
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Systematic comparison of graph embedding methods in
practical tasks

Yi-Jiao Zhang, Kai-Cheng Yang, and Filippo Radicchi
Phys. Rev. E 104, 044315 — Published 22 October 2021

DOI: 10.1103/PhysRevE.104.044315

https://dx.doi.org/10.1103/PhysRevE.104.044315

Systematic comparison of graph embedding methods in practical tasks1

Yi-Jiao Zhang,1 Kai-Cheng Yang,2 and Filippo Radicchi22

1Institute of Computational Physics and Complex Systems,3

Lanzhou University, Lanzhou, Gansu 730000, China4

2Center for Complex Networks and Systems Research,5

Luddy School of Informatics, Computing, and Engineering,6

Indiana University, Bloomington, Indiana 47408, USA7

(Dated: September 27, 2021)8

Network embedding techniques aim at representing structural properties of graphs in geometric
space. Those representations are considered useful in downstream tasks such as link prediction and
clustering. However, the number of graph embedding methods available on the market is large,
and practitioners face the non-trivial choice of selecting the proper approach for a given applica-
tion. The present work attempts to close this gap of knowledge through a systematic comparison of
eleven different methods for graph embedding. We consider methods for embedding networks in the
hyperbolic and Euclidean metric spaces, as well as non-metric community-based embedding meth-
ods. We apply these methods to embed more than one hundred real-world and synthetic networks.
Three common downstream tasks — mapping accuracy, greedy routing, and link prediction — are
considered to evaluate the quality of the various embedding methods. Our results show that some
Euclidean embedding methods excel in greedy routing. As for link prediction, community-based and
hyperbolic embedding methods yield overall performance superior than that of Euclidean-space-
based approaches. We compare the running time for different methods and further analyze the
impact of different network characteristics such as degree distribution, modularity, and clustering
coefficients on the quality of the embedding results. We release our evaluation framework to provide
a standardized benchmark for arbitrary embedding methods.

I. INTRODUCTION9

Representing complex networks in latent space, or net-10

work embedding, has generated a growing interest from11

multiple disciplines [1–3]. From a theoretical point of12

view, the geometric representation of a network may pro-13

vide an intuitive explanation of key properties of real-14

world systems such as structural features [4], navigabil-15

ity [5, 6], and robustness [7, 8]; when it comes to ap-16

plications, network embedding can be useful for graph17

analysis tasks like visualization [9], link prediction [10],18

and graph clustering [11, 12].19

Many embedding methods use Euclidean space as their20

target space. Euclidean embedding is intuitive and can21

immediately be used in standard machine learning algo-22

rithms [2, 3]. However, network embedding methods are23

not limited to Euclidean space. For example, many re-24

cent approaches represent networks in hyperbolic space,25

where properties like hierarchy and heterogeneity can be26

easily captured [13–17]. Community structure can be27

seen as an alternative approach to network embedding in28

non-metric spaces [18].29

The existence of so many available and diverse em-30

bedding techniques presents a challenge for practitioners31

when they have to choose the proper method for the ap-32

plication at hand. Standardized tests for systematic com-33

parison among methods are lacking. The effectiveness34

of embedding methods is generally measured on limited35

types of tasks and small corpora of real-world networks.36

As a result, gauging the relative performance of a method37

with respect to another is difficult.38

In this work, we address this gap of knowledge by39

performing a systematic comparison of representative40

embedding methods. We consider five hyperbolic em-41

bedding methods (HyperMap [13, 19], Mercator [14],42

Poincaré maps [15], Hydra [16], and HyperLink [17]),43

four Euclidean-space-based approaches (Node2vec [20],44

Laplacian Eigenmaps (LE) [21], HOPE [22], and45

Isomap [23]), and the two variants (relying on Lou-46

vain [24] and Infomap [25]) of the non-metric community47

embedding method [18]. We apply these methods to em-48

bed more than one hundred real-world and synthetic net-49

works. Three downstream tasks, i.e., mapping accuracy,50

greedy routing, and link prediction, are considered to51

evaluate the quality of the various embedding methods.52

We assess how the performance of the various methods53

is affected by network characteristics such as degree dis-54

tribution, modularity, and average clustering coefficient.55

The various methods are also compared in terms of their56

computational complexity and their number of tunable57

parameters.58

Our findings indicate that Euclidean embedding meth-59

ods such as Node2vec and Isomap represent the overall60

best choice for practitioners as they yield decent perfor-61

mance in all tasks. Hyperbolic embedding methods ex-62

cel in link prediction; however, their high computational63

complexity impedes their application to large-scale net-64

works. Community-based methods behave similarly to65

hyperbolic embedding methods, but they have a lower66

computational demand. Our systematic analysis includes67

many different embedding methods. However for obvious68

reasons, we could not include all methods that are cur-69

rently available on the market or that will be developed70

in the future. For example, we did not consider geomet-71

ii

ric embeddings of networks induced by dynamical pro-72

cesses [26–29], see Ref. [1] for more examples. To ease the73

analysis of arbitrary embedding methods under our pro-74

posed experimental setting, we made it publicly available75

at https://github.com/yijiaozhang/hypercompare.76

II. GRAPH VISUALIZATION77

To qualitatively illustrate differences between different78

network embedding methods, we display graphical visu-79

alizations produced by the various methods for the same80

network topology, i.e., the autonomous system (AS) In-81

ternet network [30]. The network contains N = 23, 74882

nodes and E = 58, 414 edges. Visualizations are dis-83

played in Fig. 1.84

It is important to stress that all visualizations are dis-85

played in the two-dimensional Euclidean space, thus the86

original embedding is projected in this space using some87

ad-hoc recipes. For example, to yield decent embed-88

ding results, a high embedding dimension is required89

for Node2vec, LE, and HOPE. We therefore first learn90

their 128-dimensional embeddings and then use princi-91

pal component analysis (PCA) to project the results into92

the two-dimensional plane of the figure. The visualiza-93

tion by Isomap is obtained directly by setting the em-94

bedding dimension to two. For hyperbolic embedding95

methods, we represent the embedded nodes with their po-96

lar coordinates or Poincaré coordinates and plot them in97

the two-dimensional Euclidean projection of the Poincaré98

disks. Finally, despite their potential use in graph draw-99

ing, we exclude the non-metric community-based embed-100

ding methods from the qualitative analysis in order to101

avoid the use of sophisticated projections in the two-102

dimensional Euclidean space.103

To help the readers making sense of the visualizations,104

we color the autonomous systems, i.e., the nodes of the105

network, according to the continents where they are lo-106

cated in. We can see that, although different embedding107

methods yield drastically different visualizations, all of108

them can preserve geographic proximity to some extent,109

i.e., nodes within the same continent are often close one110

to the other in the visualizations. If we consider polar111

coordinates for all the embeddings (using the geomet-112

ric center as the origin for Euclidean embeddings), it113

becomes clear that the angular coordinates encode the114

community structure of the graph [18, 31]. The radial115

coordinates, on the other hand, often convey network116

centrality information [31].117

To quantify such connection, we use over a dozen real-118

world networks to empirically estimate the Spearman’s119

correlation coefficients between the distance of a node120

from the geometric center of different embeddings de-121

noted by rc and different network centrality measures.122

The results are shown in Fig. 2. Clearly, the radial coor-123

dinates rc of HyperMap, Mercator, and HyperLink rep-124

resent the degree of the nodes [13, 14, 17]. rc in the125

Isomap, Hydra, and Poincaré maps embeddings is highly126

correlated with closeness centrality [31]. For embeddings127

obtained by LE and HOPE, rc is highly correlated with128

closeness and eigenvector centrality. However, we do not129

find obvious connection between node centrality and rc130

in Node2vec embedding.131

III. PERFORMANCE IN DOWNSTREAM132

TASKS133

We now use downstream tasks to quantify the embed-134

ding quality of different methods. Specifically, we mea-135

sure their performance in mapping accuracy, greedy rout-136

ing, and link prediction. These tasks are conducted on 72137

real-world networks representing social, biological, tech-138

nological, transportation, and communication systems.139

Details of these networks are included in Ref. [39], Sec.140

I.141

To summarize the results from all the networks for142

an embedding method on a task, we produce the com-143

plementary cumulative distribution function (CCDF) of144

a performance metric and calculate the area under the145

CCDF curve (CCDF-AUC) as the overall score. The146

CCDF-AUC matches the average value of the perfor-147

mance metric over the entire corpus of real-world net-148

works and higher CCDF-AUC values indicate better149

overall performance.150

Some embedding methods have free parameters that151

could affect the measured value of the performance met-152

ric. We tune the parameters for each method to find the153

optimal value of the overall performance, and use these154

parameter values for all networks, see Sec. VII A for de-155

tails.156

A. Mapping accuracy157

A general principle respected by all the embedding158

methods is that proximity in the embedding space is159

representative for similarity or proximity in the original160

graph. Indeed, some embedding methods work by di-161

rectly finding the embedding configuration that best pre-162

serves pairwise distance or other similarity relationships.163

For example, Isomap, Poincaré maps, and Hydra aim at164

preserving the shortest path distance among all pairs of165

nodes in the embedding space; Node2vec and HOPE try166

to encode certain similarity information. Other methods167

follow the principle implicitly by fitting the observed net-168

work against proximity-preserving network models (see169

Sec. VII A for details).170

A natural way to assess the quality of a method is171

to measure how accurately the embedding method maps172

nodes in the space so that pairwise graph proximity173

is preserved in the embedding. We quantify the map-174

ping accuracy of an embedding method in terms of the175

Spearman’s correlation coefficient ρ between the pairwise176

shortest path distance in the network and the pairwise177

distance in the embedding space. Note that it is infea-178

https://github.com/yijiaozhang/hypercompare

iii

FIG. 1. Geometric embedding of the Internet. We display the visualization of the autonomous system (AS) Internet
network in Euclidean space inferred by (a) Node2vec, (b) HOPE, (c) LE, (d) Isomap, and in the Euclidean projection of the
hyperbolic embedding as inferred by (e) HyperMap, (f) Mercator, (g) HyperLink, (h) Poincaré maps, (i) Hydra. The color of a
point is representative for the continent where the corresponding AS is located in. For clarity of the visualization, only nodes
with degree larger than one are shown. For the visualization of Node2vec, HOPE, and LE, we first get the coordinates with
dimension d = 128, and then use PCA to obtain a two-dimensional projection. For the other methods, we directly plot their
two-dimensional embeddings.

TABLE I. Key features and results of different network embedding methods. From left to right, we report: name
of the method, the target embedding space (space), programming language of the publicly available implementation (lang.),
network structural information preserved by the method (struct. preserv.), computational complexity (complexity), CCDF-
AUC for mapping accuracy (mapp. acc.), CCDF-AUC for greedy routing (greedy rout.), and CCDF-AUC for link prediction
(link pred.). For each task, we highlight in bold face the CCDF-AUC values of the top three embedding methods. In the
expressions of computational complexity, N is the number of the nodes, E is the number of the edges, d is the embedding
dimension, C is the cost to compute each entry of the shortest path length matrix, e is the number of epochs (we set e = 1, 000),
b = min{512, N/10} is the batch size, m is the number of node layers, and 〈k〉 is the average degree of the network. More
details about the methods can be found in Sec. VII A. The CCDF-AUC values are generated by aggregating the performance
on 72 real-world networks for mapping accuracy and greedy routing. For link prediction, the CCDF-AUC values are computed
on a subset of 46 real-world networks with size larger than 300. The CCDF-AUC values for HyperLink are marked with *
because the method is unable to embed several networks. Restricting the analysis on the subset of real-world networks that
HyperLink can process yields qualitatively similar results in all three tasks (see Ref. [39], Sec. II).

Method Space Lang. Struct. preserv. Complexity Mapp. acc. Greedy rout. Link pred.
Node2vec [20] Euclidean Python Tunable O(dN) 0.561 0.818 0.787

HOPE [22] Euclidean Python Global O(d2E) 0.575 0.703 0.769
Laplacian Eigenmaps (LE) [21] Euclidean Python Local O(d2E) 0.464 0.566 0.749

Isomap [23] Euclidean Python Global O(CN2 + dN2) 0.858 0.861 0.848

HyperMap [19] hyperbolic C++ Local O(N2) 0.388 0.584 0.840
Mercator [14] hyperbolic Python Local O(N2) 0.557 0.530 0.902

HyperLink [17] hyperbolic C++ Local O(m〈k〉N2) 0.516* 0.510* 0.897*
Poincaré maps [15] hyperbolic Python Global O(N2 + ebN) 0.628 0.494 0.822

Hydra [16] hyperbolic R Global O(Nα), α > 2 0.799 0.683 0.846
Community embedding (Infomap) [18] non-metric Python Local O(N logN) 0.618 0.619 0.902
Community embedding (Louvain) [18] non-metric Python Local O(N logN) 0.561 0.454 0.914

sible to consider every possible pair of nodes for large179

networks. We therefore use a maximum of 105 random180

pairs of nodes to approximate the Spearman’s ρ in case181

the total number of node pairs N(N − 1)/2 > 105.182

As mentioned above, we calculate the mapping accu-183

racy of different embedding methods on 72 real-world184

networks. For sake of clarity, in Fig. 3(a), we plot the185

CCDF for some selected methods only. The CCDF-AUC186

values of all embedding methods are listed in Table I.187

Overall, we find that all methods do a good job in pre-188

serving graph proximity in the embedding space.189

Isomap and Hydra top the ranking on this task. The190

finding is not surprising given that both methods aim191

at optimizing the congruence between pairwise proxim-192

iv

No
de

2v
ec LE

HO
PE

Iso
m

ap
Hy

dr
a

Po
in

ca
ré

 m
ap

s
Hy

pe
rM

ap
Me

rc
at

or
Hy

pe
rL

in
k

Closeness

Eigenvector

Adaptive degree

Betweenness

PageRank

Katz

Degree

K-core

0.53 0.73 0.72 1.00 0.89 0.73 0.62 0.63 0.65

0.51 0.70 0.75 0.84 0.73 0.66 0.59 0.59 0.62

0.21 0.18 0.24 0.36 0.35 0.22 0.68 0.66 0.70

0.23 0.28 0.40 0.56 0.55 0.38 0.81 0.82 0.83

0.29 0.26 0.34 0.48 0.47 0.33 0.92 0.89 0.93

0.41 0.65 0.67 0.82 0.72 0.61 0.84 0.82 0.87

0.24 0.43 0.45 0.64 0.60 0.50 0.97 0.95 1.00

0.27 0.50 0.50 0.67 0.62 0.56 0.88 0.87 0.90

Average absolute rank correlation

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2. Interpretation of the radial coordinates in
embedding space. We show the pairwise Spearman’s cor-
relation coefficients between the distance of a node from the
geometric center of different embeddings and different cen-
trality metrics such as closeness[32], eigenvector[33], adap-
tive degree[34], betweenness[35], PageRank[36], Katz[37], de-
gree, and K-core[38] centralities. The values are obtained by
averaging the results from 13 real-world networks with size
N ∈ [1000, 5000] in our dataset.

ity of nodes in the graph and in the embedding space.193

The mapping accuracy of Poincaré maps is not as high194

even though it also aims at preserving the shortest dis-195

tance among pairs of nodes. An advantage of Isomap and196

Hydra is that they can perform embedding in arbitrarily197

high-dimensional spaces, while Poincaré maps can only198

work in two-dimensional hyperbolic space. Our experi-199

ments show that the mapping accuracy of Isomap and200

Hydra increases as the embedding dimension increases.201

The results of Fig. 3(a) and Table I are obtained with202

d = 128. By setting d = 2, Poincaré maps achieves the203

best performance; the performance of Hydra is also better204

than that of Isomap. The main reason is that the two-205

dimensional Euclidean space may not be large enough to206

properly embed large networks (see Ref. [39], Sec. II).207

B. Greedy routing208

Network embeddings may be used in greedy routing209

protocols devised for efficient network navigation [5, 74].210

The task regards the delivery of a packet from a source211

node s to a target node t. The packet performs hops on212

the network edges, moving from one node to one of its213

neighbors at each stage of the navigation process. In par-214

ticular, according to the greedy protocol, at every stage215

of the process the packet moves to the neighbor that is216

closest to target t according to a metric of distance. Such217

a metric of distance is computed using knowledge about218

the embedding space and the nodes’ coordinates. If the219

packet reaches the target node t, the delivery is consid-220

ered successful. However, if the packet visits the same221

node twice, the delivery fails. A good embedding for this222

task should be able to allow a high rate of successful223

deliveries along delivery paths that are not much longer224

than the true shortest paths.225

In this work, we follow the literature and use the greedy226

routing score (GR score) to measure the performance of227

different embeddings in greedy routing [75]. The GR228

score is defined as229

GR score =
2

N(N − 1)

∑
i>j

Dij

Rij
, (1)

where Dij is the shortest path length between nodes i230

and j in the original network, and Rij is the length of231

the actual delivery path followed by the packet accord-232

ing to the greedy routing protocol. All pairs of nodes are233

considered in the sum of Eq. (1), including those leading234

to successful and unsuccessful deliveries. For an unsuc-235

cessful delivery, Rij is infinite and Dij/Rij = 0. For a236

successful delivery along one of the shortest paths con-237

necting i to j, we have Dij/Rij = 1. The GR score is 0238

when all the deliveries are unsuccessful. The GR score239

equals 1 when all packets are successfully delivered along240

the shortest path in the original network. Note that it241

is impossible to test every pair of source-target nodes for242

large networks. In our experiments, we randomly select243

104 source-target pairs to approximate the GR score in244

case the total number of node pairs N(N − 1)/2 > 104.245

We show the CCDF of the GR scores for selected em-246

bedding methods in Fig. 3(b) and the CCDF-AUC values247

for all methods in Table I. We note that all methods can248

facilitate network navigation to some extent. In general,249

there is a non-trivial relationship between the perfor-250

mance in mapping accuracy and the one in greedy rout-251

ing. It is already known that Isomap performs well in this252

task [31]. The relatively good performance of Node2vec is253

instead a new result. In part, the result can be explained254

by considering that embeddings obtained by Node2vec255

are based on the exploration of graph paths, a process256

that well informs a greedy navigation protocol. On the257

other hand, it seems that Euclidean-space-based embed-258

dings better suit for this task than embedding methods259

relying on hyperbolic geometry and non-metric spaces.260

A possible explanation of our finding is that many of the261

non-Euclidean embedding methods focus on preserving262

local network properties rather than global ones. The263

only exception to this rule is Hydra, which in fact dis-264

plays relatively higher performance than that of the other265

hyperbolic embedding methods.266

C. Link prediction267

Link prediction is a standard task to evaluate the per-268

formance of graph embedding methods [3, 10]. The goal269

v

0.00 0.25 0.50 0.75 1.00
Spearman's

0.0

0.2

0.4

0.6

0.8

1.0

CC
DF

(a)

Node2vec
Isomap
Mercator
Hydra
Comm. (Louvain)

0.00 0.25 0.50 0.75 1.00
GR score

0.0

0.2

0.4

0.6

0.8

1.0
(b)

0.00 0.25 0.50 0.75 1.00
ROC-AUC

0.0

0.2

0.4

0.6

0.8

1.0
(c)

FIG. 3. Aggregate performance in downstream tasks. We show the complementary cumulative distribution function
(CCDF) of (a) the Spearman’s correlation coefficients of the mapping accuracy, (b) the GR scores of greedy routing, and (c)
the ROC-AUC scores of link prediction for different embedding methods on real-world networks. The average performance
over all networks of an embedding on a task is equal to the area under the curve of the corresponding CCDF. Since most of the
embedding methods are stochastic, the data points in the figure are obtained by averaging the results from five independent
repetitions.

is predicting the existence or the non existence of edges270

between non-observed pairs of nodes. There are poten-271

tially many different ways to implement the task. In our272

case, we first remove 30% randomly chosen edges from273

the original network while ensuring that the remaining274

graph is still formed by a single connected component.275

The removed edges are used as the positive test set.276

Then, we randomly sample a negative test set of non-277

existent edges with size identical to that of the positive278

test set. The remaining network is fed to the embedding279

methods. For each pair of nodes, the closer they are in280

the embedding space, the more likely they are connected.281

We stress that the information about removed edges is282

not provided to any embedding methods except for Hy-283

perlink, for which the percentage of the removed edges is284

an input parameter.285

The ability of an embedding to distinguish the edges286

from the positive and negative sets is measured by the287

area under the receiver-operating characteristic curve288

(ROC-AUC). The ROC-AUC score ranges from 0.5 to289

1. For perfect prediction, the ROC-AUC score equals290

to 1. The score is 0.5 for random guesses. For small291

networks, removing 30% of the edges may substantially292

distort the network structure and the link prediction re-293

sults. Therefore, we only consider real-world networks294

with more than 300 nodes for the link prediction task in295

this paper. We show the CCDF of ROC-AUC scores for296

selected embedding methods in Fig. 3(c) and report the297

CCDF-AUC values for all methods in Table I as before.298

All embedding methods yield comparable performance in299

this task. Mercator and the community-based methods300

yield slightly better performance than the other methods.301

The result can be a reflection of the fact that the embed-302

dings are obtained by fitting graphs against probability303

laws for network connections, which immediately provide304

predictions for missing links. We also measure the area305

under the precision-recall curve (AUPR) for each method306

in the link prediction task, the results are qualitatively307

similar to those obtained for ROC-AUC (see Ref. [39],308

Sec. II).309

D. Embedding performance on synthetic networks310

In order to systematically analyze the performance311

of the different embedding methods, we also use312

34 instances of synthetic networks generated by five313

types of network models: the popularity-similarity-314

optimization (PSO) model [4, 19], the Lancichinetti-315

Fortunato-Radicchi (LFR) model [76], the configuration316

model with power-law degree distribution and Poisson317

degree distribution (power-law networks and Poisson net-318

works), and the model for spatial networks by Daqing et319

al. [77] (see Sec. VII B for details of network models and320

parameters used).321

We apply the embedding methods to the synthetic322

networks, repeat the evaluation on three downstream323

tasks and report the performance in Table II. We can324

see that the results on the synthetic network models are325

consistent with the results obtained on the real-world326

networks. Isomap and Hydra are the top two meth-327

ods for mapping accuracy. Euclidean embeddings such328

as Node2vec and Isomap perform better than hyper-329

bolic and community-based embeddings on greedy rout-330

ing, while hyperbolic and community-based embeddings331

outperform Euclidean-based embedding methods on link332

prediction.333

By tuning the parameters of the network models, we334

can further study the effect of network characteristics on335

the performance of different embedding methods. The336

network models and the corresponding network charac-337

teristics analyzed in this paper are listed in Table III.338

vi

TABLE II. Embedding performance on synthetic networks. We summarize all the results obtained by the different
embedding methods on the synthetic network models considered in this paper (i.e., PSO models, LFR networks, power-law
networks, spatial networks, and Poisson networks). From left to right, we report: name of the method, the CCDF-AUC of
mapping accuracy on the various network models, the CCDF-AUC of greedy routing scores on the same set of network models,
and the CCDF-AUC of link prediction ROC-AUC scores on the same set of network models. Link prediction results for Poisson
networks are excluded since no meaningful prediction can be made for the edges of random and homogeneous networks. See
details about synthetic networks in Sec. VII B. We highlight in bold face the top three methods for each network model and
task combination. Some values for Mercator and HyperLink are marked with * because the methods are not able to embed
several networks. The results are qualitatively similar if we restrict the analysis on the subset of networks that all methods can
process.

Mapping accuracy Greedy routing Link prediction
Method PSO LFR power-law spatial Poisson PSO LFR power-law spatial Poisson PSO LFR power-law spatial

Node2vec 0.710 0.626 0.692 0.692 0.578 0.892 0.886 0.925 0.903 0.876 0.825 0.674 0.491 0.770
HOPE 0.740 0.444 0.662 0.547 0.442 0.742 0.740 0.873 0.775 0.768 0.750 0.678 0.523 0.697

LE 0.540 0.462 0.523 0.485 0.452 0.785 0.641 0.673 0.662 0.692 0.762 0.662 0.607 0.618
Isomap 0.943 0.789 0.853 0.863 0.652 0.872 0.846 0.887 0.885 0.794 0.818 0.729 0.647 0.733

HyperMap 0.379 0.314 0.365 0.283 0.266 0.797 0.265 0.528 0.371 0.294 0.848 0.695 0.653 0.660
Mercator 0.459* 0.384 0.375 0.450 0.339 0.607* 0.198 0.253 0.298 0.192 0.847* 0.698 0.623 0.687

Poincaré maps 0.618 0.379 0.412 0.489 0.315 0.577 0.256 0.228 0.418 0.218 0.808 0.672 0.590 0.680
HyperLink 0.303 0.375 0.370 0.345 0.317* 0.593 0.295 0.313 0.355 0.233* 0.742 0.719 0.642 0.662

Hydra 0.898 0.666 0.773 0.685 0.528 0.765 0.371 0.574 0.422 0.480 0.783 0.671 0.663 0.632
Comm. (Infomap) 0.586 0.434 0.402 0.437 0.329 0.743 0.318 0.473 0.442 0.360 0.883 0.735 0.633 0.738
Comm. (Louvain) 0.543 0.384 0.353 0.388 0.309 0.592 0.178 0.185 0.203 0.149 0.883 0.740 0.638 0.732

TABLE III. Synthetic network models considered in our anal-
ysis together with the corresponding network characteristics
varied in our tests.

Network model Characteristic
PSO model [4, 19] Clustering coefficient

LFR model [76] Modularity
Poisson network Average degree

power-law network Power-law exponent
spatial networks [77] Power-law exponent

We find that certain network characteristics have339

strong effects on downstream tasks as follows: (1) the340

ability of embedding methods to preserve graph distance341

deteriorates as the density of the network grows; (2)342

the ability of embedding methods to inform the greedy343

routing protocol improves as the network clustering co-344

efficient increases but its modularity decreases; (3) the345

ability of embedding methods in inferring links between346

non-observed pairs of nodes improves as the network347

clustering coefficient increases, the network modularity348

grows, and the heterogeneity of the degree distribution349

increases. Detailed results can be found in Ref. [39],350

Sec. IV. These effects are universal across different meth-351

ods with a few exceptions. For example, Isomap and352

Node2vec perform well in greedy routing regardless of353

the network characteristics.354

E. Summary of the results355

To provide an overview of the performance of differ-356

ent embedding methods, we focus on link prediction and357

greedy routing, and summarize the results in Fig. 4. The358

same analysis for synthetic networks can be found in359

0.4 0.6 0.8 1.0
GR score

0.6

0.7

0.8

0.9

1.0
RO

C-
AU

C
HyperLink
HyperMap
Poincaré map
Mercator
Hydra
Isomap
node2vec
LE
HOPE
Comm. (Louvain)
Comm. (Infomap)

FIG. 4. Average performance in link prediction and
greedy routing over a large corpus of real-world net-
works. We summarize here the same results as of Table I.
We plot the CCDF-AUC values of ROC-AUC scores and GR
scores for different embedding methods. Circles, triangles and
squares represent Euclidean-, hyperbolic- and community-
based embedding methods, respectively. The hollow and solid
symbols represent methods that preserve local and global net-
work structural information, respectively.

Ref. [39], Sec. IV. We can see that Isomap and Node2vec360

outperform the other methods in greedy routing while361

community embedding, Mercator, and HyperLink yield362

better performance in link prediction. However, no single363

method outperforms all the other methods in both tasks364

according to Fig. 4.365

We remark that the two tasks are fundamentally dif-366

ferent, as link prediction is a local prediction task while367

greedy routing is a global discovery task. Also, the po-368

sition of an embedding method in the performance dia-369

gram shown in Fig. 4 seems partially predictable based370

on the type of space targeted by the embedding method371

and/or the type of network structural information that372

the method is able to preserve (see Table I). As a gen-373

eral rule of thumb, methods that preserve local informa-374

vii

tion excel in link prediction, and algorithms that preserve375

global structure achieve optimal performance in greedy376

routing.377

2 4 6 80.0

0.5

1.0

GR
 sc

or
e (a)

walk length=10
walk length=100

2 4 6 80.0

0.5

1.0

RO
C-

AU
C (b)

2 4 6 8

0.00

0.25

0.50

P(
D)

(c)

shortest path length (D)
2 4 6 8

0.00

0.25

0.50
P(

D)
(d)

FIG. 5. Greedy routing and link prediction results
obtained by Node2vec with different walk length on
the IPv6 Internet network. We display (a) the relation
between GR score and the shortest path length between node
pairs involved when using Node2vec with different walk length
(l = 10 and l = 100) to guide greedy routing, (b) same as (a),
but for ROC-AUC scores in link prediction, (c) the distribu-
tion of distance between node pairs involved in greedy routing,
and (d) same as (c), but for link prediction. The data points
in the figure are obtained by averaging the results of 10 exper-
iments, the error bars indicate one standard deviation from
the mean.

To further validate our rule of thumb, we take advan-378

tage of Node2vec. The algorithm acquires structural in-379

formation by means of random walks with restart. The380

length of the random walks serves as a proxy for the typ-381

ical scale of structural information that is preserved by382

the embedding. We apply Node2vec with walk length383

l = 10 and l = 100 on the Ipv6 Internet network [78]384

and use the resulting embeddings to perform greedy rout-385

ing and link prediction. Instead of reporting the overall386

performance, we group the node pairs involved in the387

tasks by their shortest path distance in the network and388

then calculate the scores within each group. For l = 10,389

the GR score decreases quickly as the distance between390

source and target nodes increases. The performance for391

l = 100 in greedy routing is instead almost unaffected by392

the source-to-target distance. Performance in link pre-393

diction obtained for l = 10 is far better than the one394

obtained for l = 100. We note that the vast majority of395

links tested have distance D = 2, which corresponds to396

the maximum gap in performance between the embed-397

dings obtained for l = 10 and l = 100.398

IV. COMPUTATIONAL COMPLEXITY AND399

RUNNING TIME400

Scalability is another important factor when choosing401

the proper embedding method. We summarize the com-402

102 103 104

network size
10 3

10 2

10 1

100

101

102

103

104

105

ru
nn

in
g

tim
e

(s
ec

on
ds

)

O(N)

O(N2)

HyperLink
HyperMap
Poincaré map
Mercator
Hydra
Isomap
node2vec
LE
HOPE
Comm. (Louvain)
Comm. (Infomap)

FIG. 6. Running time vs. network size. We show
the running time of different embedding methods in relation
to the size of PSO models. The network size ranges from
N = 26 to N = 215. Other parameters of the PSO models
are: average degree 〈k〉 = 5, power-law exponent γ = 2.1,
temperature T = 0.5. Each data point is the average of five
simulations. For HyperMap, we use the hybrid algorithm
without correction steps and enable the speedup mode by
setting kspeedup = 10 (see Sec. VII A for details). The black
full line indicates linear scaling; the black dashed line denotes
quadratic scaling.

TABLE IV. Node2vec and community embedding on
large networks. We report the performance on mapping ac-
curacy (Spearman’s ρ), greedy routing (GR score), and link
prediction (ROC-AUC score) as well as the running time (sec-
onds) of Node2vec and community embeddings with Infomap
and Louvain algorithms on the YouTube friend network (N =
1,134,890) and the AS Skitter network (N = 1,694,616).

Network Metric Node2vec Infomap Louvain

YouTube friend

Mapping accuracy 0.620 0.499 0.352
Greedy routing 0.478 0.071 0.588
Link prediction 0.959 0.962 0.976
Running time 33,045 s 4,938 s 732 s

AS Skitter

Mapping accuracy 0.582 0.403 0.033
Greedy routing 0.348 0.117 0.363
Link prediction 0.998 0.991 0.983
Running time 85,356 s 3,149 s 1,895 s

putational complexity in Table I. Hyperbolic embedding403

methods have O(N2) computational complexity at least,404

while Euclidean and non-metric methods often scale lin-405

early with the system size.406

To directly compare the running time of the various407

embedding techniques, we apply all the methods to a408

series of networks with different sizes generated by the409

popularity-similarity-optimization (PSO) model [4, 19].410

All the experiments are performed on a server equipped411

with Intel Xeon Platinum 8268 CPUs (2.90GHz) and412

1.5TB RAM. Although the server have multiple proces-413

sors, all the methods are allowed to use one processor414

only. Figure 6 shows the relation between the running415

time and the network size for all the embedding meth-416

ods. The results confirm that the Euclidean and the non-417

metric embedding methods tend to be much faster than418

viii

the hyperbolic embedding methods. When we apply the419

embedding algorithms to different network models and420

measure their computational time, results are qualita-421

tively similar.422

Among the methods tested, only Node2vec and com-423

munity embedding methods (both variants with Lou-424

vain [24] and Infomap [25]) can easily scale up to large425

networks. As a demonstration, we apply them to two426

real-world networks with more than one million nodes.427

They complete the embedding in about 24 hours and428

1.4 hours, respectively, without compromising the per-429

formance on downstream tasks (see details in Table IV).430

In order to avoid unnecessary memory and time usage431

while applying Node2vec on networks with millions of432

nodes, we use a program optimized for unweighted net-433

works and specific algorithm parameter values (p = 1434

and q = 1).435

In our experiments, we try to use the implementation436

shared by the creators whenever possible. For classic437

methods such as LE and Isomap, we use the implemen-438

tation provided by the Python package scikit-learn [79].439

We implement Node2vec and community embedding in440

Python with the help of some open source packages. Note441

that this is not the ideal setup for comparing the run-442

ning time of different methods since the programming443

language (see Table I) used can heavily affect the re-444

sults and the implementation used in our experiments445

can sometimes be further optimized. Instead, our ex-446

periments mimic a more practical scenario where prac-447

titioners hope to quickly apply the embedding methods448

without spending too much time improving or even im-449

plementing the methods themselves. The results here450

provide a rough estimation of the expected running time451

when using the most accessible implementation.452

V. DISCUSSION453

In this work, we consider a large corpus of real-world454

and synthetic networks, and measure the performance455

of several embedding methods in solving specific net-456

work tasks. We find that Isomap and Node2vec outper-457

form the other methods in greedy routing. As for link458

prediction, community embedding, Mercator, and Hy-459

perLink all yield excellent performance. Our results on460

synthetic network models indicate that type and feature461

of the target networks are not important when choosing462

the embedding method. Instead, one possible principle463

is that the methods aim at preserving global network464

structure excel in greedy routing, and methods only cap-465

turing local information achieve optimal performance in466

link prediction. Also, our analyses of the algorithm run-467

ning time show that hyperbolic methods are much slower468

than other methods, suggesting that they are not yet well469

suited for embedding large-scale networks.470

We stress that not all factors that are important in471

the decision of using an embedding method instead of472

another are measurable and quantifiable. Some methods473

may provide valuable insights into the characteristics of474

networks although their performance may not be com-475

parable with that of others in certain tasks. For prac-476

tical tasks, many other features may also be crucial. A477

method can be chosen because its implementation is easy478

to access and configure, and the method can process dif-479

ferent input networks. For instance, we had to exclude480

some embedding methods from our experiments because481

we were unable to find adequate implementations. Also,482

some of the methods considered in this paper require483

proper calibration of input parameters to be successful484

in downstream tasks [12]. For example, choosing a large485

value for the embedding dimension for Node2vec, LE,486

and HOPE does not always lead to good results. These487

methods can suffer from overfitting on certain tasks when488

the embedding dimension is too high. Calibration is gen-489

erally a computationally expensive operation, and there490

may be practical situations where calibration can not491

even be performed.492

All things considered, we believe that the Euclidean493

embedding methods like Node2vec and Isomap should be494

the first options for practitioners since they have stable495

and widely available implementations, and they yield de-496

cent performance in all tasks. The non-Euclidean embed-497

ding methods still present some challenges. Their non-498

Euclidean nature makes it non-trivial to incorporate their499

results to common downstream tasks in general, which500

may limit their applicability. Nevertheless, the fact that501

the non-Euclidean methods stand out in certain tasks502

suggests that they have a great potential, calling for fur-503

ther investigation and improvement.504

VI. ACKNOWLEDGEMENTS505

Y.-J.Z. acknowledges support from China Scholarship506

Council (No.201906180029). Y.-J.Z. and F.R. acknowl-507

edge partial support from the National Science Foun-508

dation (Grant No. CMMI-1552487). F.R. acknowl-509

edges partial support from the US Army Research Office510

(Grant No. W911NF-21-1-0194).511

VII. METHODS512

A. Network Embedding Methods513

Network embedding methods are sets of procedures514

that map the nodes of the input network into points in515

the target space. The coordinates of the nodes serve as516

the vector representation of the networks and the pair-517

wise distance of different nodes correspond to their prox-518

imity or similarity in the input networks. Depending on519

the target spaces, the representation of the embedded520

network and the definition of the distance between nodes521

in the embedding space vary. Here we group different em-522

bedding methods by their target spaces, i.e., Euclidean,523

hyperbolic, and non-metric spaces.524

ix

1. Euclidean embedding methods525

For Euclidean embedding methods, each node i can be526

described by a d-dimensional vector xi = (x
(1)
i , ..., x

(d)
i)527

where d is the space dimension and serves as a free pa-528

rameter for all Euclidean embedding methods. There529

are several ways to calculate the distance between two530

nodes in Euclidean embedding space. The most common531

two, Euclidean distance and dot product, are used in this532

work. The Euclidean distance between node i and j is533

defined as534

distij = ‖xi − xj‖=

√√√√ d∑
v=1

(x
(v)
i − x

(v)
j)2 . (2)

The dot product between node i and j is given by535

xi · xj =

d∑
v=1

x
(v)
i x

(v)
j . (3)

Note that the similarity between two vectors is propor-536

tional to their dot product. So we use537

distij = −xi · xj , (4)

as effective distance in the dot product approach.538

Node2vec, LE, HOPE, and Isomap are the four Eu-539

clidean embedding methods we consider in this paper.540

We use either the distance of Eq. (2) or Eq. (4) depend-541

ing on the objective function that a method minimizes542

and the actual downstream task. Eq. (2) is used for LE543

and Isomap in this paper. For Node2vec and HOPE,544

we use Eq. (4) for link prediction according to their ob-545

jective functions, and Eq. (2) for mapping accuracy and546

greedy routing because it yields much better performance547

than when distance is calculated according to Eq. (4) (see548

Ref. [39], Sec. III).549

Next, we briefly introduce each method and the pa-550

rameters used in our experiments.551

(1) Node2vec [20]: Node2vec first generates multiple552

node sequences using random walks with fixed553

length, then finds the vector representations that554

maximize the probability of co-occurrence of the555

nodes in the sequences. There are some tunable556

parameters for Node2vec, such as walk length l,557

window size, the bias parameters of the random558

walk dynamics p and q, and the embedding dimen-559

sion d. In this work, we use the default setting:560

window size = 10, p = 1 and q = 1.561

We find that the walk length can greatly affect dif-562

ferent downstream tasks. The main reason is that563

walk length directly control the type of informa-564

tion that the resulting embedding preserves. Short565

walk lengths preserve local structural information;566

long walk lengths preserve global structure. As ex-567

pected, according to our tests on several real-world568

networks, increasing the walk length improves the569

performance of mapping accuracy and greedy rout-570

ing, but worsens link prediction (see Ref. [39], Sec.571

III). So we set l = 10 for link prediction and l = 100572

for the other two tasks in this paper.573

In general, the larger the dimension d, the better574

the embedding. But for Node2vec, the performance575

in downstream tasks may decrease slightly as d in-576

creases (see Ref. [39], Sec. III). In this work, we set577

d = min{N, 128} for all embedding methods that578

can work with high (d > 2) dimensional embed-579

ding space, which is considered a sufficiently high580

value to achieve nearly-optimal embeddings of net-581

works [80]. We make this choice to maintain the582

simplicity of the experiments without introducing583

strong biases towards certain methods.584

(2) Laplacian Eigenmaps (LE) [21]: LE aims to place585

the nodes that are connected with each other586

closely in the embedding space by minimizing the587

objective function588

ELE =
∑
ij

‖xi − xj‖2Aij = tr(XTLX) , (5)

where X = (x1,x2, ...xn)T is the low-dimensional589

representation matrix of the network, A is the adja-590

cency matrix of the network (Aij = Aji = 1 if nodes591

i and j are connected, otherwise Aij = Aji = 0),592

L = K −A is the Laplacian matrix and K is the593

diagonal matrix with Kii =
∑
j Aji. LE further594

requires XTKX = I to eliminate trivial solutions.595

To obtain a d-dimensional embedding, one can sim-596

ply extract the eigenvectors that correspond to the597

d smallest non-zero eigenvalues of the solution to598

Lx = λKx.599

LE only has one tunable parameter: dimension d.600

We set it to d = min{N, 128}.601

(3) HOPE [22]: Given a node similarity definition,602

HOPE seeks to preserve the similarity matrix S in603

the embedding space by minimizing604

EHOPE = ‖S− xxT ‖, (6)

through singular value decomposition (SVD).605

HOPE can work with different node similarity defi-606

nitions; here we use Katz index, which is calculated607

by608

SKatz = β

∞∑
l=1

Al , (7)

where A is the adjacency matrix of the network609

and β is the decay parameter. HOPE requires610

β < 1/λmax, with λmax principal eigenvalue of the611

matrix A . We set β = 1/λmax − 0.001 for all ex-612

periments. The embedding dimension d is set to613

d = min{N, 128}.614

x

(4) Isomap [23]: Isomap tries to preserve the short-615

est path distance between each pair of nodes. It616

first calculates the shortest path distance matrix617

D of a network. Then multidimensional scal-618

ing (MDS) [81] is applied to D to obtain a d -619

dimensional representation of the network that620

minimize the stress function621

EISO =
∑
ij

[Dij − ‖xi − xj‖]2 . (8)

We set the embedding dimension d = min{N, 128}622

for Isomap in all experiments.623

2. Hyperbolic embedding methods624

For hyperbolic embedding, nodes are usually consid-625

ered as points on the Poincaré disk. Two coordinate sys-626

tems are often used in the literature, i.e., the polar coordi-627

nates (r, θ) and the Poincaré coordinates y = (y(1), y(2)).628

The Poincaré coordinates are similar to the Euclidean629

coordinates but represent points in hyperbolic space.630

They can also be extended to arbitrary dimension, i.e.,631

y = (y(1), ..., y(d)), to represent points in the Poincaré632

ball.633

When using the polar coordinates, the distance be-634

tween node i and j can be calculated by635

distij = arcosh(coshricoshrj − sinhrisinhrjcos(∆θ)) ,
(9)

where ∆θ = π − |π − |θi − θj || is the angle between the636

two nodes.637

When using the Poincaré coordinates, the distance be-638

tween node i and j can be calculated by639

distij = arcosh

(
1 + 2

‖yi − yj‖2

(1− ‖yi‖2)(1− ‖yj‖2)

)
. (10)

The two-dimensional Poincaré coordinates (y(1), y(2))640

and the polar coordinates (r, θ) of hyperbolic space can641

be converted to each other by642

r = 2artanh(
√

(y(1))2 + (y(2))2) ,
θ = atan2(y(2), y(1)) .

(11)

Among the hyperbolic embedding methods consid-643

ered in this work, HyperMap, Mercator, and Hyper-644

Link use polar coordinates; Poincaré maps and Hydra645

use Poincaré coordinates. Poincaré maps focus on the646

two-dimensional disk while Hydra can embed networks647

in higher-dimensional hyperbolic spaces.648

We briefly introduce each method and the parameters649

used in our experiments in the following.650

(1) HyperMap [13, 19]: Popularity-similarity-651

optimization (PSO) model [4, 19] is a growing652

network model that can simultaneously capture653

the heterogeneity degree distribution and the654

strong clustering structure of real-world networks.655

Nodes of PSO model are embedded in hyperbolic656

space and their coordinates have clear interpre-657

tations: the radial coordinate represent the node658

popularity, and the difference between angular659

coordinates of a node pair represents the similarity660

between them. The PSO model consists of a661

probability law for the existence of edges between662

pairs of nodes in the network depending on their663

distance in the hyperbolic space, i.e., Eq. (9).664

As an embedding method, HyperMap embeds an665

input network to the hyperbolic space by fitting666

the network against the PSO model. The fit is per-667

formed by maximizing the likelihood of observed668

edges according to the PSO connection probabil-669

ity law. As the maximum likelihood problem can-670

not be solved exactly, different variants of the Hy-671

perMap algorithm exploit different strategies to672

find approximate solutions. These variants in-673

clude the link-based method [19], the common-674

neighbors based method (also called HyperMap-675

CN) [13], and the hybrid method [13] that uses the676

common-neighbors based method for high degree677

nodes and the link-based method for the rest of the678

nodes. The computational complexity of the above-679

mentioned algorithms is at least O(N3). There680

is also a speed-up version of the hybrid method,681

which can reduce the computational complexity of682

the method down to O(N2) without compromising683

the embedding quality too much.684

In this paper, we use the speed-up version of Hy-685

perMap. This method has extra correction steps686

that can marginally improve the results but have a687

very high computational complexity so we disable688

them. It has a parameter kspeedup to control the689

level of acceleration. We set kspeedup = 10 for net-690

works with size N < 10, 000 and kspeedup = 40 for691

networks with size N > 10, 000.692

The input parameters of HyperMap include the693

temperature T ∈ [0, 1), which reflects the average694

clustering level of a network. A higher temperature695

means that the network is less clustered. Identify-696

ing the ideal temperature value for each network697

requires scanning the parameter space, which is in-698

feasible in our experiments. Instead, we test the699

overall performance of HyperMap for different val-700

ues of the temperature parameter on several real-701

world networks and find that temperatures that702

are not too large nor too small generally yield de-703

cent performance (see Ref. [39], Sec. III). So we704

set temperature T = 0.5 in all experiments. An-705

other input parameter of HyperMap is the expo-706

nent γ ≥ 2 of the power-law degree distribution of707

the network. Note that not all real-world networks708

display a power-law degree distribution. To apply709

HyperMap to all the networks considered, we use710

the code shared by Broido et al. [82] to estimate a711

xi

suitable γ value for every network. If the estimated712

γ value is smaller than 2.1, we set γ = 2.1.713

(2) Mercator [14]: Mercator learns the hyperbolic rep-714

resentations of networks by matching them with715

the S1/H2 model [83, 84]. The S1/H2 model is the716

static version of the PSO model. While PSO model717

can only generate networks with pure power-law718

degree distribution, the S1/H2 model can generate719

networks with arbitrary degree distributions. Be-720

sides the input network itself, Mercator does not721

require any input parameters.722

(3) Poincaré maps [15]: Poincaré maps aims to pre-723

serve the pairwise shortest path length just like724

Isomap. There are several free parameters of725

Poincaré maps. For example, the Gaussian kernel726

width σP is related to the calculation of the global727

proximity of the original network, the scaling pa-728

rameter γP is used to tune the scattering of the729

embedding. We find that these parameters have730

little effect on the results. In this paper, we use731

the default setting σP = 1 and γp = 2 in all exper-732

iments. The maximum number of epochs for the733

embedding optimization is set to e = 1000.734

(4) Hydra [16]: Like Poincaré maps and Isomap, Hy-735

dra (HYperbolic Distance Recovery and Approx-736

imation) also seeks to preserve pairwise shortest737

path length. The difference between Poincaré maps738

and Hydra is that Hydra can work in hyperbolic739

spaces of arbitrary dimension, while Poincaré maps740

is designed for the two-dimensional space only. The741

dimension d is the only one free parameter of Hy-742

dra. We set d = min{N, 128} in all experiments.743

(5) HyperLink [17]: HyperLink is a model-based hyper-744

bolic embedding method designed for link predic-745

tion. It tries to fit the networks to the random hy-746

perbolic graphs (RHGs) model, which is equivalent747

to the S1/H2 model used in Mercator. HyperLink748

assumes that a fraction p of links are missing when749

embedding a network. In addition to p, other in-750

put parameters of HyperLink include the exponent751

2 < γ < 3 of the degree distribution, the tempera-752

ture T , the number of layers m, and the coefficient753

g that controls the size of the mesh in the angular754

space. In our experiments, we use the default set-755

tings m = 20 and g = 1. We aid the method by756

setting p = 0.3 in link prediction, and p = 0 in other757

tasks. The estimation of γ is the same as in Hyper-758

Map. We set γ = 2.1 if the estimated γ < 2.1 and759

γ = 2.9 if the estimated γ > 2.9 in order to satisfy760

the requirement. Like HyperMap, the temperature761

T is a free parameter for HyperLink. We test the762

overall performance of HyperLink for different T763

values on some real-world networks, and find that764

T = 0.3 yields the best performance overall (see765

Ref. [39], Sec. III). Therefore, we set T = 0.3 in766

our experiments.767

3. Non-metric embedding method768

Community embedding [18] is a non-metric embedding769

method inspired by the analogy between hyperbolic em-770

beddings and network community structure. It embeds771

networks using information about their community struc-772

tures: node i is represented by the coordinates (ki, σi)773

where ki is node’s degree and σi is the index of the774

community that the node belongs to. There are many775

community detection algorithms available on the market.776

Here, we use two popular ones: Infomap [25] and Lou-777

vain [24]. After the community partition of a network778

is obtained, nodes in the same communities are merged779

together to generate supernodes, which then form a su-780

pernetwork. The edge weight between community a and781

b in the supernetwork is defined as782

wab = 1− lnρab , if ρab > 0 , (12)

and wab = 0, otherwise. ρab is the ratio between the total783

number of edges between communities a and b and the784

sum of the node degrees in community a.785

The fitness between nodes j and i is defined as786

fij = βDσiσj − (1− β)ln ki , (13)

where Dσiσj is the shortest path length between commu-787

nities σi and σj in the supernetwork, ki is the degree of788

node i, and 0 ≤ β ≤ 1 is a free parameter. In order789

to maximize the overall performance of community em-790

bedding on different tasks, we test the effect of β for the791

tasks on some real-world networks, and set β = 0.3 for all792

experiments (see Ref. [39], Sec. III). Note that the fitness793

of Eq. (13) is an asymmetric function, i.e., fij 6= fji. In794

this paper we symmetrize it as795

f̄ij =
fij + fji

2
, (14)

and we treat it at the same footing as of a distance be-796

tween nodes i and j, i.e.,797

distij = f̄ij , (15)

even though f̄ij is not a proper metric of distance.798

B. Networks799

In this paper, we use both real-world networks and800

synthetic networks. All networks are unweighted and801

undirected. We consider 72 real-world networks from dif-802

ferent domains, including social, biological, technological,803

transportation, and Internet networks. Sizes of these net-804

works ranges from 32 to 37,542 nodes. Figure 7 shows805

the average degree versus network size for all the 72 real-806

world networks used. Two networks with more than one807

million nodes are also considered for Node2vec and com-808

munity embedding particularly to demonstrate their scal-809

ability. The full list of the real-world networks and some810

xii

101 102 103 104 105

network size
2

5

10

20

50

av
er

ag
e

de
gr

ee
5

10
nu

m
be

r o
f

ne
tw

or
ks

0 10
number of
networks

FIG. 7. Summary statistics of the real-world networks
considered in this study. In the main panel, we show the
scatter plot of the average degree 〈k〉 versus network size N .
Each point is a real network in our dataset. Side panels are
used to display non-normalized distributions of 〈k〉 and N .

of their basic information can be found in Ref. [39], Sec.811

I. Only the largest connected component of the various812

network is considered in our analysis.813

We use 34 synthetic networks generated according to814

different models. We ensure that each network instance815

consists of one connected component only. The network816

models considered are reported below.817

(1) Popularity-similarity-optimization (PSO) model [4,818

19]: PSO model grows networks by adding nodes819

to a hidden hyperbolic space. Nodes close with820

each others in the hidden space are then connected821

to form the edges. There are several parameters822

that could affect the properties of the generated823

networks: network size N , temperature T , aver-824

age degree 〈k〉, and exponent γ of the power-law825

degree distribution P (k) ∼ k−γ . Temperature T ∈826

[0, 1) controls the average clustering in the network,827

which is maximized at T = 0. We generate six in-828

stances of the PSO model with the following pa-829

rameters: N = {1000; 10, 000}, T = {0.1; 0.5; 0.9},830

γ = 2.1, 〈k〉 = 5.831

(2) Lancichinetti-Fortunato-Radicchi (LFR)832

model [76]: The LFR model generates net-833

works with community structure, and both the834

degree distribution P (k) and community size dis-835

tribution P (S) follow power-law distribution, i.e.,836

P (k) ∼ k−γ and P (S) ∼ S−τ . Input parameters837

that are required to generate instances of the model838

are the network size N , the exponents γ and τ , the839

average degree 〈k〉, the maximum degree kmax, the840

minimum and maximum community size cmin and841

cmax, and the mixing parameter µ that determines842

how strong the community structure is. A small843

value of µ corresponds to a strong community844

structure. We generate eight instances of LFR845

models, the parameters are N = {1000; 10, 000},846

µ = {0.1; 0.3; 0.5; 0.7}, γ = 2.1, τ = 2, 〈k〉 = 5,847

kmax = 50, cmin = 10, cmax = 0.1N .848

(3) Poisson networks: They are generated by feeding849

Poisson degree distributions to the configuration850

model. Two tunable parameters are the size of net-851

work N and average degree 〈k〉. We use eight in-852

stances of Poisson networks with the following pa-853

rameters: N = {1000; 10, 000}, 〈k〉 = {4; 6; 8; 10}.854

(4) Power-law networks: They are generated by feed-855

ing power-law degree distributions to the config-856

uration model. The tunable parameters are the857

network size N and the power-law exponent γ.858

The average degree of a network can be con-859

trolled by setting the minimum value of the node860

degrees, namely kmin. We use six instances of861

power-law networks and the parameters are N =862

{1000; 10, 000}, γ = {2.1; 2.5; 2.9}, kmax = 100. We863

use either kmin = 2 or kmin = 3 for nodes in the net-864

work to ensure an average degree 〈k〉 ' 5.865

(5) Spatial networks [77]: The model generate spatial866

networks that are embedded in two-dimensional867

regular lattice. Both the degree distribution P (k)868

and the Euclidean distance distribution of edges869

P (r) follow power-law distributions, i.e., P (k) ∼870

k−γ and P (r) ∼ r−α. The input parameters of871

the model are the network size N , the exponents γ872

and α, the minimum and maximum degree kmin873

and kmax. We use six instances of the model,874

with parameters chosen as N = {1000; 10, 000},875

γ = {2.1; 2.5; 2.9}, α = 2, kmax = 100. We use876

either kmin = 2 or kmin = 3 for nodes in the net-877

work to ensure an average degree 〈k〉 ' 5.878

[1] M. Boguñá, I. Bonamassa, M. De Domenico, S. Havlin,879

D. Krioukov, and M. Á. Serrano, Nat. Rev. Phys , 1880

(2021).881

[2] W. L. Hamilton, R. Ying, and J. Leskovec,882

arXiv:1709.05584 (2017).883

[3] P. Goyal and E. Ferrara, Knowl.-Based Syst. 151, 78884

(2018).885

[4] F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguná,886

and D. Krioukov, Nature 489, 537 (2012).887

[5] M. Boguñá, D. Krioukov, and K. C. Claffy, Nat. Phys.888

https://doi.org/10.1038/s42254-020-00264-4
https://doi.org/10.1038/s42254-020-00264-4
https://doi.org/10.1038/s42254-020-00264-4
http://arxiv.org/abs/1709.05584
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2018.03.022
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2018.03.022
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2018.03.022
http://dx.doi.org/10.1038/nature11459
http://dx.doi.org/10.1038/nphys1130
http://dx.doi.org/10.1038/nphys1130

xiii

5, 74 (2009).889

[6] A. Gulyás, J. J. B́ıró, A. Kőrösi, G. Rétvári, and D. Kri-890

oukov, Nat. Commun. 6, 7651 (2015).891

[7] K.-K. Kleineberg, L. Buzna, F. Papadopoulos,892

M. Boguñá, and M. A. Serrano, Phys. Rev. Lett.893

118, 218301 (2017).894

[8] S. Osat, F. Radicchi, and F. Papadopoulos, Phys. Rev.895

Research 2, 023176 (2020).896

[9] L. van der Maaten and G. Hinton, J. Mach. Learn. Res.897

9, 2579 (2008).898

[10] D. Liben-Nowell and J. Kleinberg, J. Am. Soc. Inform.899

Sci. Tech. 58, 1019 (2007).900

[11] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Si-901

mon, in Proceedings 2001 IEEE International Conference902

on Data Mining , edited by N. Cercone, T. Y. Lin, and903

X. Wu (IEEE Computer Society, San Jose, California,904

USA, 2001) pp. 107–114.905

[12] A. Tandon, A. Albeshri, V. Thayananthan, W. Alhalabi,906

F. Radicchi, and S. Fortunato, Phys. Rev. E 103, 022316907

(2021).908

[13] F. Papadopoulos, R. Aldecoa, and D. Krioukov, Phys.909

Rev. E 92, 022807 (2015).910

[14] G. Garćıa-Pérez, A. Allard, M. Á. Serrano, and911

M. Boguñá, New J. Phys. 21, 123033 (2019).912

[15] A. Klimovskaia, D. Lopez-Paz, L. Bottou, and M. Nickel,913

Nat. Commun. 11, 2966 (2020).914

[16] M. Keller-Ressel and S. Nargang, J. Complex Netw. 8,915

cnaa002 (2020).916

[17] M. Kitsak, I. Voitalov, and D. Krioukov, Phys. Rev.917

Research 2, 043113 (2020).918

[18] A. Faqeeh, S. Osat, and F. Radicchi, Phys. Rev. Lett.919

121, 098301 (2018).920

[19] F. Papadopoulos, C. Psomas, and D. Krioukov,921

IEEE/ACM Trans. Netw. 23, 198211 (2015).922

[20] A. Grover and J. Leskovec, in Proceedings of the 22nd923

ACM SIGKDD International Conference on Knowledge924

Discovery and Data Mining , KDD ’16 (ACM, New York,925

NY, USA, 2016) p. 855864.926

[21] M. Belkin and P. Niyogi, in Proceedings of the 14th In-927

ternational Conference on Neural Information Processing928

Systems: Natural and Synthetic, NIPS’01 (MIT Press,929

Cambridge, MA, USA, 2001) p. 585591.930

[22] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, in Pro-931

ceedings of the 22nd ACM SIGKDD international con-932

ference on Knowledge discovery and data mining , KDD933

’16 (ACM, New York, NY, USA, 2016) p. 11051114.934

[23] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, Science935

290, 2319 (2000).936

[24] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and937

E. Lefebvre, J. Stat. Mech.: Theory Exp. 2008, P10008938

(2008).939

[25] M. Rosvall and C. T. Bergstrom, Proc. Natl. Acad. Sci.940

USA 105, 1118 (2008).941

[26] E. Estrada, Phys. Rev. E 85, 066122 (2012).942

[27] E. Estrada, M. Snchez-Lirola, and J. A. de la Pea, Dis-943

cret. Appl. Math. 176, 53 (2014).944

[28] D. Brockmann and D. Helbing, Science 342, 1337 (2013).945

[29] C. Hens, U. Harush, S. Haber, R. Cohen, and B. Barzel,946

Nat. Phys. 15, 403 (2019).947

[30] M. Boguñá, F. Papadopoulos, and D. Krioukov, Nat.948

Commun. 1, 62 (2010).949

[31] Y.-J. Zhang, K.-C. Yang, and F. Radicchi, Phys. Rev.950

E 103, 012305 (2021).951

[32] G. Sabidussi, Psychometrika 31, 581 (1966).952

[33] P. Bonacich, J. Math. Sociol. 2, 113 (1972).953

[34] W. Chen, Y. Wang, and S. Yang, in Proceedings of the954

15th ACM SIGKDD International Conference on Knowl-955

edge Discovery and Data Mining , KDD ’09 (ACM, New956

York, NY, USA, 2009) p. 199208.957

[35] L. C. Freeman, Sociometry 40, 35 (1977).958

[36] S. Brin and L. Page, Comput. Netw. ISDN Syst. 30, 107959

(1998).960

[37] L. Katz, Psychometrika 18, 39 (1953).961

[38] M. Kitsak, L. Gallos, S. Havlin, F. Liljeros, L. Muchnik,962

H. Stanley, and H. Makse, Nat. Phys. 6, 888 (2010).963

[39] See Supplemental Material at [URL will be inserted by964

publisher] for a full list of the real-world networks we con-965

sidered in this paper, the detailed results of all the em-966

bedding methods on the downstream tasks, and a fully967

explanation of the parameters selection for different em-968

bedding methods. The Supplemental Material includes969

Refs. [40–73].970

[40] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-971

Orr, I. Ayzenshtat, M. Sheffer, and U. Alon, Science972

303, 1538 (2004).973

[41] W. W. Zachary, J. Anthropol. Res. 33, 452 (1977).974

[42] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase,975

E. Slooten, and S. M. Dawson, Behav. Ecol. Sociobiol.976

54, 396 (2003).977

[43] D. E. Knuth, The Stanford GraphBase: a platform for978

combinatorial computing, Vol. 1 (ACM, New York, NY,979

USA, 1993).980

[44] S. Mangan and U. Alon, Proc. Natl. Acad. Sci. USA 100,981

11980 (2003).982

[45] L. A. Adamic and N. Glance, in Proceedings of the 3rd In-983

ternational Workshop on Link Discovery , LinkKDD ’05984

(ACM, New York, NY, USA, 2005) p. 3643.985

[46] M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).986

[47] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci.987

USA 99, 7821 (2002).988

[48] J. Fournet and A. Barrat, PLOS ONE 9, 1 (2014).989

[49] J. Kunegis, in Proceedings of the 22nd International Con-990

ference on World Wide Web, WWW ’13 Companion991

(ACM, New York, NY, USA, 2013) p. 13431350.992

[50] R. Michalski, S. Palus, and P. Kazienko, in Business In-993

formation Systems, edited by W. Abramowicz (Springer994

Berlin Heidelberg, Berlin, Heidelberg, 2011) pp. 197–206.995

[51] N. D. Martinez, Ecol. Monogr. 61, 367 (1991).996

[52] P. M. GLEISER and L. DANON, Adv. Complex Syst.997

06, 565 (2003).998

[53] D. J. Watts and S. H. Strogatz, nature 393, 440 (1998).999

[54] L. Isella, J. Stehl, A. Barrat, C. Cattuto, J.-F. Pinton,1000

and W. Van den Broeck, J. Theor. Biol. 271, 166 (2011).1001

[55] V. Colizza, R. Pastor-Satorras, and A. Vespignani, Nat.1002

Phys. 3, 276 (2007).1003

[56] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,1004

D. Chklovskii, and U. Alon, Science 298, 824 (2002).1005

[57] L. Šubelj and M. Bajec, Eur. Phys. J. B 81, 353 (2011).1006

[58] R. Guimerà, L. Danon, A. Dı́az-Guilera, F. Giralt, and1007

A. Arenas, Phys. Rev. E 68, 065103 (2003).1008

[59] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai,1009

Nature 411, 41 (2001).1010

[60] T. Opsahl and P. Panzarasa, Soc. Netw. 31, 155 (2009).1011

[61] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang,1012

S. Sun, L. Ling, N. Zhang, G. Li, and R. Chen, Nucleic1013

Acids Res. 31, 2443 (2003).1014

[62] T. Opsahl, F. Agneessens, and J. Skvoretz, Soc. Netw.1015

http://dx.doi.org/10.1038/nphys1130
http://dx.doi.org/10.1038/ncomms8651
http://dx.doi.org/ 10.1103/PhysRevLett.118.218301
http://dx.doi.org/ 10.1103/PhysRevLett.118.218301
http://dx.doi.org/ 10.1103/PhysRevLett.118.218301
http://dx.doi.org/10.1103/PhysRevResearch.2.023176
http://dx.doi.org/10.1103/PhysRevResearch.2.023176
http://dx.doi.org/10.1103/PhysRevResearch.2.023176
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://dx.doi.org/https://doi.org/10.1002/asi.20591
http://dx.doi.org/https://doi.org/10.1002/asi.20591
http://dx.doi.org/https://doi.org/10.1002/asi.20591
http://dx.doi.org/ 10.1109/ICDM.2001.989507
http://dx.doi.org/ 10.1109/ICDM.2001.989507
http://dx.doi.org/ 10.1109/ICDM.2001.989507
http://dx.doi.org/ 10.1103/PhysRevE.103.022316
http://dx.doi.org/ 10.1103/PhysRevE.103.022316
http://dx.doi.org/ 10.1103/PhysRevE.103.022316
http://dx.doi.org/10.1103/PhysRevE.92.022807
http://dx.doi.org/10.1103/PhysRevE.92.022807
http://dx.doi.org/10.1103/PhysRevE.92.022807
http://dx.doi.org/ 10.1088/1367-2630/ab57d2
http://dx.doi.org/10.1038/s41467-020-16822-4
http://dx.doi.org/10.1093/comnet/cnaa002
http://dx.doi.org/10.1093/comnet/cnaa002
http://dx.doi.org/10.1093/comnet/cnaa002
http://dx.doi.org/10.1103/PhysRevResearch.2.043113
http://dx.doi.org/10.1103/PhysRevResearch.2.043113
http://dx.doi.org/10.1103/PhysRevResearch.2.043113
http://dx.doi.org/10.1103/PhysRevLett.121.098301
http://dx.doi.org/10.1103/PhysRevLett.121.098301
http://dx.doi.org/10.1103/PhysRevLett.121.098301
http://dx.doi.org/10.1109/TNET.2013.2294052
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/ 10.1145/2939672.2939751
http://dx.doi.org/ 10.1145/2939672.2939751
http://dx.doi.org/ 10.1145/2939672.2939751
http://dx.doi.org/ 10.1145/2939672.2939751
http://dx.doi.org/ 10.1145/2939672.2939751
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1103/PhysRevE.85.066122
http://dx.doi.org/ https://doi.org/10.1016/j.dam.2013.05.032
http://dx.doi.org/ https://doi.org/10.1016/j.dam.2013.05.032
http://dx.doi.org/ https://doi.org/10.1016/j.dam.2013.05.032
https://www.science.org/doi/abs/10.1126/science.1245200
https://doi.org/10.1038/s41567-018-0409-0
https://doi.org/10.1038/ncomms1063
https://doi.org/10.1038/ncomms1063
https://doi.org/10.1038/ncomms1063
http://dx.doi.org/10.1103/PhysRevE.103.012305
http://dx.doi.org/10.1103/PhysRevE.103.012305
http://dx.doi.org/10.1103/PhysRevE.103.012305
https://doi.org/10.1007/BF02289527
http://dx.doi.org/10.1080/0022250X.1972.9989806
http://dx.doi.org/10.1145/1557019.1557047
http://dx.doi.org/10.1145/1557019.1557047
http://dx.doi.org/10.1145/1557019.1557047
http://dx.doi.org/10.1145/1557019.1557047
http://dx.doi.org/10.1145/1557019.1557047
http://dx.doi.org/10.2307/3033543
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1007/BF02289026
https://doi.org/10.1038/nphys1746
http://dx.doi.org/ 10.1126/science.1089167
http://dx.doi.org/ 10.1126/science.1089167
http://dx.doi.org/ 10.1126/science.1089167
http://dx.doi.org/10.1086/jar.33.4.3629752
http://dx.doi.org/ 10.1007/s00265-003-0651-y
http://dx.doi.org/ 10.1007/s00265-003-0651-y
http://dx.doi.org/ 10.1007/s00265-003-0651-y
http://dx.doi.org/10.1073/pnas.2133841100
http://dx.doi.org/10.1073/pnas.2133841100
http://dx.doi.org/10.1073/pnas.2133841100
http://dx.doi.org/10.1145/1134271.1134277
http://dx.doi.org/10.1145/1134271.1134277
http://dx.doi.org/10.1145/1134271.1134277
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1371/journal.pone.0107878
http://dx.doi.org/10.1145/2487788.2488173
http://dx.doi.org/10.1145/2487788.2488173
http://dx.doi.org/10.1145/2487788.2488173
http://dx.doi.org/https://doi.org/10.2307/2937047
http://dx.doi.org/10.1142/S0219525903001067
http://dx.doi.org/10.1142/S0219525903001067
http://dx.doi.org/10.1142/S0219525903001067
http://dx.doi.org/10.1038/30918
http://dx.doi.org/ https://doi.org/10.1016/j.jtbi.2010.11.033
http://dx.doi.org/10.1038/nphys560
http://dx.doi.org/10.1038/nphys560
http://dx.doi.org/10.1038/nphys560
http://dx.doi.org/ 10.1126/science.298.5594.824
http://dx.doi.org/10.1140/epjb/e2011-10979-2
http://dx.doi.org/ 10.1103/PhysRevE.68.065103
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/https://doi.org/10.1016/j.socnet.2009.02.002
http://dx.doi.org/10.1093/nar/gkg340
http://dx.doi.org/10.1093/nar/gkg340
http://dx.doi.org/10.1093/nar/gkg340
http://dx.doi.org/https://doi.org/10.1016/j.socnet.2010.03.006
http://dx.doi.org/https://doi.org/10.1016/j.socnet.2010.03.006

xiv

32, 245 (2010).1016

[63] R. Guimerà, S. Mossa, A. Turtschi, and L. A. N. Amaral,1017

Proc. Natl. Acad. Sci. USA 102, 7794 (2005).1018

[64] J. Leskovec, J. Kleinberg, and C. Faloutsos, ACM Trans.1019

Knowl. Discov. Data 1, 2es (2007).1020

[65] M. Newman, “The structure of scientific collaboration1021

networks,” in The Structure and Dynamics of Networks1022

(Princeton University Press, 2011) pp. 221–226.1023

[66] L. Šubelj and M. Bajec, in Proceedings of the First Inter-1024

national Workshop on Software Mining , SoftwareMining1025

’12 (ACM, New York, NY, USA, 2012) p. 916.1026

[67] M. Ripeanu and I. T. Foster, in Peer-to-Peer Systems,1027

edited by P. Druschel, M. F. Kaashoek, and A. I. T.1028

Rowstron (Springer, Berlin, Heidelberg, 2002) pp. 85–93.1029

[68] J. Leskovec, J. M. Kleinberg, and C. Faloutsos, in Pro-1030

ceedings of the Eleventh ACM SIGKDD International1031

Conference on Knowledge Discovery in Data Mining ,1032

edited by R. Grossman, R. J. Bayardo, and K. P. Ben-1033

nett (ACM, New York, NY, 2005) pp. 177–187.1034

[69] M. Boguñá, R. Pastor-Satorras, A. Dı́az-Guilera, and1035

A. Arenas, Phys. Rev. E 70, 056122 (2004).1036

[70] M. Ley, in String Processing and Information Retrieval,1037

edited by A. H. F. Laender and A. L. Oliveira (Springer1038

Berlin Heidelberg, Berlin, Heidelberg, 2002) pp. 1–10.1039

[71] L. Šubelj and M. Bajec, in Proceedings of the 22nd In-1040

ternational Conference on World Wide Web, WWW ’131041

Companion (Association for Computing Machinery, New1042

York, NY, USA, 2013) p. 527530.1043

[72] M. De Choudhury, H. Sundaram, A. John, and D. D.1044

Seligmann, in Proceedings of the 2009 International Con-1045

ference on Computational Science and Engineering , CSE1046

’09, Vol. 4 (IEEE Computer Society, San Jose, California,1047

USA, 2009) pp. 151–158.1048

[73] J. Yang and J. Leskovec, Knowl. Inf. Syst. 42, 181 (2015).1049

[74] J. M. Kleinberg, Nature 406, 845 (2000).1050

[75] A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, and1051

C. V. Cannistraci, Nat. Commun. 8, 1615 (2017).1052

[76] A. Lancichinetti, S. Fortunato, and F. Radicchi, Phys.1053

Rev. E 78, 046110 (2008).1054

[77] L. Daqing, K. Kosmidis, A. Bunde, and S. Havlin, Nat.1055

Phys. 7, 481 (2011).1056

[78] K.-K. Kleineberg, M. Boguná, M. Á. Serrano, and F. Pa-1057

padopoulos, Nat. Phys. 12, 1076 (2016).1058

[79] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,1059

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,1060

R. Weiss, V. Dubourg, et al., J. Mach. Learn. Res. 12,1061

2825 (2011).1062

[80] W. Gu, A. Tandon, Y.-Y. Ahn, and F. Radicchi, Nat.1063

Commun. 12, 3772 (2021).1064

[81] I. Borg and P. Groenen, Modern Multidimensional Scal-1065

ing: Theory and Applications, Springer Series in Statis-1066

tics (Springer, New York, 2005).1067

[82] A. D. Broido and A. Clauset, Nat. Commun. 10, 10171068

(2019).1069

[83] M. A. Serrano, D. Krioukov, and M. Boguñá, Phys. Rev.1070

Lett. 100, 078701 (2008).1071

[84] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat,1072

and M. Boguñá, Phys. Rev. E 82, 036106 (2010).1073

http://dx.doi.org/https://doi.org/10.1016/j.socnet.2010.03.006
http://dx.doi.org/10.1073/pnas.0407994102
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/doi:10.1515/9781400841356.221
http://dx.doi.org/10.1145/2384416.2384418
http://dx.doi.org/10.1145/2384416.2384418
http://dx.doi.org/10.1145/2384416.2384418
http://dx.doi.org/10.1007/3-540-45748-8_8
http://dx.doi.org/10.1145/1081870.1081893
http://dx.doi.org/10.1145/1081870.1081893
http://dx.doi.org/10.1145/1081870.1081893
http://dx.doi.org/10.1145/1081870.1081893
http://dx.doi.org/10.1145/1081870.1081893
http://dx.doi.org/10.1103/PhysRevE.70.056122
http://dx.doi.org/10.1145/2487788.2487987
http://dx.doi.org/10.1145/2487788.2487987
http://dx.doi.org/10.1145/2487788.2487987
http://dx.doi.org/10.1109/CSE.2009.439
http://dx.doi.org/10.1109/CSE.2009.439
http://dx.doi.org/10.1109/CSE.2009.439
http://dx.doi.org/10.1007/s10115-013-0693-z
http://dx.doi.org/10.1038/35022643
http://dx.doi.org/10.1038/s41467-017-01825-5
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/ 10.1038/nphys1932
http://dx.doi.org/ 10.1038/nphys1932
http://dx.doi.org/ 10.1038/nphys1932
http://dx.doi.org/10.1038/nphys3812
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195
https://doi.org/10.1038/s41467-021-23795-5
https://doi.org/10.1038/s41467-021-23795-5
https://doi.org/10.1038/s41467-021-23795-5
https://books.google.com/books?id=duTODldZzRcC
https://books.google.com/books?id=duTODldZzRcC
https://books.google.com/books?id=duTODldZzRcC
http://dx.doi.org/10.1038/s41467-019-08746-5
http://dx.doi.org/10.1038/s41467-019-08746-5
http://dx.doi.org/10.1038/s41467-019-08746-5
http://dx.doi.org/10.1103/PhysRevLett.100.078701
http://dx.doi.org/10.1103/PhysRevLett.100.078701
http://dx.doi.org/10.1103/PhysRevLett.100.078701
http://dx.doi.org/10.1103/PhysRevE.82.036106

	Systematic comparison of graph embedding methods in practical tasks
	Abstract
	Introduction
	Graph visualization
	Performance in downstream tasks
	Mapping accuracy
	Greedy routing
	Link prediction
	Embedding performance on synthetic networks
	Summary of the results

	Computational complexity and running time
	Discussion
	Acknowledgements
	Methods
	Network Embedding Methods
	Euclidean embedding methods
	Hyperbolic embedding methods
	Non-metric embedding method

	Networks

	References

