemi-
cal interactions or energy barriers to enter the pore [38].
Closely spaced channels on the order of the membrane
thickness ∼ 10 nm could interact electrostatically with
each other, leading to ensemble gating and ion conduc-
tion events.

The electrokinetic coupling and electrokinetic conver-
sion from salinity gradients or pressure gradients are most
effective and efficient in the regime of strong double layer
overlap. Electroneutrality breakdown can adversely im-
pact the expected performance of such a process. A

FIG. 8. The dimensionless conductance (a) and cation trans-
ference number (b) through a negatively charged nanochannel
for varying channel separation distances. The solid lines are
the predictions using equation 10 and the dotted lines are the
predictions using equation 14. The dotted lines are good pre-
dictors of the extent of electroneutrality breakdown at small
`/L, but fail at large `/L, e.g. the blue dotted lines. The
plateau in conductance at low concentration is only apparent
when | Qin/Qout |= 1. As the ratio `/L decreases, the system
moves closer to electroneutrality. When electroneutrality is
broken, the cation transference number does not saturate to
1 at low concentration.

large density of channels is not only desired for higher
flux membranes, but to eliminate the possibility of elec-
troneutrality breakdown at low concentration.

In unstructured charged nanoporous media, such as
porous rock or polymer membranes, a large network of
charged pores are connected and interact strongly with
each other. Applications include desalination, ionic sep-
arations, and oil recovery [39–44]. In an interconnected
porous medium consisting of closely spaced pores, a simi-
lar homogenized model to equation 14 should be pursued
[45]. If the medium length scale is large relative to the
Debye length, then electroneutrality will be maintained.

With our emphasis on the physics of electroneutral-
ity breakdown, we have neglected other chemical mecha-
nisms, such as charge regulation [30, 46–48]. Charge reg-
ulation, or reactions to form or neutralize surface charge,
is certainly occurring at the pore walls– after all, the ori-
gin of surface charge is a result of charge adsorption to
the interface. Even if charge regulation is present, the ef-
fect of electroneutrality breakdown should still be impor-
tant. In order to delineate from a chemical mechanism,
one convincing evidence of electric field escape from a
channel would be to observe differences in measureable
quantities as a function of the spacing between chan-
nels. Only measurements that determine single channel
conductance, transference number, or capacitance, as a
function of the density of channels in a membrane could
distinguish the electroneutrality breakdown mechanism
from other competing chemical mechanisms. Further-
more, in Single Digit Nanopores channels, we can expect
energy barriers associated with ions’ dehydration to en-
ter the channel. Energy barriers in the pore domain can
be easily added to the model explored here, by chang-
ing the effective chemical potential for ions within the
pore [26]. Non-ideal effects [28] such as packing effects
[49, 50] or electrostatic correlations [29, 51, 52],are also
not considered in this work.

IV. CONCLUSIONS

The electroneutrality breakdown phenomenon is stud-
ied with an extensive set of continuum simulations. The
results are shown to agree with simplifying analytical
formulas within their regime of validity. Furthermore,
the practical influence of electroneutrality breakdown on
channel conductance and selectivity is discussed.

The experimental validation of screening in lower di-
mensions presents multiple competing mechanisms which
can obscure the presence of electroneutrality breakdown.
Even so, the set of simulation results presented here can
guide researchers to isolate electroneutrality breakdown
for multipore systems. One can expect wide variations
of properties as a function of channel number density per
area when electric fields enter into the membrane domain.
As channels are placed closer together, they interact more
strongly, changing the transport properties.
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Appendix A: Reduction of the PNP system into the
PB system

The PNP system of equations in the electrolyte do-
main that applies for transport measurements is given
by coupling the Poisson equation to the Nernst-Planck
equation for dilute species:

εw∇2φ = −ρe

ji = −Dici
kBT

∇µei

µei = kBT ln(ci) + zieφ

(A1)

with steady state species conservation equations given
by:

∇ · ji = 0. (A2)

Since the channels we are considering are long and thin,
we can neglect the change in flux in the normal direction
to the pore walls [15], which is zero due to no penetration
at the pore walls:

ji,n = −Di∇nci −
Dizieci
kBT

∇nφ = 0 (A3)

Integrating with respect to the normal coordinate, we
can define a Boltzmann distribution with:

ci(r, z) = ci,v(z) exp

(
−zieφ
kBT

)
. (A4)

Since both the open ends of the channel are fixed at ap-
proximately the reservoir concentration, we can choose
the pre-exponential factor as ci, 0. At this point, we have
reduced the dynamic Nernst-Planck equation into the
equilibrium Poisson-Boltzmann equation. Driving forces
applied to the system will linearly act upon the equi-
librium configuration, as calculated in this paper. For
driving forces that are not too large, we can expect the
equilibrium conformation to also remain unperturbed by
driving forces. Here, we have neglected the coupling to
the Stokes equation, but it can be easily added to the
analysis [15].

Appendix B: Neglecting end effects

First, we derive the approximate formulas for the num-
ber of ions within the channel by neglecting end effects,
based on the work [26] but extended to a nanopore ar-
ray configuration. In order to simplify the formulas, we
consider a cylindrical unit cell that encapsulates a sin-
gle nanochannel, as shown in Fig. S1. In the membrane
domain, because the Laplace equation is long range, we
must account for the variations in the axial direction:

1

r

d

dr

(
r
dφout
dr

)
+
d2φout
dz2

= 0 (B1)

http://dx.doi.org/ 10.1103/RevModPhys.79.943


13

FIG. S1. The configuration of multiple channels in a membrane (a) is reduced to a single pore problem (b). The partial
differential equation and boundary conditions are listed for the given single pore problem.

FIG. S2. Electric field magnitude normalized by the surface charge as a function of position within a cross section of the
membrane/channel system, for the same conditions as Fig. 1(e). As the unit cell becomes smaller and channels are closer
together, the electric field lines are strongest at the entrance regions of the channel. End effects can be important in this
regime.

With homogeneous boundary conditions φ1 = φ2 = 0,
the solutions have the form:

φout(z, r) =

∞∑
n=1

An [K0(λnr) + αnI0(λnr)] sin(λnz)

αn =
K1(λn`

2 )

I1(λn`
2 )

, λn =
nπ

L

(B2)

The normal derivative to the channel wall is:

∂φout
∂r

(z, r) =

∞∑
n=1

An [−λnK1(λnr) + αnλnI1(λnr)] sin(λnz).

(B3)
Far from the electrolyte/membrane interface, the first
eigenvalue dominates the solution. We can approximate

each summation asymptotically by truncating to the first
term:

φout(z,R) ∼ A1 [K0(λ1R) + α1I0(λ1r)] sin(λ1z)

∂φout
∂r

(z,R) ∼ A1 [−λ1K1(λ1R) + α1λ1I1(λ1R)] sin(λ1z)

(B4)

Taking the limit as R/L→ 0, we get:

φout(z,R) ∼ A1

[
−γ − log(

πR

2L
) + α1

]
sin(λ1z)

∂φout
∂r

(z,R) ∼ −A1

R
sin(λ1z)

(B5)
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where γ is the Euler constant. Taking the ratio of the
potential and its derivative at the external radius, we get:

∂φout
∂r

(z,R) =
−φout(z,R)

RML/R
(B6)

with ML/R defined by equation 9. If we apply the above
relationship into the electric flux boundary conditions,
we get the boundary condition in equation 8. Next, we
reduce the Poisson-Boltzmann equation from a partial
differential equation to an ordinary differential equation
by neglecting the variation in potential in the electrolyte
domain in the z direction:

εw
r

d

dr

(
r
dφ

dr

)
= 2ec0 sinh

(
eφ

kBT

)
. (B7)

Solving the approximate boundary conditions in the lin-
ear response, we can arrive at the equation for the
amount of charge in the pore relative to the charge on
the pore walls, given in equation 10.

Appendix C: Neglecting radial variations

As shown in Fig. S2, when channels become closely
spaced, the electric field is concentrated at the ends of
the channel, meaning that end effects become more im-
portant. In order to turn our partial differential equa-
tion system into an ordinary differential equation system
valid in this regime, we average over the x and y di-
mensions of the unit cell. Integrating the Poisson and
Laplace equation system over x and y, dividing by πR2,
and assuming no variations in φ in the x or y directions,
we get equations 11 and 12. Next, at linear response, we
can relate the derivative of the potential at the interface
to the value of the potential itself at the interface, since
the potential should exponentially decay into the reser-
voir domain. Mathematically, the relationship is given
in equation 13. Note that the approximations we have
made here are only valid if the potential is constant in
each z-slice of our simulation. Such an approximation is
expected to fail at large channel separation distances, as
shown throughout our results.

Appendix D: Unit cell shape

Here, we explore whether the shape of the unit cell af-
fects the extent of electroneutrality breakdown. We find
that the results for a hexagonal unit cell with the same
center to center distance as a square unit cell exhibits the
same extent of electroneutrality breakdown, as shown in
Fig. D. While certain differences may arise by fluctua-
tions from the lattice position or irregular lattice spacing
of channels, we have provided some additional evidence
that our square array is a good approximation for a va-
riety of channel arrangements.

FIG. S3. The extent of electroneutrality breakdown for two
different unit cell shapes: square and hexagonal. The center
to center distance between channels, ` is maintained the same
between the channels. The conditions are identical to Fig.
3(c). As ` is varied, the hexagonal and square unit cells appear
to have similar extents of electroneutrality breakdown.

Appendix E: Capacitance

As a final practical application of electroneutrality
breakdown, we examine the capacitance of a nanopore
that experiences electroneutrality breakdown. As a de-
vice, we imagine an electrically-connected nanopore em-
bedded in a dielectric membrane. Scaled up, a set of
nanopores is arranged in an array with center to center
spacing of `, separated by a membrane dielectric domain.
Using the same parameters as in Fig. 8, we calculate the
differential capacitance within the channel at linear re-
sponse:

C =
dqs
dφ

=
εwR

2λ2D
/ | Qin/Qout | (E1)

valid for strongly overlapping double layers κDR →
0, and normalized by the surface area of the charged
nanopore, 2πRL. In Fig. S4(a), the capcacitance is plot-
ted, showing that for channels that have electroneutrality
breakdown `/L > 1 at low concentrations, that the ca-
pacitance saturates at low concentration. The value of
the capacitance at low concentration is higher for chan-
nels which exhibit electroneutrality breakdown. If we
renormalize the capacitance by the total surface area of
the membrane/electrolyte domain per unit cell, we arrive
at the results in Fig. S4(b). If we renormalize the capac-
itance by the volume of the membrane/pore system, we
get the results in Fig. S4(c). These renormalized capaci-
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FIG. S4. The capacitance (a) normalized by the pore surface area (b) normalized by the membrane/electrolyte surface area per
unit cell and (d) normalized by the membrane/pore volume. In each plot, the separation distance between channels is varied,
changing the extent of electroneutrality breakdown. The solid lines are the predictions using equation 10 and the dotted lines
are the predictions using equation 14. The dotted lines are good predictors of the extent of electroneutrality breakdown at
small `/L, but fail at large `/L, e.g. the blue dotted lines.

tance values exhibit the opposite trend–namely, as chan-
nels are closer together (`/L→ 0), the cumulative surface
area and volume decrease, leading to greater renormal-
ized capacitance. Even though the single channels have
more capacitance per pore surface area due to electroneu-
trality breakdown, the additional surface area or volume
for the channels to be spaced far apart from each other

leads to smaller renormalized capacitance. One could
potentially design a membrane with significant density
which still exhibits some electroneutrality breakdown,
leading to better performance than a denser array of
channels, as shown in the comparison between the green
and red lines in Fig. S4.
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