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We calculate exact analytic expressions for the average cluster numbers 〈k〉Λs on infinite-length
strips Λs, with various widths, of several different lattices, as functions of the bond occupation
probability, p. It is proved that these expressions are rational functions of p. As special cases of
our results, we obtain exact values of 〈k〉Λs and derivatives of 〈k〉Λs with respect to p, evaluated
at the critical percolation probabilities pc,Λ for the corresponding infinite two-dimensional lattices
Λ. We compare these exact results with an analytic finite-size correction formula and find excellent
agreement. We also analyze how unphysical poles in 〈k〉Λs determine the radii of convergence of
series expansions for small p and for p near to unity. Our calculations are performed for infinite-
length strips of the square, triangular, and honeycomb lattices with several types of transverse
boundary conditions.

I. INTRODUCTION

The study of percolation on lattice graphs elucidates
the effect of vacant sites and/or bonds on the connect-
edness properties of the system. Here we shall consider
bond percolation, in which the bonds of the lattice are
randomly present with probability p and thus absent with
probability 1− p. Percolation is relevant for the analysis
of such phenomena as the flow of liquids through porous
rock, electrical conduction through composite materials,
and the magnetic properties of materials with lattice de-
fects and impurities. On an infinite lattice Λ, as p de-
creases from 1 to 0, the probability P (p) for a site to be
part of an infinite connected cluster decreases and van-
ishes at a critical value, pc,Λ, remaining identically zero
for 0 ≤ p < pc,Λ. Other quantities also behave nonana-
lytically at p = pc,Λ. For example, as p increases toward
pc,Λ from below, the average cluster size S(p) diverges.
Thus, the percolation transition is a geometrical tran-
sition from a region 0 ≤ p < pc,Λ in which only finite
connected clusters exist, to a region pc,Λ ≤ p ≤ 1 in
which there is a percolating cluster containing an infinite
number of sites and bonds. The singularities in various
quantities such as P (p) and S(p) are described by a set of
critical exponents depending only on the dimensionality
d of Λ, but independent of the specific type of lattice, and
type (site or bond) of percolation (some reviews include
[1]-[4]).
One of the interesting quantities in percolation is the

average number of (connected) clusters per site on a lat-
tice graph G, in particular, the limit as the number of
sites n → ∞,

〈k〉{G} = lim
n→∞

n−1〈k〉G , (1.1)

where {G} denotes the given n → ∞ limit of the fam-
ily of n-vertex graphs G. Here, as in mathematical
graph theory [3], a cluster is defined as a connecting
subgraph of G, including single sites. Since as p → 0,
there are no bonds, and each site is a cluster, it fol-

lows that limp→0〈k〉{G} = 1. On the other hand, as
p → 1, there is just one cluster, namely Λ, so 〈k〉{G} = 0.
This function 〈k〉{G} is a monotonically decreasing func-
tion of p for 0 ≤ p ≤ 1; it is continuous but nonana-
lytic at p = pc,Λ, with a finite singularity of the form
(〈k〉{G})sing. ∝ |p− pc,Λ|2−α. There is no exact solution
for 〈k〉Λ as a general function of p for (site or bond) per-
colation on a regular lattice of dimension d ≥ 2, although
a solution has been calculated for the Bethe lattice [5].
Much has been learned from series expansions [1, 6–8]
and Monte Carlo simulations [4, 9].

Although the critical exponents describing singulari-
ties in quantities such as P (p) and S(p) are universal,
the critical (threshold) values of p depend on the type
(site or bond) of percolation and on the type of lattice
Λ. For bond percolation on the two-dimensional lattices
considered here, exact expressions are known for these
critical percolation threshold values, pc,Λ [10]. The ex-
act values of 〈k〉Λ on each of these lattices Λ, evaluated
at the respective critical values p = pc,Λ, have also been
determined [11] (see also [12–14]), as have the finite-size
corrections [15, 16].

In [17, 18] we gave exact analytic calculations of aver-
age cluster numbers 〈k〉Λs

as functions of p in bond perco-
lation for infinite-length strips, with various widths, of a
variety of lattices with certain transverse boundary con-
ditions. We also gave numerical values of 〈k〉Λs

evaluated
at p = pc,Λ to five-digit accuracy.

In the present paper we report a far-reaching extension
of this earlier work, which has enabled us to substantially
increase the number of lattice strips for which we are able
to calculate exact analytical expressions for the average
cluster numbers as functions of p. This is based on a
new method of calculation that we have devised, which
is much more powerful than the method that we used in
[17], as we explain in Section III. In addition to making
possible exact calculations of 〈k〉Λs

on considerably wider
infinite-length strips, this method has enabled us to prove
an important theorem that 〈k〉Λs

is a rational function
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of p (see Section IVA).
By convention, the longitudinal (horizontal) direction

along a given lattice strip is taken to be the x direc-
tion, and the transverse (vertical) direction to be the y
direction. We denote a given infinite-length strip of a lat-
tice Λ with width Ly sites and with free (F) or periodic
(P) transverse boundary conditions (FBCy, PBCy) as
[Λ, (Ly)F ] or [Λ, (Ly)P ]. For the case of the square lattice,
we have also calculated 〈k〉 for the case of infinite-length
strips with self-dual (sd) transverse boundary conditions
(i.e. such that a finite strip graph is invariant under
a planar duality transformation that maps the vertices
and faces of a given graph to the faces and vertices of the
dual graph, respectively), and we denote these strips as
[sq, (Ly)sd]. Here, We will often use the compact nota-
tion

Λs ≡ [Λ, (Ly)BCy
] (1.2)

for infinite-length lattice strips (where the subscript s
stands for “strip”).
Our new results include the following:

1. A theorem showing that for an infinite-length lat-
tice strip [Λ, (Ly)BCy

], the average number of clus-
ters per site, 〈k〉[Λ,(Ly)BCy ]

, is a rational function of

the bond occupation probability, p.

2. Calculation of exact expressions for 〈k〉[Λ,(Ly)BCy ]

as functions of p, for a variety of infinite-length
lattice strips with width Ly and certain transverse
boundary conditions. The lattices are square, tri-
angular, and honeycomb.

3. Calculation of the exact values of 〈k〉[Λ,(Ly)BCy ]

evaluated at the critical value of p for the corre-
sponding infinite 2D lattice, Λ, pc,Λ, which we de-
note as

〈k〉[Λ,(Ly)BCy ]
|p=pc,Λ . (1.3)

The numerical values of these exact analytic ex-
pressions agree with the numerical values that we
presented in [17] for the respective infinite-length
strips.

4. A quantitative study of how these values ap-
proach the critical value 〈k〉c,Λ for the infinite two-
dimensional lattice Λ as the strip width Ly in-
creases and, in particular, a comparison with the
exact results from Ref. [15, 16] for the leading
finite-size correction term in the case of periodic
transverse boundary conditions:

〈k〉[Λ,(Ly)P ]|p=pc,Λ = 〈k〉|c,Λ +
cΛb̃

L2
y

+ ... , (1.4)

where we use the notation

〈k〉c,Λ ≡ 〈k〉Λ|p=pc,Λ (1.5)

for the average cluster number, per site, on the in-
finite two-dimensional lattice Λ evaluated at p =
pc,Λ, and the dots denote higher-order terms in

1/Ly. The coefficient b̃ is [15]

b̃ =
5
√
3

24
= 0.360844 , (1.6)

and cΛ is a mathematical constant that takes ac-
count of the geometry of the lattice (see Eqs. (4.9)
and (4.10) below). With this geometric relation in-

corporated, the coefficient b̃ is universal. Our exact
results are in very good agreement with this for-
mula (1.4), including (i) the (Ly)

−2 dependence of

the leading correction term, (ii) the value of b̃, and
(iii) the universality with respect to lattice type.

The universality of b̃ was previously demonstrated
from a comparative analysis of the square and tri-
angular lattices in [16]. In this context, we recall
that our results for 〈k〉[Λ,(Ly)BCy ]

and hence for the

values 〈k〉[Λ,(Ly)P ]|p=pc,Λ , are independent of the
longitudinal boundary conditions imposed on the
lattice strips. For the comparison with 〈k〉Λ|p=pc,Λ

on the corresponding infinite two-dimensional lat-
tice Λ, we define the ratio

R[Λ,(Ly)BCy ],c
=

〈k〉[Λ,(Ly)BCy ]
|p=pc,Λ

〈k〉c,Λ
. (1.7)

5. As a corollary of our theorem, a proof that for
infinite-length square-lattice strips, the critical val-
ues 〈k〉[sq,(Ly)BCy ]

|p=pc,Λ are rational numbers and

for infinite-length strips of the triangular and hon-
eycomb lattices, they are rational functions of the
quantity sin(π/18) that appears in pc,tri and pc,hc.

6. Calculations of dj〈k〉[Λ,(Ly)BCy ]
/(dp)j with j =

1, 2, 3, evaluated at p = pc,Λ, for infinite-length lat-
tice strips Λs with a resultant determination of co-
efficients in the expansion of 〈k〉[Λ,(Ly)BCy ]

about

this value pc,Λ.

7. A study of the poles in 〈k〉[Λ,(Ly)BCy ]
involving the

determination of the pole or the complex-conjugate
pair of poles closest to the origin in the complex
p plane, which thus set the radius of convergence
of the small-p series. A corresponding analysis is
given of the poles of 〈k〉[Λ,(Ly)BCy ]

in the complex

r plane, where

r ≡ 1− p . (1.8)

Some of our results are summarized in Tables I-VI [19].
Our results in Ref. [17] included analytic calculations
of 〈k〉Λs

for Λs = [sq, 2F ], [sq, 2P ], [sq, 1sd], [tri, 2F ],
[tri, 2P ], and [hc, 2P ]. We also presented numerical calcu-
lations of 〈k〉Λs

and 〈k〉Λs
|p=pc,Λ for several other infinite-

length strips. These included plots of 〈k〉Λs
as functions
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of p for p ∈ [0, 1] for the square, triangular, and honey-
comb lattices with the various transverse boundary con-
ditions for widths up to Ly = 5. We refer the reader to
Ref. [17] for these results.
There have been a number of developments in perco-

lation theory since our Ref. [17] that serve as motiva-
tion for the present work, e.g., [4, 20, 21]. These in-
clude studies of the behavior of 〈k〉Λ at p = pc,Λ [20]
for two-dimensional lattices Λ, relevant to our results
mentioned in item 6 above, and a recent calculation of
〈k〉sq,diag |p=pc,sq

on infinite-length diagonal strips of the
square lattice [21]. The work in Ref. [21] is complemen-
tary to ours, since [21] does not calculate 〈k〉sq,diag as a
general function of p, but instead calculates the evalua-
tion of 〈k〉sq,diag at the special point p = pc,sq for general
width (and also uses strips oriented in a diagonal direc-
tion rather than along the lattice axes, as we do). How-
ever, Ref. [20] shows the insights into percolation that
can be gained by exact calculations on infinite-length lat-
tice strips, just as our previous studies in [17, 18] did. We
discuss this further in Section VIII.
In statistical mechanics, it had been very valuable

to use high-temperature series expansions of thermody-
namic quantities to determine the critical temperature.
This was determined via the estimate of the radius of con-
vergence of these series. However, the application of this
procedure in studies of percolation encountered a com-
plication, namely that the radii of convergence of these
series expansions were typically determined not by the
actual critical values of pc,Λ or rc,Λ, but instead by un-
physical singularities in the respective complex p plane
and r plane that lie closer to the origin than pc,Λ or rc,Λ
[7, 8]. Although this complication was circumvented, e.g.,
by the use of Padé approximants, to get accurate deter-
minations of critical behavior at the percolation transi-
tion, it raises an intriguing question, namely whether one
would encounter the presence of similar unphysical singu-
larities in analyses of exact expressions for average clus-
ter numbers on infinite-length lattice strips. Our work
in [17] provided some initial insight into this question.
Our present results go substantially further in answering
this question, since we have now succeeded in calculating
exact expressions for 〈k〉Λs

for considerably greater strip
widths. Indeed, one of the interesting results of our study
of the poles in the exact expressions for 〈k〉Λs

on various
infinite-length lattice strips Λs is that we find that, as
the strip width Ly increases, it is generic that there is
a pole on the negative real axis or a complex-conjugate
pair of poles in the complex p plane closer to the origin
than the value pc,Λ for the infinite lattice, and similarly
for the pole(s) in the r-plane.

II. BACKGROUND

In this section we review some relevant background.
We begin with an important connection between perco-
lation and the Potts model. For the sake of generality, let

us consider the q-state Potts model on a connected graph
G = (V,E) defined by its set of sites (vertices) V and its
set of bonds (called “edges” in mathematical graph ter-
minology), E. In graph theory, a percolation cluster is a
connected subgraph of G. The partition function of the
q-state Potts model on G is [22]

Z(G, q, v) =
∑

G′⊆G

qk(G
′)ve(G

′) , (2.1)

where G′ = (V,E′) is a spanning subgraph of G, i.e., a
subgraph containing all of the sites in G and a subset
E′ ⊆ E of the bonds of G, e(G′) is the number of bonds
in G′, and, as above, k(G′) is the number of connected
components in G′. In the thermal context, v = eK − 1 is
a temperature-dependent Boltzmann variable, with K =
J/(kBT ), where J is the spin-spin coupling in the Potts
Hamiltonian, H = −J

∑

eij
δσi,σj

, where eij is the bond

connecting sites i and j in G. The dimensionless free
energy is then defined as

f({G}, q, v) = lim
n→∞

1

n
ln[Z(G, q, v)] , (2.2)

where, as above, n denotes the number of sites in G and
{G} denotes the N → ∞ limit of G. Now in f({G}, q, v),
set v = vp, where

vp =
p

1− p
. (2.3)

Then the average number of clusters per site is

〈k〉{G} =
∂f({G}, q, vp)

∂q

∣

∣

∣

∣

q=1

, (2.4)

which shows the correspondence with the q-state Potts
model in the limit q → 1 [23]. Now we specialize to
the case where G is a lattice graph. The relation (2.4)
leads to the inference that the percolation transition on
these lattices is in the universality class of the q-state
Potts model in the limit where q → 1, with critical ex-
ponents α = −2/3, β = 5/36, γ = 43/18, etc. [23–25]
and an associated conformal field theory having a Vira-
soro algebra with central charge c = 0 [26] for the case
of dimensionality d = 2 relevant here.
In [17, 18] we used the relation (2.4) together with

our earlier exact calculations of f on strips of lattices
with arbitrarily great length and fixed width, with var-
ious transverse boundary bounditions (BCy) to obtain
new analytic expressions and numerical values for 〈k〉Λs

for infinite-length strips of these types.
For a lattice Λ, in the thermodynamic limit, the aver-

age cluster number per site has the following expansion
in the local neighborhood of pc,Λ

〈k〉Λ = 〈k〉c,Λ + a1,Λs
(p− pc,λ) + a2,Λs

(p− pc,λ)
2

+ AΛ,±|p− pc,λ|2−α , (2.5)
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where α = −2/3 for d = 2, as noted above, and the am-
plitudes AΛ,± refer to the limits p − pc,Λ → 0±, respec-
tively. Thus, 〈k〉Λ has a finite branch-point singularity
at p = pc,Λ. A recent discussion of the coefficients in this
expansion is [20] (where 〈k〉Λ is defined per bond rather
than per site).
A theorem that we present below shows that on an

infinite-length strip of a lattice Λ with width Ly and some
prescribed transverse boundary conditions BCy , 〈k〉Λs

,
evaluated at p = pc,Λ, is a rational function of p. Al-
though it is therefore meromorphic, none of its poles oc-
cur in the physical interval p ∈ [0, 1]. Hence, for p in
this interval, it has a Taylor series expansion, and if one
evaluates this at the value of p equal to the critical value
for the infinite lattice, pc,Λ, then one obtains

〈k〉Λs
|p=pc,Λ = 〈k〉Λs,c +

∞
∑

j=1

aj,Λs
(p− pc,Λ)

j , (2.6)

where

aj,Λs
=

1

j!

dj〈k〉Λs

(dp)j

∣

∣

∣

p=pc,Λ

. (2.7)

As our results in [17] showed, and our current results
further demonstrate, for a given infinite-length strip
[Λ, (Ly)BCy

], as Ly increases, 〈k〉Λs
|p=pc,Λ approaches the

critical value 〈k〉c,Λ for the infinite two-dimensional lat-
tice.
The known values of critical bond occupation probabil-

ities for the square (sq), triangular (tri), and honeycomb
(hc) lattices are [10] (see also [12, 14])

pc,sq =
1

2
, (2.8)

pc,tri = 2 sin

(

π

18

)

= 0.347296 , (2.9)

and

pc,hc = 1− pc,tri = 1− 2 sin

(

π

18

)

= 0.652704 . (2.10)

Here and below, floating-point values are given to the
indicated number of significant figures. It will be conve-
nient to introduce the shorthand symbol

s ≡ sin
( π

18

)

. (2.11)

Exact analytic expressions for 〈k〉c,Λ were presented in
[11] (see also related results in [12, 14]):

〈k〉c,sq =
3
√
3− 5

2
= 0.0980762 , (2.12)

〈k〉c,tri =
35

4
− 3

pc,tri
=

−6 + 35s

4s

= 0.111844 , (2.13)

and

〈k〉c,hc =
1

2
(〈k〉c,tri + p3c,tri) =

−6 + 31s+ 24s2

8s

= 0.0768667 . (2.14)

On a lattice Λ with coordination number ∆Λ, the
small-p series expansion for 〈k〉Λ has the generic form
〈k〉Λ = 1− (∆Λ/2)p+ ..., where the dots indicate higher-
order terms. For the square, triangular, and honeycomb
lattices, the small-p series expansions are [7]

〈k〉sq = 1− 2p+ p4 + 2p6 − 2p7 + 7p8 +O(p9) , (2.15)

〈k〉tri = 1− 3p+ 2p3 + 3p4 + 3p5 + 3p6 + 6p7 +O(p9) ,

(2.16)

and

〈k〉hc = 1− 3

2
p+

1

2
p6 +

3

2
p10 +O(p11) . (2.17)

These have been calculated to higher order than shown
here, but we will only need the expansions to these re-
spective orders for comparison with the small-p expan-
sions of our exact expressions for average cluster numbers
on infinite-length strips of various lattices with specified
transverse boundary conditions.
It has also been valuable to calculate Taylor series ex-

pansions of average cluster numbers in terms of the ex-
pansion variable r for small r. On (the thermodynamic
limit of) a lattice Λ with coordination number ∆Λ, the
small-r series expansion for 〈k〉Λ has the generic form
〈k〉Λ = r∆Λ + ... where the ... indicate higher-order terms.
For the square, triangular, and honeycomb lattices, the
small-r series expansions are [7]

〈k〉sq = r4 + 2r6 − 2r7 + 7r8 +O(r9) , (2.18)

〈k〉tri = r6 + 3r10 − 3r11 + 2r12 +O(r14) , (2.19)

and

〈k〉hc = r3 +
3

2
r4 +

3

2
r6 +O(r7) . (2.20)

III. CALCULATIONAL METHODS

We consider strip graphs of a lattice Λ of finite width
Ly and arbitrarily great length m = Lx, with a given set
of longitudinal and transverse boundary conditions. For
these strip graphs, the Potts model partition function Z
has the form of a finite sum of m’th powers:

Z([Λ, Lx, Ly, BCx, BCy], q, v) =
∑

j

cj(λj)
m , (3.1)
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where cj are coefficients and λj are certain functions that
depend the type of strip, but are independent of the
length, m. The λj functions are eigenvalues of a transfer
matrix and also determine the form of a recursion rela-
tion satisfied by the Potts model partition function or
equivalent Tutte/Whitney polynomial for the given strip
graph [27, 28]. In the limit of infinite length, m → ∞,
this sum is dominated by the λ of largest magnitude, so
that the reduced dimensionless free energy is

f([Λ, (Ly)BCy
], q, v) =

1

Ly
ln[λdom,[Λ,(Ly)BCy ]

] . (3.2)

In previous work, we have determined the λ functions,
and in particular, λdom, for a number of lattice strips Λs

(e.g., [29]-[38]). As was shown in this earlier work, the
above-mentioned dominant λ function, and hence the re-
sultant reduced free energy f , are independent of the type
of longitudinal boundary conditions used for the finite-m
lattice strips. We shall make use of a general property of
Z(G, q, v), which holds for any graph G, namely

Z(G, q = 1, v) = (v + 1)e(G) , (3.3)

where, as above, e(G) denotes the number of edges
(bonds) on G. This follows because if q = 1, then
the Potts model Hamiltonian H reduces simply to H =
−Je(G), so

Z(G, q = 1, v) = eKe(G) = (v + 1)e(G) . (3.4)

For a ∆-regular graph G, e(G) = (∆/2)n(G). More gen-
erally, for a graph which is not ∆-regular, one can define
an effective vertex degree ∆eff (e.g., [43]) as

∆eff = lim
n(G)→∞

2e(G)

n(G)
. (3.5)

Hence, for a family of ∆-regular lattice strip graphs Λs,
Eq. (3.2) applies for q = 1 with

λdom,Λs
|q=1 = (v + 1)(∆/2)Ly , (3.6)

and similarly for non-∆-regular graphs, with ∆ replaced
by ∆eff . In particular, for the application to percolation,
setting v = vp = p/(1− p), we have

λdom,Λs
|q=1,v=vp =

( 1

1− p

)(∆/2)Ly

. (3.7)

Each of the λ functions appearing in Eq. (3.1), and, in
particular, the dominant λ, is a solution to an algebraic
equation,

jmax
∑

j=0

κΛs,j (λΛs
)j = 0 , (3.8)

where the coefficients κΛs,j are polynomials in q and v.
The property that the κΛs,j are polynomials in q and
v follows from a combination of the properties that (i)

Z(G, q, v) is a polynomial in q and v, as is evident from
Eq. (3.1); (ii) the sums of m’th powers of λj that en-
ter in Eq. (3.1) determining the dominant λj arise as
traces of the m’th power of a transfer matrix and hence
are symmetric polynomials in the roots of the character-
istic equation for the transfer matrix, and (iii) a theorem
embodied in Newton’s identities that states that a sym-
metric polynomial in the roots of an algebraic equation
is expressible as polynomials in the coefficients entering
in the equation [39, 40].
For many strip graphs, jmax in the equation of the form

(3.8) for the dominant λ is jmax ≥ 5, so that one cannot
solve for λdom,Λs

in terms of radicals. Fortunately, how-
ever, one does not need to do this; all that one needs to
do is to calculate λdom,Λs

and dλdom,Λs
/dq, both evalu-

ated at q = 1, for insertion into Eq. (2.4). We can do
this as follows. Differentiating Eq. (3.8) with respect to
q and solving for λdom,Λs

, we have

dλdom,Λs

dq
= −

∑jmax

j=0 (λdom,Λs
)j

dκΛs,j

dq
∑jmax

j=1 j κΛs,j (λdom,Λs
)j−1

. (3.9)

Evaluating this equation at q = 1 and v = vp, we have

dλdom,Λs

dq

∣

∣

∣

q=1,v=vp
= −

∑jmax

j=0 (1− p)−j [
dκΛs,j

dq ]|q=1,v=vp
∑jmax

j=1 j [κΛs,j |q=1,v=vp ] (1 − p)1−j
.

(3.10)
This is a powerful result, because it means that in cal-
culating 〈k〉Λs

, one does not have to actually solve for
the dominant root λdom,Λs

, but instead, only use its
derivative evaluated at v = vp and q = 1, which can
be expressed as a rational function of p. As discussed
in Refs. [29, 30], our method of calculating Z(G, q, v)
and hence, in particular, Eq. (3.8) for a given lattice
strip, is an iterative use of the deletion-contraction re-
lation Z(G, q, v) = Z(G − e, q, v) + vZ(G/e, q, v), where
G− e denotes the graph obtained from G by deleting the
edge (= bond) e, and G/e denotes the graph obtained
from G by deleting the bond e and identifying the two
vertices that it connected, i.e., contracting on this bond.
This is equivalent to a transfer matrix method, which we
have also used [38, 41]. The κΛs,j are the coefficients in
the indicial equation for the dominant eigenvalue λdom,Λs

of this transfer matrix for the given strip Λs and are de-
termined from the entries in the transfer matrix. The
iterative use of the deletion-contraction method for this
calculation is a generalization of its previous use in cal-
culating generating functions for chromatic polynomials
of lattice strip graphs [42]. With the requisite Eq. (3.8)
for a given lattice strip Λs, we then proceed to calculate
Eq. (3.10), which determines 〈k〉Λs

.
Having explained our method of calculation, we next

discuss the analytic structure of the results and their per-
tinence to series expansions. Because the Potts model
is a discrete spin model, the series expansions for 〈k〉Λs

for small p or for small r are Taylor series expansions,
with finite radii of convergence. Owing to the fact that
vp = p/(1 − p), a small-p expansion for a (bond or
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site) percolation problem is formally analogous to a high-
temperature expansion of the corresponding Potts model.
Normally, a high-temperature expansion in a Potts model
has a radius of convergence equal to the critical point.
However, the radii of convergence of Taylor series expan-
sions around both p = 0 and p = 1 were typically set by
unphysical singularities, and these radii of convergence
were less than the distance from the expansion point to
the physical singularity, pc,Λ, for the small-p expansions
and rcΛ = 1 − pc,Λ for small-r expansions [7, 8]. We
showed in [17] using the exact expressions that we cal-
culated for 〈k〉Λs

on infinite-length, finite-width lattice
strips, that these expressions also exhibited poles nearer
to the origin in the complex p plane than the respective
value of pc,Λ on the infinite two-dimensional lattice. Sim-
ilarly, we showed that these expressions, as functions of
r, exhibited poles closer to the origin in the complex r
plane than rc,Λ = 1 − pc,Λ for the corresponding infinite
two-dimensional lattices. Thus, the calculations of 〈k〉Λs

on infinite-length lattice strips Λs in [17] provided insight
into the influence of unphysical poles in the small-p and
small-r series expansions on infinite two-dimensional lat-
tices. Our new results provide further insight into this
phenomenon.

Our results on radii of convergence and pole structure
are based on a general property that we have proved
above, that 〈k〉Λs

is a rational function of p and hence
also of r = 1 − p. For a given infinite-length strip Λs of
the lattice Λ of finite width Ly and specified transverse
boundary conditionsBCy , let us denote the set of poles in
the complex p plane as pΛs,i with the index i enumerating
the number of poles. For each infinite-length lattice strip
Λs, we determine the pole or complex-conjugate pair of
poles closest to the origin, which thus determines the ra-
dius of convergence of the small-p series. In a similar way,
our exact expressions 〈k〉Λs

as functions of r provide in-
sight into this, since we can determine the poles in each
of them and, in particular, the pole or complex-conjugate
pair of poles closest to the origin in the complex r plane,
which thus set the radius of convergence of the respec-
tive small-r series expansions of 〈k〉Λs

. It should be noted
that it is not the case that there is a simple relation be-
tween the pole(s) nearest to the origin in the p plane and
the pole(s) nearest to the origin in the complex r plane.
To illustrate this, let us consider a hypothetical exam-
ple, in which, for an infinite-length lattice strip Λs, the
exact expression for the average cluster number, 〈k〉Λs

,
has poles at p = −0.4 and p = 0.7. The pole nearest to
the origin in the p plane is at p = −0.4, so the radius
of convergence of the small-p series expansion of 〈k〉Λs

is 0.4. In this hypothetical example, the poles in 〈k〉Λs
,

expressed as a function of r, are at r = 0.3 and r = 1.4,
so the radius of convergence of the small-r series is 0.3.
Thus, although there is a 1-1 correspondence between the
full set of poles of 〈k〉 in the complex p and r planes, it
is not, in general, true that the nearest pole to the origin
in the complex r plane, is equal to 1 minus the value of
the nearest pole to the origin in the complex r plane.

A word is in order concerning how the longitudinal
and transverse directions of our lattice strips relate to
the lattice vectors. For the square-lattice strips, we take
these longitudinal and transverse directions to be the lat-
tice axes. The strips of the triangular lattice are con-
structed by starting with a square-lattice strip with the
same boundary conditions and adding diagonal bonds to
each square, say from the lower left site to the upper
right site of each square. A picture of several illustrative
finite-length sections of these triangular-lattice strips was
included as Fig. 1 in Ref. [31]. Pictures of finite-length
sections of strips of the honeycomb (brick) lattice were
given as Figs. 16 and 18 in Ref. [33]. In Ref. [34]
we presented results for square-lattice strip graphs with
several types of self-dual transverse boundary conditions
(see also [44]). To construct a strip of the square lattice
with one type of self-dual boundary condition, one starts
with a square-lattice strip of length Lx and width Ly

vertices and periodic longitudinal boundary conditions.
One then adds bonds connecting each site on the upper
side of the strip to a single external vertex. For a picture
of a finite-length section of this self-dual square-lattice
strip graph, we refer the reader to Fig. 1 of Ref. [34].
These all yield the same expression for 〈k〉sq,(Ly)sd .
The expressions for the effective coordination numbers

∆eff , as defined in Eq. (3.5), for the infinite-length strips
that we consider here are listed below:

∆[sq,(Ly)F ],eff = 4− 2

Ly
, (3.11)

∆[tri,(Ly)F ],eff = 6− 4

Ly
, (3.12)

and

∆[hc,(Ly)F ],eff = 3− 1

Ly
. (3.13)

For the infinite-length limit of the first type of self-dual
square-lattice strip, we have

∆[sq,(Ly)sd],eff = 4 . (3.14)

IV. SOME GENERAL PROPERTIES

In this section we prove several general theorems and
discuss some general structural features of our exact cal-
culations of average cluster numbers 〈k〉Λ,BCy

for infinite-
length strips of lattices Λ with finite width Ly and various
transverse boundary conditions BCy . (As noted before,
all results are independent of the longitudinal boundary
conditions used for a given lattice strip.)

A. 〈k〉[Λ,(Ly)BCy
] is a Rational Function of p

We first prove an important theorem stating that for an
infinite-length strip graph Λs = [Λ, (Ly)BCy

], the average
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cluster number per site, 〈k〉Λs
, is a rational function of p

and hence also of r. That is,

〈k〉Λs
=

NΛs

DΛs

, (4.1)

where, N and D denote numerator and denominator
polynomials in p. In factorized form,

〈k〉Λs
=

∏degp(NΛs )

i=1 (1− p/ai)
∏degp(DΛs )

j=1 (1 − p/bj)
. (4.2)

This applies to an arbitrary two-dimensional lattice,
and is not limited to the specific types of lattices
(square, triangular, and honeycomb) for which we calcu-
late 〈k〉[Λ,(Ly)BCy ]

here. To prove this theorem, we note

that, from Eq. (2.4),

〈k〉Λs
=

1

Ly

(

dλdom,Λs

dq

)∣

∣

∣

q=1,v=vp

λdom,Λs
|q=1,v=vp

. (4.3)

From Eqs. (3.6) and (3.10), it follows that this is a ra-
tional function of p.
This is a very interesting and useful result, because

naively, if one were to make direct use of 〈k〉Λs
via Eq.

(2.4) as the derivative of f = ln(λdom,Λs
) with respect

to q, evaluated at q = 1, one might naturally think that
it would be necessary first to calculate λdom,Λs

. With
strips for which this is possible, the algebraic equation
that yields λdom,Λs

is of degree 2 to 4, so λdom,Λs
would

be an algebraic, but not rational, function of q, and for
wider strips, the algebraic equation that yields λdom,Λs

is of degree 5 or higher, so one would not be able to
solve for λdom,Λs

analytically at all. As our method of
calculation presented in Section III shows, one can avoid
this problem by making use of Eq. (3.10), which does
not require solving for λdom. itself as a general function
of q, but only the evaluation at v = vp and q = 1.
From our theorem in Eq. (4.1) above, it follows that

〈k〉[Λ,(Ly)BCy ]
is a meromorphic function of p, with poles

at

p = p[Λ,(Ly)BCy ],j
= bj , j = 1, ..., degp(D[Λ,(Ly)BCy ]

) .

(4.4)

Clearly, when expressed as a function of r, 〈k〉Λ,(Ly)BCy

is again a rational function

〈k〉[Λ,(Ly)BCy ]
=

N[Λ,(Ly)BCy ],r

D[Λ,(Ly)BCy ],r
, (4.5)

where N[Λ,(Ly)BCy ],r
and D[Λ,(Ly)BCy ],r

are poly-

nomials in r of degree degr(N[Λ,(Ly)BCy ],r
) and

degr(D[Λ,(Ly)BCy ],r
), respectively, with

degp(N[Λ,(Ly)BCy ]
) = degr(N[Λ,(Ly)BCy ],r

) (4.6)

and

degp(D[Λ,(Ly)BCy ]
) = degr(D[Λ,(Ly)BCy ],r

) . (4.7)

Furthermore, there is a 1-1 correspondence between the
poles of 〈k〉[Λ,(Ly)BCy ]

in the p plane and in the r plane.

B. 〈k〉[sq,(Ly)BCy
]|p=pc,sq is a Rational Number

An important corollary of our theorem in Eq. (4.1) is
that in the case of square-lattice strips, when one evalu-
ates 〈k〉[sq,(Ly)BCy ]

at p = pc,sq = 1/2, the result, namely,

〈k〉[sq,(Ly)BCy ]
|p=pc,sq

, is a rational number.

Although this property does not hold for strips of other
lattices such as triangle or honeycomb, one has an anal-
ogous result, namely that because pc,tr is a polynomial
of the quantity s ≡ sin(π/18) defined in Eq. (2.11) and
pc,hc is a rational function of s, 〈k〉[tri,(Ly)BCy ]

|p=pc,tri
and

〈k〉[hc,(Ly)BCy ]
|p=pc,hc

are rational functions of s.

C. Agreement with Universal Finite-Size Scaling

Formula

As noted in the introduction, our exact results for
〈k〉[Λ,(Ly)BCy ]

evaluated at p = pc,Λ enable us to make

several comparisons, to check agreement with (a) the val-
ues 〈k〉c,Λ and (b) with the formula (1.4) from [15, 16] for
the finite-size correction term, involving three individual
checks: (i) the (Ly)

−2 dependence on strip width of the

leading finite-size correction, (ii) the coefficient b̃ in Eq.
(1.6), and (iii) the universality with respect to lattice
type. For the comparison (b), we define a constant

b̃[Λ,(Ly)BCy ]
= c−1

Λ L2
y

[

〈k〉[Λ,(Ly)P ] − 〈k〉c,Λ
]

. (4.8)

The c−1
Λ in Eq. (1.4) is a geometrical factor connected

with the relation between the area Aℓ of a regular ℓ-sided
polygon and the length a of a side (= lattice spacing in
our case), Aℓ = ℓa2/[4 tan(π/ℓ)]. The role of ctri in the

universality of b̃ for the square and triangular lattices was
shown in [16]. For the lattices that we consider, csq = 1
and, with our notational conventions in [31, 32] and [33],

ctri =

√
3

2
(4.9)

and

chc =
1√
3
, (4.10)

so that ctrib̃ = 5/16 and chcb̃ = 5/24. Agreement with
the formula (1.4) requires that, as the width, Ly, of

the infinite-length strip increases, the quantity b̃[Λ,(Ly)P ]

should approach the value b̃ = 5
√
3/24, independent of
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lattice type. We find excellent agreement with both (a)
and all three parts (i)-(iii) of property (b). Our results
are listed in Table VI and show excellent concordance, in
particular, with part (iii) of condition (b), for all of the
types of lattice that we consider, namely, square, trian-
gular, and honeycomb. Quantitatively, as is evident in
Table VI, the ratios b̃[sq,5P ]/b̃, b̃[hc,4P ]/b̃, and b̃[tri,4P ]/b̃

differ from unity by the respective amounts 1 × 10−2,
4× 10−3, and 1× 10−4. These ratios are thus quite close
to unity even for these modest-width strips.

D. Property of Poles for Square-Lattice Strips with

Periodic and Self-Dual Transverse Boundary

Conditions

We find an interesting special property of the expres-
sions for 〈k〉[sq,(Ly)P ] and 〈k〉[sq,(Ly)sd], i.e., of the aver-
age cluster numbers for the infinite-length strips of the
square lattice with width Ly and either periodic or self-
dual (sd) transverse boundary conditions. For each such
strip, we find that the denominator of 〈k〉[sq,(Ly)P ] (resp.
〈k〉[sq,(Ly)sd]), expressed as a function of p, is the same as
this denominator expressed as a function of r, with the
interchange r ↔ p. That is, for the strips with periodic
transverse boundary conditions, given

〈k〉[sq,(Ly)P ] =
N[sq,(Ly)P ]

D[sq,(Ly)P ]
, (4.11)

with

N[sq,(Ly)P ] = (1− p)m(Ly +
∑

ℓ

c[sq,(Ly)P ],ℓ p
ℓ) , (4.12)

where m is a certain power depending on Ly, and

D[sq,(Ly)P ] = Ly(1 +
∑

ℓ

d[sq,(Ly)P ],ℓ p
ℓ) , (4.13)

the denominator polynomial has the form

D[sq,(Ly)P ] = Ly(1 +
∑

ℓ

d[sq,(Ly)P ],ℓ r
ℓ) . (4.14)

The same property expressed in Eqs. (4.11)- (4.14) also
holds for the square-lattice strips with self-dual boundary
conditions. Hence, the set of poles of 〈k〉[sq,(Ly)P ] in the
p plane have the same values as the set of poles in the r
plane, and similarly for the set of poles of 〈k〉[sq,(Ly)sd].

Note that this equality of coefficients for pj and rj terms
in Eqs. (4.13) and (4.14) is not implied by the fact that
that the denominator of a given strip, expressed in terms
of p, is equal to this denominator, written in terms of r =
1−p. Indeed, the special coefficient equality embodied in
Eqs. (4.13) and (4.14) is not true for the other infinite-
length, finite-width strips for which we have obtained
exact calculations of the average cluster number.

E. Some Properties of the Derivatives
dj〈k〉Λs

(dp)j

We have found several properties of the j’th derivatives
dj〈k〉Λs

/(dp)j for general infinite-length lattice strips.
First, as a corollary of our theorem (4.1) that 〈k〉Λs

is
a rational function of p, it follows that the j’th deriva-
tive dj〈k〉Λs

/(dp)j is also a rational function of p and that
any evaluation of this function for rational p is a rational
number.
Second, for an infinite-length strip graph Λs which is

∆-regular,

d〈k〉Λs

dp

∣

∣

∣

p=0
= −∆

2
. (4.15)

If the infinite-length strip graph Λs is not ∆-regular, then
this relation holds with ∆ replaced by ∆eff on the right-
hand side.
Third, for all infinite-length lattice strips Λs with ∆ ≥

3 (in the ∆-regular case) or, more generally, ∆eff ≥ 3,

d〈k〉Λs

dp

∣

∣

∣

p=1
= 0 . (4.16)

This property (4.16) holds for all of the lattice strips
considered here, given our condition on the vertex degree.
(This condition excludes the 1D strip, for which ∆ = 2
and 〈k〉1D = 1 − p, so d〈k〉1D/dp = −1 independent of
p.)

F. Structural Properties of
dj〈k〉[sq,(Ly)P,sd ]

(dp)j
and

aj,[sq,(Ly)BCy
]

For infinite-length strips of the square lattice with
width Ly and either periodic or self-dual boundary trans-
verse conditions, we find several general results concern-

ing
dj〈k〉[sq,(Ly)P,sd ]

(dp)j and aj,sq,(Ly)BCy
for 1 ≤ j ≤ 3.

For compact notation, we will denote infinite-length
square-lattice strips with either of these two types of
transverse boundary conditions as [sq, (Ly)P,sd]. First,
d3〈k〉[sq,(Ly)P,sd]/(dp)

3 has the symmetry property that
under a replacement of p → 1 − p, this third derivative
reverses in sign:

d3〈k〉[sq,(Ly)P,sd]

(dp)3
(p) = −

d3〈k〉[sq,(Ly)P,sd]

(dp)3
(1− p) , (4.17)

where the (p) and (1−p) indicate the arguments of the re-
spective functions. Consistent with this symmetry prop-
erty, we find that

d3〈k〉[sq,(Ly)P,sd]

(dp)3
contains the factor (1 − 2p) . (4.18)

Concerning evaluations of 〈k〉[sq,(Ly)P,sd] at the critical
value of p for the infinite lattice, namely pc,sq = 1/2,
which yield the coefficients a1,[sq,(Ly)P,sd], we find that

a1,[sq,(Ly)P,sd] = −1 . (4.19)
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This agrees with Ref. [20], when one takes account of
the fact that we define 〈k〉 per site here, while Ref. [20]
defines 〈k〉 per bond. Our calculations of a1,[sq,(Ly)F ] for
the strips with free transverse boundary conditions) are
consistent with the inference that these coefficients ap-
proach the value −1 in the Ly → ∞ limit. The fact that
the value is already reached for finite Ly on the square-
lattice strips with periodic or self-dual transverse bound-
ary conditions shows the advantage in the use of these lat-
ter boundary conditions, since they remove boundary ef-
fects and render the strip graphs 4-regular. Finally, given
that d3〈k〉[sq,(Ly)P,sd]/(dp)

3 contains the factor (2p − 1),
it follows that

a3,[sq,(Ly)P,sd] = 0 . (4.20)

G. Relation Between Small-p and Small-r Series

Expansions of 〈k〉[sq,(Ly)P,sd ]

From our calculations of 〈k〉[sq,(Ly)P ] and 〈k〉[sq,(Ly)sd],
we find that in all cases, the small-p and small-r Tay-
lor series expansions of 〈k〉[sq,(Ly)P ], and, separately,
the small-p and small-r Taylor series expansions of
〈k〉[sq,(Ly)sd], are closely related and are of the form

〈k〉[sq,(Ly)P,sd] = 1− 2p+

∞
∑

ℓ=Ly

h[sq,(Ly)P,sd],ℓ p
ℓ (4.21)

and

〈k〉[sq,(Ly)P,sd] =

∞
∑

ℓ=Ly

h[sq,(Ly)P,sd],ℓ r
ℓ , (4.22)

where, as before, the subscript P, sd means that the
equality holds separately for the square-lattice strips
with periodic or self-dual transverse boundary condi-
tions. Thus, except for the first two terms in the small-p
series, all of the coefficients in both of these series, from
the respective O(pLy ) and O(rLy ) orders to infinity, are
the same. Since the radii of convergence of these series
are determined by the behavior of the small-p and small-
r series as the order goes to infinity (e.g., by the ratio
test), this equality of the coefficients is in accord with
the property discussed in the previous subsection, that
the poles are at the same positions in the p plane and
in the r plane for each of these strips, so that the pole
(or complex-conjugate pair of poles) that is closest to the
origin is the same in the p and r planes, and hence the
small-p and small-r series expansions have the same ra-
dius of convergence. In contrast, for other infinite-length,

finite-width strips of various lattices, the radius of con-
vergence of the small-p expansion is not, in general, equal
to the radius of convergence of the small-r expansion.
H. Some General Properties of the Numerator and

Denominator Polynomials in 〈k〉Λs

For many of the infinite-length, finite-width lattice
strips Λs for which we have calculated the exact expres-
sions 〈k〉Λs

, we find that the degree of the numerator, as
a polynomial in p or r is greater, by one unit, than the
degree of the denominator, i.e.,

degp(NΛs
) = degp(DΛs

) + 1 (4.23)

for these strips. These include the [sq, (Ly)BCy
] strips

with BCy = F, P, sd; the [hc, (Ly)BCy
] strips with

BCy = F, P , and the tri, (Ly)F strips. This is not
the case with the [tri, (Ly)P ] strips. For the [tri, (Ly)P ]
strips for which we have obtained 〈k〉[tri,(Ly)P ], namely
those with widths Ly = 2, 3, 4, we find that

degp(N[tri,(Ly)P ]) = degp(D[tri,(Ly)P ]) + 2Ly . (4.24)

Calculations of 〈k〉Λs
for larger values of Ly would be

necessary to determine if these patterns persist for wider
strips.
We find that the numerator N[Λ,(Ly)BCy ]

in

〈k〉[Λ,(Ly)BCy ]
always contains a prefactor (abbrevi-

ated PF) equal to (1 − p) = r raised to a certain
power depending on [Λ, (Ly)BCy

], which we denote as
deg[PF (N[Λ,(Ly)BCy ]

)]. This power is equal to the mini-

mum power of r in the small-r expansion of N[Λ,(Ly)BCy ]
.

In Table I we list the values of deg(N[Λ,(Ly)BCy ]
),

deg[PF (N[Λ,(Ly)BCy ]
)] and deg(D[Λ,(Ly)BCy ]

), for the

strips for which we have calculated the average cluster
numbers 〈k〉[Λ,(Ly)BCy ]

.

V. STRIPS OF THE SQUARE LATTICE

A. 3F Square-Lattice Strip

As noted above, in [17] we calculated 〈k〉[sq,2F ]. Here
we make use of our new, more powerful calculational
method described in Section III to obtain exact results
on infinite-length lattice strips with substantially greater
widths. As the first of our new results for explicit expres-
sions of 〈k〉Λs

on infinite-length lattice strips, we present
our calculation of this average cluster number for the
[sq, 3F ] strip:

〈k〉[sq,3F ] =
(1− p)3(3 + 4p− 3p2 − 8p3 + 9p4 + 12p5 − 26p6 + 9p7 + 11p8 − 11p9 + 3p10)

3(1 + p− p2)(1 − p+ p2)(1 − p2 − 2p3 + 6p4 − 2p5 − 3p6 + 3p7 − p8)
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=
r3(3 + 4r − 7r2 + 5r3 + 8r4 − 31r5 − 61r7 + 47r8 − 19r9 + 3r10)

3(1 + r − r2)(1 − r + r2)(1− r − r2 + 9r3 − 14r4 + 13r5 − 10r6 + 5r7 − r8)
.

(5.1)

As indicated, it is useful to express this and other aver-
age cluster numbers 〈k〉[Λ,(Ly)BCy ]

as functions of p and

also, equivalently, as functions of r. As noted above, in
Table I we list the degrees of the numerator and denom-
inator of 〈k〉[sq,3F ] as polynomials in p or equivalently in
r, together with the degree of the prefactor (1− p).
When evaluated at p = pc,sq, 〈k〉[sq,3F ] has the value

〈k〉[sq,3F ]|p=pc,sq
=

147

670
= 0.219403 . (5.2)

In Table II we list this critical value. It is of interest
to compare the critical value (5.2) with 〈k〉c,sq on the
infinite square lattice. For this purpose, we list the val-
ues of the ratio (1.7) for the present lattice strips and
others in Table II. Tables I and II also list the corre-
sponding results for the other infinite-length, finite-width
lattice strips with various widths and transverse bound-
ary conditions denoted BCy for which we have calculated
〈k〉[Λ,(Ly)BCy ]

.

It is instructive to study derivatives of 〈k〉[sq,3F ] and
to apply these to calculate the coefficients a[sq,3F ],j in
Eq. (2.6) for the first several values of j. Doing this, we
obtain the results

a1,[sq,3F ] = − 16355

3 · (67)2 = −1.214450 (5.3)

a2,[sq,3F ] =
297238112

33 · 52 · (67)3 = 1.464119 (5.4)

and

a3,[sq,3F ] =
1004115424

33 · (67)4 = 1.845528 . (5.5)

We list these values in Table III, which also lists the
analogous values of these coefficients for other infinite-
length lattice strips. In Eqs. (5.3)-(5.5) we have indi-
cated the factorizations of the denominators. In general,
the numerators of these expressions do not have simi-
larly simple factorizations; for example, the numerators
of aj,[sq,3F ] for j = 1, 2 have the respective factorizations

5 ·3271, and 25 ·9288691. For an infinite two-dimensional
lattices Λ, the leading singularity in 〈k〉Λ occurs in the
|p − pc,Λ|2−α = |p − pc,Λ|8/3 term in Eq. (2.5), but,
as a consequence of our theorem (4.1), it follows that
〈k〉Λs

does not have any branch-point singularities such
as |p− pc,Λ|8/3.
The Taylor series expansions of 〈k〉[sq,3F ] for small p

and r are

〈k〉[sq,3F ] = 1− 5

3
p+

2

3
p4 + p6 − p7 +

7

3
p8 − 4p9 +O(p10)

(5.6)

and

〈k〉[sq,3F ] = r3 +
7

3
r4 + 2r5 − 11

3
r6 − 9r7 − 49

3
r8

+
86

3
r9 +O(r10) . (5.7)

For comparison with results for other strips, we list the
first few terms of these series in Table IV.
Of the 12 poles of 〈k〉[sq,3F ] in the complex p plane, the

ones nearest to the origin are a complex-conjugate pair
at

p[sq,3F ],np = −0.400758± 0.399068i , (5.8)

of magnitude

|p[sq,3F ],np| = 0.565564 , (5.9)

which is therefore the radius of convergence of the small-
p series for 〈k〉[sq,3F ], as indicated in Table V. In the
complex-r plane, the pole of 〈k〉[sq,3F ] nearest to the ori-
gin occurs at the value

r[sq,3F ],np = −0.411578 , (5.10)

of magnitude |r[sq,3F ],np| = 0.411578, which is thus the
radius of convergence of the small-r series for 〈k〉[sq,3F ].
Note that for this infinite-length strip, we have the
generic behavior that 1 − |r[sq,3F ],np| is not equal to
|p[sq,3F ],np|.

B. 4F Square-Lattice Strip

We calculate

〈k〉[sq,4F ] =
N[sq,4F ]

D[sq,4F ]
, (5.11)

where the numerator and denominator polynomials
N[sq,4F ] and D[sq,4F ] are given in Eqs. (A1) and (A2)
in the appendix. At p = pc,sq, 〈k〉[sq,4F ] has the value

〈k〉[sq,4F ]|p=pc,sq
=

27229

145196
= 0.187533 . (5.12)

This and the other exact values of 〈k〉Λ,(Ly)BCy
evaluated

at p = pc,Λ for moderately wide strips of the square lat-
tice with various transverse boundary conditions do not
have particularly simple factorizations. For example, the
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factorizations of the numerator and denominator of Eq.
(5.12) are 27229 = 73 · 373 and 145196 = 22 · 36299.
For the coefficient a1,[sq,4F ] we calculate

a1,[sq,4F ] = −14241087916

11858556609
= −1.200912 . (5.13)

The analytic expressions for the coefficients a2,[sq,4F ] and
a3,[sq,4F ] are sufficiently lengthy that we only give the
floating-point values:

a2,[sq,4F ] = 1.833688 (5.14)

and

a3,[sq,4F ] = 2.2777505 . (5.15)

The Taylor series expansions of 〈k〉[sq,4F ] for small p
and r are listed in Table IV. Of the 45 poles of 〈k〉[sq,4F ]

in the complex p plane, the pole nearest to the origin is

p[sq,4F ],np = −0.492588 , (5.16)

which thus sets the radius of convergence of the small-p
series for 〈k〉[sq,4F ] as |p[sq,3F ],np| = 0.492588. Note that
this is smaller than the physical singularity of 〈k〉sq on

the infinite square lattice, at p = pc,sq = 1/2, as indicated
in Table V. In the complex-r plane, the poles of 〈k〉sq,4F
nearest to the origin are the complex-conjugate pair

r[sq,4F ],np = −0.317578± 0.244625i , (5.17)

of magnitude |r[sq,4F ],np| = 0.400871, which is thus the
radius of convergence of the small-r series expansion of
〈k〉[sq,4F ]. Note that for this strip, we again have the
generic behavior that 1 − |r[sq,4F ],np| is not equal to
|p[sq,4F ],np|.

C. 3P Square-Lattice Strip

Results for infinite-length strips with periodic trans-
verse boundary conditions have the advantage, relative
to those with free transverse boundary conditions, that
they are free of boundary effects, although, of course,
they still reflect the finite transverse size of the strips. In
[17] we calculated 〈k〉[sq,2P ]. We present here our calcula-
tion of the average cluster number for the infinite-length
strip of the square lattice with width Ly = 3 and periodic
transverse boundary conditions:

〈k〉[sq,3P ] =
(1 − p)3(3 + 3p− 3p2 − 14p3 + 18p4 − p5 − 13p6 + 11p7 − 3p8)

3(1− p2 − 2p3 + 11p4 − 11p5 − p6 + 10p7 − 10p8 + 5p9 − p10)

=
r3(1 + 3r + 5r2 − 5r3 − 7r4 + 16r5 − 20r6 + 13r7 − 3r8)

3(1− r2 − 2r3 + 11r4 − 11r5 − r6 + 10r7 − 10r8 + 5r9 − r10)
. (5.18)

At p = pc,sq = 1/2, this has the value

〈k〉[sq,3P ]

∣

∣

∣

p=pc,sq

=
11

78
= 0.1410256 . (5.19)

As is evident from Eq. (5.18), and is also true for all
of the other (Ly)P strips of the square lattice for which
we have calculated 〈k〉[sq,(Ly)P ], the poles in the complex
p and r planes have the same values. The coefficients
a1,[sq,3P ] and a3,[sq,3P ] are given by our general results
(4.19) and (4.20). For a2,[sq,3P ] we calculate

a2,[sq,3P ] =
77024

34983
= 2.201755 (5.20)

The first few terms of the small-p and small-r Taylor
series expansions of 〈k〉[sq,3P ] are given in Table IV. Since
the poles of 〈k〉[sq,3P ] are the same when expressed in the
variables p and r, it follows that the poles nearest to the
origin in the comples p and r planes have the same value.
This is

p[sq,3P ],np = r[sq,3P ],np = −0.354731±0.319907i , (5.21)

with magnitude

|p[sq,3P ],np| = |r[sq,3P ],np| = 0.477676 . (5.22)

These poles thus determine the radii of convergence of the
respective small-p and small-r Taylor series expansions
of 〈k〉[sq,3P ] as 0.477676. As indicated in Table V, this
radius of convergence is smaller than pc,sq = rc,sq = 1/2.

D. 4P Square-Lattice Strip

For this strip we calculate

〈k〉[sq,4P ] =
N[sq,4P ]

D[sq,4P ]
, (5.23)

where the numerator and denominator polynomials
N[sq,4P ] and D[sq,4P ], which are rather lengthy, are given
in Eqs. (A3) and (A4) in the appendix. At p = pc,sq =
1/2, 〈k〉[sq,4P ] has the value

〈k〉[sq,4P ]

∣

∣

∣

p=pc,sq

=
677

5572
= 0.121500 . (5.24)
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For a2,[sq,4P ] we calculate

a2,[sq,4P ] =
3398556656

1298160381
= 2.617979 . (5.25)

In 〈k〉[sq,4P ], the nearest poles to the origin in both the
complex p plane and the complex r plane are at

p[sq,4P ],np = r[sq,4P ],np = −0.424294 , (5.26)

which determine the radii of convergence of the respective
small-p and small-r Taylor series expansions of 〈k〉[sq,4P ].
This radius of convergence is again smaller than pc,sq =
rc,sq = 1/2.

E. 5P Square-Lattice Strip

We calculate

〈k〉[sq,5P ] =
N[sq,5P ]

D[sq,5P ]
, (5.27)

where N[sq,5P ] and D[sq,5P ] are given in Eqs. (A5) and
(A6) in the appendix. At p = pc,sq = 1/2, this has the
value

〈k〉[sq,5P ]|p=pc,sq
=

85013

753370
= 0.112844 . (5.28)

This is only 15 % larger than the value for the infinite
square lattice:

R[sq,5P ],c = 1.150571 , (5.29)

where R[Λ,(Ly)BCy ],c
was defined in Eq. (1.7).

For a2,[sq,5P ] we calculate

a2,[sq,5P ] =
1275302677055206848

439932074289972983
= 2.898863 . (5.30)

The small-p and small-r Taylor series expansions of
〈k〉[sq,5P ] are given in Table IV. Of the 62 poles of
〈k〉[sq,5P ] when expressed as a function of p, which are
the same when expressed as a function of r, the nearest
poles to the origin in both the complex p and r planes
are the complex-conjugate pair

p[sq,5P ],np = r[sq,5P ],np = −0.371844± 0.169863i (5.31)

with magnitude

|p[sq,5P ],np| = |r[sq,5P ],np| = 0.408805 . (5.32)

These poles thus determine the radii of convergence of the
respective small-p and small-r Taylor series expansions of
〈k〉[sq,5P ] as 0.408805. As was the case with the 3P and
4P strips of the square lattice, this radius of convergence
is smaller than pc,sq = rc,sq = 1/2.
F. Square-Lattice Strips with Self-Dual Transverse

Boundary Conditions and Ly = 2

Since the square lattice is self-dual, it is also useful
to employ boundary conditions for strip graphs of the
square lattice that obey this property even for finite Lx

and Ly [34, 44]. We denote the average cluster number
for the strip of the square lattice with width Ly and self-
dual transverse boundary conditions as 〈k〉[sq,(Ly)sd]. In
[17] we calculated 〈k〉[sq,1sd]. Here, for the 2sd strip of
the square lattice, we calculate

〈k〉[sq,2sd] =
(1− p)3(2− 2p− 4p2 + 15p3 − 17p4 + p5 + 24p6 − 34p7 + 24p8 − 10p9 + 2p10)

2(1− 2p+ 9p3 − 18p4 + 16p5 + 5p6 − 32p7 + 44p8 − 35p9 + 18p10 − 6p11 + p12)

=
r3(1− 3r2 + 9r3 − 2r4 − 19r5 + 38r6 − 38r7 + 24r8 − 10r9 + 2r10)

2(1− 2r + 9r3 − 18r4 + 16r5 + 5r6 − 32r7 + 44r8 − 35r9 + 18r10 − 6r11 + r12)
.

(5.33)

At p = pc,sq = 1/2, 〈k〉[sq,2sd] has the value

〈k〉[sq,2sd]|p=pc,sq
=

17

118
= 0.144068 . (5.34)

The comparison of this with the value of 〈k〉sq,c for the
infinite square lattice is indicated by the ratio

R[sq,2sd],c = 1.4689372 . (5.35)

For a2,[sq,2sd] we calculate

a2,[sq,2sd] =
235936

107911
= 2.186394 . (5.36)

The first few terms of the small-p and small-r series ex-
pansions of 〈k〉[sq,2sd] are given in Table IV. In 〈k〉[sq,2sd],
the nearest pole to the origin in the complex p and r plane
is

p[sq,2sd],np = r[sq,2sd],np = −0.4836567 , (5.37)
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which sets the radius of convergence of the small-p and
small-r series expansions for 〈k〉[sq,2sd].

G. 3sd Square-Lattice Strip

For the 3sd strip of the square lattice, we calculate

〈k〉[sq,3sd] =
N[sq,3sd]

D[sq,3sd]
, (5.38)

where N[sq,3sd] and D[sq,3sd] are given in Eqs. (A7) and
(A8) in the appendix. At p = pc,sq = 1/2, this has the
value

〈k〉[sq,3sd]|p=pc,sq
=

2051

15474
= 0.132545 . (5.39)

For a2,[sq,3sd] we calculate

a2,[sq,3sd] =
4105669781114576

1664338698530559
= 2.4668475 . (5.40)

The poles in 〈k〉[sq,3sd], nearest to origin in the complex
p and r plane are the complex-conjugate pair

p[sq,3sd],np = r[sq,3sd],np = −0.341129± 0.289364i ,
(5.41)

with magnitude

|p[sq,3sd],np| = |r[sq,3sd],np| = 0.447326 , (5.42)

which is thus the radius of convergence of the small-p and
small-r series expansions of 〈k〉[sq,3sd].
Thus, the square-lattice strips with periodic transverse

boundary conditions and the square-lattice strips with
self-dual transverse boundary conditions most closely
replicate the properties of the infinite square lattice,
namely absence of boundary effects and self-duality. For
this reason, one expects that for a given width Ly,
the values of 〈k〉 and its critical value at p = pc,sq,
〈k〉[sq,(Ly)P ]|p=psq,c

or 〈k〉[sq,(Ly)sd]|p=psq,c
will be closer

to the values on the infinite square lattice than is the
case for free transverse boundary conditions, and our ex-
act results confirm this general expectation.

VI. TRIANGULAR-LATTICE STRIPS

A. 3F Triangular-Lattice Strips

In [17] we presented calculations of 〈k〉[tri,2F ] and
〈k〉[tri,2P ]. Here, again making use of our new and more
powerful calculational methods, we calculate

〈k〉[tri,3F ] =
(1− p)4(3 + 2p− 3p2 − 14p3 + 48p4 − 62p5 + 7p6 + 90p7 − 144p8 + 123p9 − 66p10 + 21p11 − 3p12)

3(1− p− 2p3 + 22p4 − 56p5 + 72p6 − 29p7 − 76p8 + 179p9 − 210p10 + 166p11 − 94p12 + 37p13 − 9p14 + p15)

=
r4(2 + 2r + r2 − r3 − 4r4 + 2r5 + 7r6 − 27r8 + 42r9 − 33r10 + 15r11 − 3r12

3(1− r + r2 − 2r3 + 2r4 + 7r5 − 17r6 + 22r7 − 28r8 + 29r9 − 12r10 − 13r11 + 23r12 − 16r13 + 6r14 − r15)
.

(6.1)

At p = pc,tri,

〈k〉[tri,3F ]|p=pc,tri
=

306241− 2163343s+ 2302182s2

3(25781− 182124s+ 193812s2)

= 0.2714866 . (6.2)

where here and below, we use the symbol s = sin(π/18),
as defined in Eq. (2.11). In obtaining this and analytic
evaluations of 〈k〉[Λ,(Ly)BCy ]

|p=pc,Λ for other strips of the

triangular lattice, and for strips of the honeycomb lattice,
we have used the trigonometric identity sin3(π/18) =
(1/8)[6 sin(π/18) − 1], which enables us to reduce any
(finite-degree) polynomial in s to a polynomial of degree
2. We also note an analytic result for the [tri, 2F ] strip
that was not given before:

〈k〉[tri,2F ]|p=pc,tri
=

2(1− 6s+ 6s2)

1− 2s+ 4s2

= 0.359575 . (6.3)

In Table IV we list the first few terms in the small-p
and small-r series expansions of 〈k〉[tri,3F ]. The poles in
〈k〉[tri,3F ] nearest to the origin in the complex p plane are
the complex-conjugate pair

p[tri,3F ],np = −0.300743± 0.259341i , (6.4)

with magnitude

|p[tri,3F ],np| = 0.397120 , (6.5)

which sets the radius of convergence of the small-p series
for 〈k〉[tri,3F ]. The pole in 〈k〉[tri,3F ] nearest to the origin
in the complex r plane occurs at

r[tri,3F ],np = −0.599392 , (6.6)
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which sets the radius of convergence of the small-r series
for 〈k〉[tri,3F ] as 0.599392. These values are listed in Table
V.

B. 4F Triangular-Lattice Strips

For the 4F strip of the triangular lattice, we calculate

〈k〉[tri,4F ] =
N[tri,4F ]

D[tri,4F ]
, (6.7)

where the numerator and denominator polynomials are
given in Eqs. (A9) and (A10) in the appendix.

At p = pc,tri,

〈k〉[tri,4F ]|p=pc,tri
=

7325865108433807− 51751213463154938s+ 55072491066145656s2

8(225167815542115− 1590625477629565s+ 1692708277627262s2)

= 0.229460 . (6.8)

The pole in 〈k〉[tri,4F ] nearest to the origin in the com-
plex p plane occurs at

p[tri,4F ],np = −0.335309 , (6.9)

with magnitude |p[tri,4F ],np| = 0.335309, which sets the
radius of convergence of the small-p series for 〈k〉[tri,4F ].
The poles in 〈k〉[tri,4F ] nearest to the origin in the com-
plex r plane are the complex-conjugate pair

r[tri,4F ],np = −0.419061± 0.379572i , (6.10)

with magnitude

|r[tri,4F ],np| = 0.565408 , (6.11)

which sets the radius of convergence of the small-r series
for 〈k〉[tri,4F ]. In contrast to the situation with the 2F and
3F strips of the triangular lattice, |p[tri,4F ],np| < ptri,c
and |r[tri,4F ],np| < rtri,c. Thus, for this strip, the radii

of convergence of the small-p and small-r series are not
set by the respective physical critical values pc,tri and
rc,tri, on the infinite triangular lattice, but instead by
unphysical singularities.

C. 3P Triangular-Lattice Strip

We denote the average cluster number for the infinite-
length strip of the triangular lattice with width Ly and
periodic transverse boundary conditions as 〈k〉[tri,(Ly)P ].
For the 3P strip of the triangular lattice, we calculate

〈k〉[tri,3P ] =
N[tri,3P ]

D[tri,3P ]
, (6.12)

where the numerator and denominator polynomials are
given in Eqs. (A11) and (A12) in the appendix. At
p = pc,tri,

〈k〉[tri,3P ]|p=pc,tri
=

2(74704191− 527723687s+ 561591818s2)

9(939965− 6640082s+ 7066228s2)
= 0.146651 . (6.13)

We note an analytic result that was not given in [17],
namely

〈k〉[tri,2P ]|p=pc,tri
=

3(251− 1774s+ 1888s2)

2(33− 240s+ 256s2)

= 0.190910 . (6.14)

The poles in 〈k〉[tri,3P ] nearest to the origin in the com-
plex p plane are the complex-conjugate pair

p[tri,3P ],np = −0.2277805± 0.175218i , (6.15)

with magnitude

|p[tri,3P ],np| = 0.287376 , (6.16)

which sets the radius of convergence of the small-p series
for 〈k〉[tri,3P ]. The pole in 〈k〉[tri,3P ] nearest to the origin
in the complex r plane is

r[tri,3P ],np = −0.594760 , (6.17)

which sets the radius of convergence of the small-r series
for 〈k〉[tri,3P ] as 0.594760. These radii of convergence are



15

both smaller than the respective critical values pc,tri and
rc,tri.

D. 4P Triangular-Lattice Strip

For the 4P triangular lattice strip, we calculate

〈k〉[tri,4P ] =
N[tri,4P ]

D[tri,4P ]
, (6.18)

where N[tri,4P ] and D[tri,4P ] are given in Eqs. (A13) and
(A14) in the appendix. At p = pc,tri,

〈k〉[tri,4P ]|p=pc,tri
=

574004215646387707017− 4054867821476682227104s+ 4315100205943310268010s2

2(8584252854733404261− 60640688209720609514s+ 64532472500426786720s2)

= 0.131378 . (6.19)

Relative to the critical value, 〈k〉c,tri for the infinite tri-
angular lattice,

R[tri,4P ,c] = 1.174651 . (6.20)

Interestingly, this ratio is approaching reasonably close
to unity already when the strip width has the modest
value of Ly = 4, if one uses periodic transverse boundary
conditions. The approach to the infinite-width limit is
slower if one uses free transverse boundary conditions.
This is similar to the behavior that we found for the
square lattice, and, as in that case, one can understand
it as a consequence of the absence of any boundaries for
PBCy.
The pole in 〈k〉[tri,4P ] nearest to the origin in the com-

plex p plane occurs at

p[tri,4P ],np = −0.260779 , (6.21)

which sets the radius of convergence of the small-p series

for 〈k〉[tri,4P ] as 0.260779. The pole in 〈k〉[tri,4P ] nearest
to the origin in the complex r plane occurs at

r[tri,4P ],np = −0.570571 , (6.22)

which sets the radius of convergence of the small-r series
for 〈k〉[tri,4P ] as 0.570571. Both of these radii of conver-
gence are smaller than the respective critical values pc,tri
and rc,tri.

VII. HONEYCOMB-LATTICE STRIPS

A. 3F Honeycomb-Lattice Strip

We calculated the average cluster number for the
infinite-length 2F strip of the honeycomb lattice in Ref.
[17]. Here we calculate

〈k〉[hc,3F ] =
(1− p)2(3 + 2p− 2p2 − 5p3 − p4 + 5p5 + p6 + 4p7 − 10p8 + 7p10 − 3p11)

3(1− p2 + p3)(1 − 2p3 + p4 + 2p6 − 2p8 + p9)

=
r2(1 + 5r − 4r2 + 14r3 − 41r4 + 87r5 − 167r6 + 226r7 − 190r8 + 95r9 − 26r10 + 3r11)

3(1− r + 2r2 − r3)(1 − 3r + 10r2 − 14r3 + 17r4 − 26r5 + 30r6 − 20r7 + 7r8 − r9)
.

(7.1)

At p = pc,hc, this has the value

〈k〉[hc,3F ]|p=pc,hc
=

−12803 + 90443s− 96244s2

12(772− 5453s+ 5803s2)

= 0.160002 . (7.2)

We note a related new analytic result

〈k〉[hc,2F ]|p=pc,hc
=

−55 + 392s− 408s2

8(5− 32s+ 34s2)

= 0.204751 . (7.3)
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The poles in 〈k〉[hc,3F ] nearest to the origin in the com-
plex p plane are the complex-conjugate pair

p[hc,3F ],np = −0.492595± 0.542272i , (7.4)

with magnitude

|p[hc,3F ],np| = 0.732604 , (7.5)

which sets the radius of convergence of the small-p series
for 〈k〉[hc,3F ]. The poles in 〈k〉[hc,3F ] nearest to the origin
in the complex r plane are the complex-conjugate pair

r[hc,3F ],np = 0.123348± 0.377252i , (7.6)

with magnitude

|r[hc,3F ],np| = 0.396906 , (7.7)

which sets the radius of convergence of the small-r series
for 〈k〉[hc,3F ].

B. 4F Honeycomb-Lattice Strip

For the 4F strip of the honeycomb lattice, we calculate

〈k〉[hc,4F ] =
N[hc,4F ]

D[hc,4F ]
, (7.8)

whereN[hc,4F ] is a polynomial of degree 72 in p containing

a factor of (1−p)2 and D[hc,4F ] is a polynomial of degree
71 in p that we have calculated. At p = pc,hc,

〈k〉[hc,4F ]|p=pc,hc
=

=
−113592578275136635723243683+ 8024381665694504094459981670s− 8539368606495326857081040364s2

16(53721138617890198824050135− 379495673336597286155883324s+ 403850860315586504368203856s2)

= 0.1383407 . (7.9)

The poles in 〈k〉[hc,4F ] nearest to the origin in the com-
plex p plane are the complex-conjugate pair

p[hc,4F ],np = −0.552838± 0.373251i , (7.10)

with magnitude

|p[hc,4F ],np| = 0.667042 , (7.11)

which sets the radius of convergence of the small-p series
for 〈k〉[hc,4F ]. The poles in 〈k〉[hc,4F ] nearest to the origin
in the complex r plane are the complex-conjugate pair

r[hc,4F ],np = −0.212449± 0.136692i , (7.12)

with magnitude

|r[tri,4F ],np| = 0.252625 , (7.13)

which sets the radius of convergence of the small-r series
for 〈k〉[hc,4F ].

C. 2P Honeycomb-Lattice Strip

Strips of the honeycomb lattice require that Ly be
even. For the 2P strip of the honeycomb lattice we cal-

culate

〈k〉[hc,2P ] = 〈k〉[sq,2F ] (7.14)

For the value evaluated at p = pc,hc, we find

〈k〉[hc,2P ] =
−3 + 22s− 20s2

4(1− 2s)2
= 0.127450 . (7.15)

D. 4P Honeycomb-Lattice Strip

For the 4P honeycomb strip, we calculate

〈k〉[hc,4P ] =
N[hc,4P ]

D[hc,4P ]
, (7.16)

where N[hc,4P ] and D[hc,4P ] are given in Eqs. (A15) and
(A16) in the appendix. At p = pc,hc, this has the value
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〈k〉[hc,4P ]|p=pc,hc
=

736538075855− 5203035904036s+ 5536955158472s2

32(−19547696983+ 138088406531s− 146950612867s2)

= 0.0898337 . (7.17)

The pole in 〈k〉[hc,4P ] nearest to the origin in the com-
plex p plane is

p[hc,4P ],np = −0.585767 , (7.18)

which sets the radius of convergence of the small-p series
for 〈k〉[hc,4P ] as 0.585767. The pole in 〈k〉[hc,4P ] nearest
to the origin in the complex r plane is

r[hc,4P ],np = −0.270891 , (7.19)

which sets the radius of convergence of the small-r series
for 〈k〉[hc,4P ] as 0.270891.

VIII. COMPARATIVE DISCUSSION

As noted in the introduction, our main new results
include (i) the theorem (4.1), showing that the average
cluster number per site on infinite-length lattice strips
with width Ly and specified transverse boundary condi-
tions BCy, 〈k〉[Λ,(Ly)BCy ]

, is a rational function of the

bond occupation probability p; (ii) the calculation of
the exact expressions for 〈k〉[Λ,(Ly)BCy ]

as a function of

p; (iii) exact values of these average cluster numbers at
p = pc,Λ, the critical bond occupation probability for the
corresponding infinite-length lattices; (iv) a study of the
Ly dependence of these values (discussed further below);
(v) calculations of dj〈k〉[Λ,(Ly)BCy ]

/(dp)j with j = 1, 2, 3,

evaluated at p = pc,Λ, for infinite-length lattice strips Λs

with a resultant determination of coefficients in the ex-
pansion of 〈k〉[Λ,(Ly)BCy ]

in Eq. (2.5); and (vi) a study

of the poles in 〈k〉[Λ,(Ly)BCy ]
and the insight that these

yield concerning the role of unphysical singularities set-
ting the radii of convergence in small-p and small-r series
expansions of various quantities in percolation on infi-
nite two-dimensional lattices. That is, one encounters

this phenomenon even for finite-width strips of modest
widths, before the limit Ly → ∞ is taken to obtain 〈k〉Λ.

Here we give some further comparative discussion of
these results. First, our exact results strengthen and ex-
tend two monotonocity relations that we found in our
previous study [17]. We find that for fixed p ∈ (0, 1),
〈k〉[Λ,(Ly)BCy ]

is a monotonically decreasing function of

the strip width Ly for all of the lattices considered
here. (At the endpoints of the physical interval in p,
the values are fixed, as 〈k〉[Λ,(Ly)BCy ]

= 1 at p = 0 and

〈k〉[Λ,(Ly)BCy ]
= 0 at p = 1, independent of Ly.) Second,

for fixed Ly, 〈k〉[Λ,(Ly)BCy ]
is a monotonically decreasing

function of p in the physical interval 0 ≤ p ≤ 1.
Furthermore, with our present exact analytic results,

we have strengthened the finding from our previous study
in [17], that for a given lattice type and set of transverse
boundary conditions, over the range of strip widths Ly

that we have studied, the behavior of 〈k〉[Λ,(Ly)BCy ]
is

consistent with the inference that, for a fixed p ∈ (0, 1),
the average cluster number on the infinite-length strip,
〈k〉[Λ,(Ly)BCy ]

, approaches 〈k〉Λ as Ly → ∞. (This is

automatic for the two endpoints, p = 0 and p = 1, where
〈k〉Λs

= 1 and 〈k〉Λs
= 0.)

In particular, for each type of infinite-length, finite-
width lattice strip Λs for which we have calculated exact
expressions for 〈k〉Λs

, as Ly increases, the evaluation with
p set equal to the critical bond occupation probability
for the corresponding infinite two-dimensional lattice Λ,
p = pc,Λ, approaches the known critical value for the in-
finite lattice 〈k〉Λ|p=pc,Λ . As expected, for a given width,
Ly, the deviation from this critical value for the infi-
nite two-dimensional lattice is smallest for the infinite-
length strips with periodic transverse boundary condi-
tions, since these remove boundary effects, as contrasted
to the strips with free transverse boundary conditions:

∣

∣

∣
〈k〉[Λ,(Ly)P ]|p=pc,Λ − 〈k〉Λ|p=pc,Λ

∣

∣

∣
<

∣

∣

∣
〈k〉[Λ,(Ly)F ]|p=pc,Λ − 〈k〉Λ|p=pc,Λ

∣

∣

∣
. (8.1)

Thus, with periodic transverse boundary conditions, the
only finite-size effect that remains on the infinite-length
lattices is the fact that Ly is finite, i.e., there is a finite-
length path crossing the lattice strip in a transverse di-

rection. For a given infinite-length square-lattice strip of
width Ly, the deviation of the average cluster number at
p = pc,sq from its value on the infinite square lattice is
also smaller with self-dual boundary conditions, as con-
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trasted with free transverse boundary conditions:

[

〈k〉[sq,(Ly)sd]|p=pc,sq
− 〈k〉sq|p=pc,sq

]

<
[

〈k〉[sq,(Ly)F ]|p=pc,sq
− 〈k〉sq |p=pc,sq

]

. (8.2)

Our work here is complementary to the calculation
in Ref. [21] of 〈k〉sq,diag |p=pc,sq

on infinite-length di-
agonal strips of arbitrary widths (with toroidal bound-
ary conditions) on the square lattice, since we calculate
〈k〉Λ,(Ly)BCy

as a function of p, not just for the single

value p = pc,Λ, while Ref. [21] calculates the values
only at p = pc,sq. (Another difference is that we have
also calculated exact values of 〈k〉Λ,(Ly)BCy

for triangu-

lar and honeycomb lattices and in [17] for the kagomé
lattice.) As the strip width increases, the approach to
the value 〈k〉c,sq in Eq. (2.12) is comparably rapid. For
example, for the index N = 3 (corresponding to a width

across the diagonal of 3
√
2 = 4.243, Ref. [21] obtains

〈k〉sq,diag = 79/672 = 0.117560, which lies between our
values 〈k〉sq,4P |p=pc,sq

= 677/5572 = 0.121500 in Eq.
(5.24) and 〈k〉sq,5P |p=pc,sq

= 85013/753370 = 0.112844
in Eq. (5.28). This is in accord with one’s expectation,

since the width 3
√
2 is intermediate between the width

Ly = 4 and Ly = 5.

An important result of our calculations is the com-
parison with the formula for the finite-size correction to
〈k〉c,Λ derived in [15, 16], given above in Eq. (1.4), both

concerning the constant 5
√
3/24 in the O(1/L2

y) term and
concerning the universality of this finite-size correction as
regards the type of lattice, with the geometrical factors
(4.9) and (4.10) are incorporated. For this comparison,

we list in Table VI the values of b̃Λ,Ly
that we extract

from our fit to Eq. (4.8) for the infinite-length strips
of the square, triangular, and honeycomb lattices. As is
evident from this table, as Ly increases, our results ap-

proach the value b̃ = 5
√
3/24 in [15] (see also [16]) and,

furthermore, are consistent with being equal for all three
of these types of lattices, in agreement with the univer-
sality property of this finite-size correction. Indeed, with
rather modest strip widths, we find excellent agreement
with the value of b̃ in Eq. (1.4). This is a valuable uni-
versality check using exact results for different types of
lattice strips, including square, triangular, and honey-
comb lattices.

Another interesting application of our calculations of
〈k〉[Λ,(Ly)BCy ]

on these infinite-length lattice strips is to

investigate how the small-p and small-r Taylor series ex-
pansions compare with those for the corresponding in-
finite two-dimensional lattices. The entries in Table IV
are useful for this purpose. As is evident from this ta-
ble, for the infinite-length [Λ, (Ly)P ] strips, which are
∆-regular, we find that the small-p expansions have the
general form 〈k〉Λs

= 1 − (∆/2)p + ..., where the ... de-

note higher-order terms, in accord with Eq. (4.15). This
form for the first two terms is the same as with the infi-
nite two-dimension lattices. For the infinite-length strips
that are not ∆-regular, such as those with free transverse
boundary conditions, we find that the small-p expansion
has the form 〈k〉Λs

= 1 − (∆eff/2)p+ ..., where ∆eff was
defined in Eq. (3.5).
Concerning the rest of the small-p series, by inspect-

ing the series for 〈k〉[Λ,(Ly)BCy ]
on infinite-length lattice

strips of a given lattice Λ with some specified tranverse
boundary conditions, one can see how, as a function of
increasing strip width Ly, coefficients of certain terms
for these strips approach the values that they have in
the corresponding small-p or small-r expansion of 〈k〉Λ
on the infinite two-dimension lattice Λ. For example,
consider the (Ly)F strips of the square, triangular, and
honeycomb lattices. One sees that the coefficient of the
respective linear terms in the small-p series expansions
increase monotonically toward the respective values 4, 6,
and 3, in agreement with the discussion above.
The next higher-order term in the small-p expansion

of 〈k〉sq for the infinite square lattice is p4, and one can
see from Table IV how, as the width Ly of the (Ly)F
square-lattice strips increases from 2 to 4, the coefficient
of the p4 term in the series expansion of 〈k〉[sq,(Ly)F ] in-
creases toward 1, taking on the respective values 1/2,
2/3, and 3/4. Similarly, the next term higher than linear
in the small-p expansion of 〈k〉tri on the infinite triangu-
lar lattice is 2p3, and the coefficients of the p3 terms in
〈k〉[tri,(Ly)F ] increase toward this value, as 1, 4/3, and 3/2
with Ly = 2, 3, 4, respectively. Finally, the next term
higher than linear in the small-p expansion of 〈k〉hc on
the infinite honeycomb lattice is (1/2)p6, and the coeffi-
cients of the p6 terms in 〈k〉[hc,(Ly)F ] increase toward 1/2,
taking on the values 1/4, 1/3, and 3/8 as Ly increases
from 2 to 4.
For the infinite-length strips with periodic trans-

verse boundary conditions, the linear terms in p are
equal to their values for the corresponding infinite two-
dimensional lattices, and again the rest of the small-p
series become more similar to the series for the two-
dimensional lattices as the width increases. As an exam-
ple, consider the [sq, (Ly)P ] strips. The small-p series for
〈k〉[sq,2P ] has a nonzero p2 term, but it is absent in the se-
ries expansion of 〈k〉[sq,3P ] on the next wider strip of this
type. In turn, the small-p series for 〈k〉[sq,3P ] contains

a nonzero p3 term, but it is absent in the series expan-
sion of 〈k〉[sq,4P ] on the next wider strip of this type. The
small-p series expansion of 〈k〉[sq,5P ] matches not just the
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linear term, but also the p4 term of 〈k〉sq exactly. Cor-
responding comments apply for the (Ly)P strips of the
triangular and honeycomb lattices. One might antici-
pate some special properties of the small-p series expan-
sions of 〈k〉[sq,(Ly)sd] owing to the inclusion of the self-
duality property. Interestingly, one sees that with all
three widths for which we have calculated 〈k〉[sq,(Ly)sd],
namely, Ly = 1, 2, 3, the small-p expansions match not
just the linear term, but also the p4 term in 〈k〉sq exactly.
Over this range of Ly values, one observes that the coef-
ficient of the p3 term decreases monotonically, consistent
with its vanishing as Ly → ∞. Analogous comments
apply for the small-r series expansions of 〈k〉[Λ,(Ly)BCy ]

.

Finally, we have used our exact calculations of
〈k〉[Λ,(Ly)BCy ]

for these lattice strips to answer an in-

triguing question concerning the presence of unphysi-
cal singularities that were found, in analyses of small-p
and small-r series calculations of average cluster num-
bers on two-dimensional lattices [7, 8], to be closer to
the respective origins in these planes than the physi-
cal pc,Λ and rc,Λ = 1 − pc,Λ for these lattices. The
question is whether such unphysical singularities (which
are manifested as poles in Padé approximants of series)
would also be encountered in the exact expressions for
〈k〉[Λ,(Ly)BCy ]

. Our earlier analytic results in [17] showed

the presence of poles, but were limited to rather nar-
row strip widths. With our new calculations of 〈k〉Λs

for
considerably greater strip widths, we have answered this
question, in the affirmative. This is evident in Table V.
Furthermore, we find that with all of the strips for which
we have performed exact calculations, for a given type of
lattice strip Λ and specified transverse boundary condi-
tions BCy , the magnitude of the pole(s) of 〈k〉[Λ,(Ly)BCy ]

nearest to the origin in the complex p plane decreases
monotonically with increasing Ly, and similarly, the mag-
nitude of the pole(s) of 〈k〉[Λ,(Ly)BCy ]

nearest to the origin

in the r plane decreases monotonically with increasing
Ly. Thus, the corresponding radii of convergence of the
small-p and small-r series also decrease with increasing
Ly. One knows rigorously that the small-p and small-r
series expansions of 〈k〉Λ for infinite-length strips of arbi-
trarily large width, and also for the infinite lattices Λ, are
Taylor series with finite radii of convergence, given the
connection via (2.4) with the Potts model. This follows
because vp = p/(1 − p), so that the small-p and small-r
expansions in this bond percolation problem correspond,
respectively, to high-temperature and low-temperature
expansions in the Potts model. In general, the high- and
low-temperature expansions of a discrete spin model such
as the Potts model are Taylor series expansions with fi-
nite radii of convergence. Our results are thus consistent
with the inference that, as Ly → ∞, the magnitude of
the pole(s) nearest to the origin in the complex p plane
and the resultant radius of convergence of the small-p se-
ries expansions of 〈k〉[Λ,(Ly)BCy ]

will approach the value

obtained from analyses of small-p series expansions of
〈k〉Λ on the corresponding infinite two-dimensional lat-

tices. A similar comment applies to the poles in the r
plane. For example, regarding the poles in the p plane,
from analyses in Ref. [8] of small-p series expansions for
the average cluster number on the square lattice, 〈k〉sq,
evidence was reported for an unphysical singularity at
p = −0.41± 0.02 (see also [7]). Our results, as listed in
Table V show a decrease in the magnitude of the unphys-
ical pole(s) nearest to the origin in the complex p plane
consistent with the inference that with increasing strip
width Ly, this magnitude approaches this value ≃ 0.41
[8] obtained from series analyses for the infinite square
lattice. Indeed, the magnitude of the complex-conjugate
pair of poles nearest to the origin in the [sq, 5P ] strip is
already equal to 0.41 to two significant figures. Our exact
results on these lattice strips thus give a new insight into
this phenomenon of unphysical singularities closer to the
origin than pc,Λ that were noticed in early series analyses
[7, 8].

IX. CONCLUSIONS

In this paper we have presented a number of new ex-
act results for average cluster numbers 〈k〉Λ,(Ly)BCy

in

the bond percolation problem on infinite-length lattice
strips of the square, triangular, and honeycomb lattices
with various transverse boundary conditions. We have
proved a theorem that 〈k〉[Λ,(Ly)BCy ]

is a rational func-

tion of the bond occupation probability, p. We have eval-
uated our expressions for 〈k〉[Λ,(Ly)BCy ]

with p set equal to

the critical values p = pc,Λ for the corresponding infinite
two-dimensional lattices. We have also calculated coeffi-
cients of 〈k〉[Λ,(Ly)BCy ]

in an expansion around p = pc,Λ.

Using our calculations on infinite-length strips of sev-
eral different widths and lattices types, we have checked
and found excellent agreement with the functional form
and coefficient describing the finite-size correction to the
infinite-width limit. Finally, we have carried out a study
of the poles in the expressions for 〈k〉[Λ,(Ly)BCy ]

and how

these determine the radii of convergence of the small-p
and small-r Taylor series expansions of these quantities.
In turn, this has given a new insight into the appearance
of unphysical singularities that were found in early series
expansions of 〈k〉Λ on two-dimensional lattices Λ.
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Appendix A: Some Detailed Results of Calculations

We list here numerator and denominator polynomials
in Eq. (4.1) for various infinite-length strips that are too

lengthy to give in the text:

N[sq,4F ] = (1− p)3(4 + 5p− 13p2 − 22p3 + 13p4 + 120p5 − 35p6 − 342p7 + 67p8 + 800p9 − 42p10 − 2243p11

+ 2042p12 + 867p13 − 1632p14 + 2066p15 − 8992p16 + 14900p17 − 3933p18 − 15767p19 + 19105p20

− 10149p21 + 17236p22 − 37363p23 + 39047p24 − 19238p25 − 6431p26 + 58942p27 − 158184p28

+ 235049p29 − 176732p30 − 19602p31 + 213240p32 − 267764p33 + 182599p34 − 59067p35 − 17833p36

+ 35509p37 − 24007p38 + 10257p39 − 2997p40 + 589p41 − 71p42 + 4p43) (A1)

D[sq,4F ] = 4(1− 4p2 + 8p4 + 21p5 − 45p6 − 50p7 + 125p8 + 106p9 − 262p10 − 388p11 + 1257p12 − 911p13 − 353p14

+ 1392p15 − 3441p16 + 7214p17 − 7659p18 − 33p19 + 10102p20 − 13234p21 + 12476p22 − 17624p23 + 25847p24

− 24760p25 + 10265p26 + 17864p27 − 67400p28 + 131039p29 − 160372p30 + 101976p31 + 31616p32

− 155851p33 + 192656p34 − 139509p35 + 55077p36 + 4708p37 − 24705p38 + 20289p39 − 10358p40 + 3729p41

− 961p42 + 171p43 − 19p44 + p45) (A2)

N[sq,4P ] = (1− p)4(4 + 8p− 16p3 − 39p4 + 112p5 − 20p6 − 208p7 + 315p8 − 223p9 + 248p10 − 647p11

+ 1106p12 − 1318p13 + 1453p14 − 766p15 − 2735p16 + 8742p17 − 12662p18 + 10502p19 − 4091p20

− 1358p21 + 3122p22 − 2307p23 + 1033p24 − 297p25 + 51p26 − 4p27) (A3)

D[sq,4P ] = 4(1− p+ p2)(1 + p− 2p2 − 3p3 − 3p4 + 41p5 − 36p6 − 62p7 + 140p8 − 131p9 + 120p10 − 226p11

+ 460p12 − 649p13 + 688p14 − 480p15 − 654p16 + 3216p17 − 5785p18 + 5926p19 − 3292p20 + 99p21

+ 1578p22 − 1584p23 + 912p24 − 351p25 + 90p26 − 14p27 + p28) (A4)

N[sq,5P ] = (1 − p)4(5 + 15p+ 10p2 − 40p3 − 115p4 − 29p5 + 660p6 + 132p7 − 1709p8 − 877p9 + 3950p10

+ 2877p11 − 7215p12 − 8662p13 + 7196p14 + 40393p15 − 53232p16 + 13204p17 − 51313p18 + 19634p19

+ 377380p20 − 503109p21 − 570329p22 + 1553036p23 − 65274p24 − 2873234p25 + 4621549p26

− 7720349p27 + 15352272p28 − 16433567p29 − 12262362p30 + 78782168p31 − 158447809p32

+ 214186307p33 − 230019014p34 + 216228871p35 − 186980567p36 + 142532407p37 − 68762291p38

− 55618898p39 + 243770621p40 − 473742752p41 + 674493935p42 − 757917965p43 + 682330188p44

− 487268491p45 + 263968633p46 − 92180540p47 + 443325p48 + 27880668p49 − 24713816p50 + 14007915p51

− 5985845p52 + 2011895p53 − 535627p54 + 111561p55 − 17625p56 + 1993p57 − 144p58 + 5p59) (A5)
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D[sq,5P ] = 5(1 + p− 2p2 − 6p3 − 3p4 + 26p5 + 103p6 − 244p7 − 142p8 + 516p9 + 420p10 − 1159p11 − 928p12 + 1992p13

+ 1578p14 + 2395p15 − 23040p16 + 39567p17 − 38811p18 + 26672p19 + 64051p20 − 272943p21 + 288026p22

+ 249844p23 − 779755p24 + 77897p25 + 2020147p26 − 4713372p27 + 8356354p28 − 12526447p29

+ 9141812p30 + 17671571p31 − 77282022p32 + 157595007p33 − 229642624p34 + 269077829p35

− 270785628p36 + 242608396p37 − 188685316p38 + 99894346p39 + 41909295p40 − 247536567p41

+ 498168300p42 − 733592566p43 + 871224361p44 − 853561993p45 + 688825282p46 − 448046653p47

+ 220169597p48 − 63265190p49 − 13220314p50 + 33003789p51 − 26681313p52 + 15080448p53 − 6672527p54

+ 2389811p55 − 697964p56 + 165068p57 − 31003p58 + 4465p59 − 464p60 + 31p61 − p62) (A6)

N[sq,3sd] = (1− p)3(3− 3p− 21p2 + 37p3 + 97p4 − 265p5 − 275p6 + 1559p7 − 735p8 − 4454p9 + 6397p10 + 7719p11

− 25594p12 + 461p13 + 76993p14 − 100105p15 − 48081p16 + 240589p17 − 133404p18 − 299125p19

+ 397672p20 + 468568p21 − 1660402p22 + 1467662p23 + 705502p24 − 2859795p25 + 2447284p26

− 148761p27 + 71758p28 − 4717102p29 + 10333853p30 − 9242363p31 − 2195761p32 + 18554630p33

− 29140317p34 + 26914438p35 − 13774889p36 − 2046623p37 + 12789267p38 − 15764460p39

+ 13053019p40 − 8354879p41 + 4320752p42 − 1833211p43 + 638949p44 − 181329p45 + 41088p46

− 7182p47 + 912p48 − 75p49 + 3p50) (A7)

D[sq,3sd] = 3(1− 2p− 5p2 + 19p3 + 13p4 − 112p5 + 32p6 + 542p7 − 883p8 − 788p9 + 3568p10 − 1056p11 − 9489p12

+ 11669p13 + 18234p14 − 61546p15 + 42562p16 + 71008p17 − 151651p18 + 24638p19 + 201958p20 − 77630p21

− 616216p22 + 1248416p23 − 776173p24 − 859257p25 + 2199256p26 − 1891602p27 + 827535p28

− 1633704p29 + 5205016p30 − 8217812p31 + 5395624p32 + 4995137p33 − 18179344p34 + 25979096p35

− 23240423p36 + 11597999p37 + 2383494p38 − 12270154p39 + 15475815p40 − 13388744p41 + 9080298p42

− 5043522p43 + 2332946p44 − 902428p45 + 290686p46 − 77040p47 + 16440p48 − 2725p49 + 330p50

− 26p51 + p52) (A8)

N[tri,4F ] = (1− p)4(2 − 5p− 4p2 + 41p3 − 52p4 − 80p5 + 164p6 + 838p7 − 4165p8 + 8517p9 − 8197p10 − 1589p11

+ 13355p12 − 8786p13 − 4606p14 − 61665p15 + 374163p16 − 1043384p17 + 1905928p18 − 2421614p19

+ 1878238p20 + 140422p21 − 3349440p22 + 6775564p23 − 9239709p24 + 9983576p25 − 9009248p26

+ 6948032p27 − 4628988p28 + 2674993p29 − 1339759p30 + 578446p31 − 213006p32 + 65734p33 − 16546p34

+ 3259p35 − 470p36 + 44p37 − 2p38) (A9)

D[tri,4F ] = 2(1− 4p+ 4p2 + 18p3 − 60p4 + 43p5 + 80p6 + 225p7 − 2534p8 + 8252p9 − 15122p10 + 15527p11 − 3457p12
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− 12950p13 + 17747p14 − 40206p15 + 232540p16 − 868823p17 + 2151018p18 − 3857167p19 + 5099429p20

− 4529584p21 + 1058496p22 + 5305640p23 − 13128301p24 + 20075271p25 − 24025016p26 + 24060724p27

− 20745034p28 + 15614712p29 − 10330842p30 + 6022412p31 − 3090155p32 + 1389384p33 − 542808p34

+ 181832p35 − 51206p36 + 11780p37 − 2122p38 + 280p39 − 24p40 + p41) (A10)

N[tri,3P ] = (1 − p)6(3 + 9p− 50p3 + 84p4 − 24p5 − 192p6 + 554p7 − 844p8 + 812p9 − 516p10

+ 246p11 − 151p12 + 143p13 − 112p14 + 56p15 − 16p16 + 2p17) (A11)

D[tri,3P ] = 3(1− 3p2 − 3p3 + 68p4 − 187p5 + 190p6 + 162p7 − 1035p8 + 2404p9 − 3822p10

+ 4494p11 − 3954p12 + 2580p13 − 1215p14 + 391p15 − 77p16 + 7p17) (A12)

N[tri,4P ] = (1 − p)6(4 + 12p− 4p2 − 100p3 − 83p4 + 1290p5 − 2067p6 − 2512p7 + 11219p8 + 3776p9 − 91473p10

+ 237866p11 − 238434p12 − 355578p13 + 2194759p14 − 5879228p15 + 10734693p16 − 11817298p17 − 3000450p18

+ 49716006p19 − 133234513p20 + 226293288p21 − 260526672p22 + 145333622p23 + 188864004p24 − 743143968p25

+ 1422696984p26 − 2051609680p27 + 2439158465p28− 2472507822p29 + 2176639966p30 − 1694462238p31

+ 1200557665p32 − 813001894p33 + 559873482p34 − 405661962p35 + 300606573p36 − 214020448p37

+ 138935000p38 − 79728612p39 + 39753500p40 − 17021640p41 + 6188754p42 − 1884492p43 + 471692p44

− 94508p45 + 14570p46 − 1622p47 + 116p48 − 4p49) (A13)

D[tri,4P ] = 4(1− 4p2 − 8p3 + 42p4 + 258p5 − 1514p6 + 2760p7 + 81p8 − 7196p9 − 8065p10 + 116560p11 − 367969p12

+ 562624p13 + 89861p14 − 3170072p15 + 10610941p16 − 22666338p17 + 32951037p18 − 21009590p19 − 50850559p20

+ 222682606p21 − 494752835p22 + 772870308p23 − 843281180p24 + 417584024p25 + 751628022p26

− 2729780780p27 + 5298392040p28 − 7950694944p29+ 10021670376p30 − 10934130274p31+ 10454310676p32

− 8802418934p33 + 6535447502p34 − 4275633432p35+ 2459294308p36 − 1239099924p37 + 543948012p38

− 206498264p39 + 67102916p40 − 18406832p41 + 4181204p42 − 765524p43 + 108540p44

− 11180p45 + 744p46 − 24p47) (A14)

N[hc,4P ] = (1− p)3(4 + 6p+ 2p2 − 6p3 − 20p4 + 12p5 + 12p6 − 2p7 − 11p8 + 23p9 − 9p10

− 46p11 + 118p12 − 207p13 + 257p14 − 159p15 − 63p16 + 194p17 − 126p18 + 24p19

− 71p20 + 309p21 − 623p22 + 705p23 − 391p24 − 20p25 + 178p26 − 116p27 + 34p28 − 4p29) (A15)

D[hc,4P ] = 4(1− p2 − p3 − 2p4 + 10p5 − 5p6 − 3p7 + 10p9 − 13p10 − 6p11 + 47p12 − 105p13 + 167p14

− 182p15 + 99p16 + 39p17 − 118p18 + 95p19 − 55p20 + 110p21 − 286p22 + 481p23 − 515p24
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+ 317p25 − 43p26 − 104p27 + 98p28 − 43p29 + 10p30 − p31) (A16)
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TABLE I: Structural features of exact expressions for average
cluster numbers 〈k〉[Λ,(Ly)BCy

] on infinite-length strips of various

lattices Λ with width Ly and specified transverse boundary
conditions, (BC)y , expressed as functions of bond occupation
probability p and bond vacancy probability r = 1− p. For each
such lattice strip we list the degrees deg(N[Λ,(Ly)BCy

]) and

deg(D[Λ,(Ly)BCy
]) of the numerator and denominator of

〈k〉[Λ,(Ly)BCy
] (as polynomials in p or r), and the degree

deg[PF (N[Λ,(Ly)BCy
])] To save space, in the table we write

deg(N[Λ,(Ly)BCy
]) ≡ deg(N), deg(D[Λ,(Ly)BCy

]) ≡ deg(D), and

deg[PF (N[Λ,(Ly)BCy
])] ≡ deg[PF (N)].

Λ (Ly)BCy deg(N) deg(D) deg[PF (N)]

sq 1F 1 0 1

sq 2F 4 3 2

sq 3F 13 12 3

sq 4F 46 45 3

sq 2P 5 4 2

sq 3P 11 10 3

sq 4P 31 30 4

sq 5P 63 62 4

sq 1sd 3 2 3

sq 2sd 13 12 3

sq 3sd 53 52 3

tri 2F 3 2 3

tri 3F 16 15 4

tri 4F 42 41 4

tri 2P 10 6 4

tri 3P 23 17 6

tri 4P 55 47 6

hc 2F 6 5 2

hc 3F 13 12 2

hc 4F 72 71 2

hc 2P 4 3 2

hc 4P 32 31 3
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TABLE II: Values of average cluster numbers 〈k〉[Λ,(Ly)BCy
] on

infinite-length strips of various lattices with specified transverse
boundary conditions, evaluated at the critical bond occupation

probabilities p = pc,Λ for the corresponding infinite
two-dimensional lattices. These values are given analytically and
numerically, to the indicated floating-point accuracy. The entries
in the right-most column of the table are the values of the ratio

R[Λ,(Ly)BCy
] in Eq. (1.7).

Λ (Ly)BCy 〈k〉[Λ,(Ly)BCy
] 〈k〉[Λ,(Ly)BCy

],num. R[Λ,(Ly)BCy
]

sq 1F 1/2 0.5 5.098076

sq 2F 2/7 0.285714 2.913186

sq 3F 147/670 0.219403 2.237066

sq 4F 27229/145196 0.187533 1.912112

sq 2P 1/5 0.2 2.039230

sq 3P 11/78 0.141026 1.437919

sq 4P 677/5572 0.121500 1.238836

sq 5P 85013/753370 0.112844 1.150571

sq 1sd 1/6 0.166667 1.699359

sq 2sd 17/118 0.144068 1.468937

sq 3sd 2051/15474 0.132545 1.351448

sq ∞ Eq.(2.12) 0.0980762 1

tri 2F Eq. (6.3) 0.359575 3.214963

tri 3F Eq. (6.2) 0.271487 2.427362

tri 4F Eq. (6.8) 0.229460 2.051605

tri 2P Eq. (6.14) 0.190910 1.706929

tri 3P Eq. (6.13) 0.146651 1.311205

tri 4P Eq. (6.19) 0.131378 1.174651

tri ∞ Eq. (2.13) 0.111844 1

hc 2F Eq. (7.3) 0.204751 2.663717

hc 3F Eq. (7.2) 0.160002 2.081555

hc 4F Eq. (7.9) 0.138341 1.799749

hc 2P Eq. (7.15) 0.127450 1.658066

hc 4P Eq. (7.17) 0.0898337 1.168696

hc ∞ Eq. (2.14) 0.076867 1



26

TABLE III: Values of ai,[sq,(Ly)BCy
] for i = 1, 2 in Eq. (2.6) for

infinite-length, finite-width square-lattice strips with various
transverse boundary conditions.

(Ly)BCy a1,[sq,(Ly)BCy
] a2,[sq,(Ly)BCy

]

1F −1 0

2F −1.204082 0.921283

3F −1.214450 1.464119

4F −1.200912 1.833688

2P −1 1.493333

3P −1 2.201755

4P −1 2.617979

5P −1 2.898863

1sd −1 1.777778

2sd −1 2.186394

3sd −1 2.4668475

TABLE IV: Small-p and small-r expansions of the average
cluster number 〈k〉[Λ,(Ly)BCy

] for the infinite-length strip of the

lattice Λ with width Ly and transverse boundary conditions BCy .

Λ (Ly)BCy small-p series small-r series

sq 1F 1− p (exact) r (exact)

sq 2F 1− 3
2
p+ 1

2
p4 + 1

2
p6 +O(p7) 1

2
r2 + 2r3 − 7

2
r5 − 3

2
r6 +O(r7)

sq 3F 1− 5
3
p+ 2

3
p4 + p6 +O(p7) r3 + 7

3
r4 + 2r5 − 11

3
r6 +O(r7)

sq 4F 1− 7
4
p+ 3

4
p4 + 5

4
p6 +O(p7) 1

2
r3 + 5

4
r4 + 2r5 + 19

4
r6 +O(r7)

sq 2P 1− 2p+ 1
2
p2 + 2p4 − 2p5 + 5

2
p6 +O(p7) 1

2
r2 + 2r4 − 2r5 + 5

2
r6 − 6r7 +O(r8)

sq 3P 1− 2p+ 1
3
p3 + p4 + 2p5 +O(p7) 1

3
r3 + r4 + 2r5 − 2r7 +O(r8)

sq 4P 1− 2p+ 5
4
p4 + 5p6 +O(p7) v 5

4
r4 + 5r6 − 4r7 +O(r8)

sq 5P 1− 2p+ p4 + 1
5
p5 + 2p6 +O(p7) r4 + 1

5
r5 + 2r6 + 2r7 +O(r8)

sq 1sd 1− 2p+ p3 + p4 − p6 − p7 +O(p9) r3 + r4 − r6 − r7 +O(r9)

sq 2sd 1− 2p+ 1
2
p3 + p4 + 1

2
p5 + p6 +O(p7) 1

2
r3 + r4 + 1

2
r5 + r6 + r7 +O(r8)

sq 3sd 1− 2p+ 1
3
p3 + p4 + 1

3
p5 + 4

3
p6 +O(p7) 1

3
r3 + r4 + 1

3
r5 + 4

3
r6 + 1

3
r7 +O(r8)

sq ∞ 1− 2p+ p4 + 2p6 +O(p7) r4 + 2r6 − 2r7 +O(r8)

tri 2F 1− 2p+ p3 + p4 − p6 +O(p7) r3 + r4 − r6 − r7 + r9 + r10 +O(r12)

tri 3F 1− 7
3
p+ 4

3
p3 + 5

3
p4 + p5 − 1

3
p6 +O(p7) 2

3
r4 + 4

3
r5 + r6 + 2

3
r7 − 1

3
r8 − 17

3
r9 − 5

3
r10 +O(r11)

tri 4F 1− 5
2
p+ 3

2
p3 + 2p4 + 3

2
p5 + 1

2
p6 +O(p7) 1

2
r4 + r6 + 3

2
r7 + 2r8 + 2r9 − 1

2
r10 +O(r11)

tri 2P 1− 3p+ 1
2
p2 + 4p3 + 9

2
p4 − 10p5 − 10p6 +O(p7) 1

2
r4 + 2r6 − 2r8 +O(r10)

tri 3P 1− 3p+ 7
3
p3 + 6p4 + 11p5 − 17

3
p6 +O(p7) 4

3
r6 + 2r8 + 2r10 +O(r11)

tri 4P 1− 3p+ 2p3 + 13
4
p4 + 7p5 + 22p6 +O(p7) r6 + 1

4
r8 + 6r10 +O(r11)

tri ∞ 1− 3p+ 2p3 + 3p4 + 3p5 + 3p6 +O(p7) r6 + 3r10 + 3r11 +O(r12)

hc 2F 1− 5
4
p+ 1

4
p6 + 1

4
p10 +O(p11) 3

2
r2 + 3r3 − 31

4
r4 − 7r5 + 35r6 +O(r7)

hc 3F 1− 4
3
p+ 1

3
p6 + 2

3
p10 +O(p11) 1

3
r2 + 3r3 + 17

3
r4 − 22

3
r5 − 53r6 +O(r7)

hc 4F 1− 11
8
p+ 3

8
p6 + 7

8
p10 +O(p11) 1

4
r2 + 3

2
r3 + 29

8
r4 + 93

8
r5 + 35

8
r6 +O(r7)

hc 2P 1− 3
2
p+ 1

2
p4 + 1

2
p6 − 1

2
p7 + 1

2
p8 − p9 + p10 +O(p11) 1

2
r2 + 2r3 − 7

5
r5 − 3

2
r6 +O(r7)

hc 4P 1− 3
2
p+ 1

2
p6 + 3

4
p8 + 5

2
p10 +O(p11) r3 + 9

4
r4 + 11

2
r5 + 7r6 +O(r7)

hc ∞ 1− 3
2
p+ 1

2
p6 + 3

2
p10 +O(p11) r3 + 3

2
r4 + 3

5
r6 +O(r7)
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TABLE V: For each infinite-length strip of the lattice Λ with
width Ly and transverse boundary conditions BCy , denoted
[Λ, (Ly)BCy

], this table lists information about the pole or
complex-conjugate pair of poles located nearest to the origin in
the complex p or r plane, in the exact expression for the average

cluster number, 〈k〉[Λ,(Ly)BCy
]. The columns are: (i) Λ, (ii)

(Ly)BCy
, (iii) p[Λ,(Ly)BCy

],np, (iv) |p[Λ,(Ly)BCy
],np|, (v) whether

|p[Λ,(Ly)BCy
],np| is larger or smaller than the critical bond

occupation probability pc,Λ on the corresponding infinite
two-dimensional lattice, (vi) r[Λ,(Ly)BCy

],np, (vii)

|r[Λ,(Ly)BCy
],np|, (viii) whether |r[Λ,(Ly)BCy

],np| is larger or

smaller than the critical bond occupation probability rc,Λ on the
corresponding infinite two-dimensional lattice,. The values of pc,Λ
are given in Eqs. (2.8)-(2.10), and rc,Λ = 1− pc,Λ. For brevity of
notation, column (v) is labelled with the symbol rpc, standing for
|p[Λ,(Ly)BCy

],np| “relative to pc,Λ” and similarly, column (viii) is

labelled with the symbol rrc, standing for |[r[Λ,(Ly)BCy
],np|

“relative to rc,Λ”. Where an entry is not applicable, we indicate
this with −.

Λ (Ly)BCy p[Λ,(Ly)BCy
],np |p[Λ,(Ly)BCy

],np| rpc r[Λ,(Ly)BCy
],np |r[Λ,(Ly)BCy

],np| rrc

sq 1F none − − none − −

sq 2F −0.754878 0.754878 > pc,sq 0.122561 ± 0.744862i 0.754878 > rc,sq

sq 3F −0.400758 ± 0.399068i 0.565564 > pc,sq −0.411578 0.411578 < rc,sq

sq 4F −0.492588 0.492588 < pc,sq −0.317578 ± 0.244625i 0.400871 < rc,sq

sq 2P −0.618034 0.618034 > pc,sq −0.618034 0.618034 > rc,sq

sq 3P −0.354731 ± 0.319907i 0.477676 < pc,sq −0.354731 ± 0.319907i 0.477676 < rc,sq

sq 4P −0.424294 0.424294 < pc,sq −0.424294 0.424294 < rc,sq

sq 5P −0.371844 ± 0.169863i 0.408805 < pc,sq −0.371844 ± 0.169863i 0.408805 < rc,sq

sq 1sd e±iπ/3 1 > pc,sq e±iπ/3 1 > rc,sq

sq 2sd −0.483657 0.483657 < pc,sq −0.483657 0.483657 < rc,sq

sq 3sd −0.341129 ± 0.289364i 0.447326 < pc,sq −0.341129 ± 0.289364i 0.447326 < pc,sq

tri 2F e±iπ/3 1 > pc,tri e±iπ/3 1 > rc,tri

tri 3F −0.300743 ± 0.259341i 0.397120 > pc,tri −0.599392 0.599392 < rc,tri

tri 4F −0.335309 0.335309 < pc,tri −0.419061 ± 0.379572i 0.565408 < rc,tri

tri 2P −0.374357 0.374357 > pc,tri −0.6538705 0.6538705 > rc,tri

tri 3P −0.2277805 ± 0.175218i 0.287376 < pc,tri −0.594760 0.594760 < rc,tri

tri 4P −0.260779 0.260779 < pc,tri −0.570571 0.570571 < rc,tri

hc 2F −0.856675 0.856675 > pc,hc −0.0783889 ± 0.496940i 0.503084 > rc,hc

hc 3F −0.492595 ± 0.542272i 0.732604 > pc,hc 0.123348 ± 0.377252i 0.396906 > rc,hc

hc 4F −0.552838 ± 0.373251i 0.667042 > pc,hc −0.212449 ± 0.136692i 0.252625 < rc,hc

hc 2P −0.754878 0.754878 > pc,hc 0.122561 ± 0.744862i 0.754878 > rc,hc

hc 4P −0.585767 0.585767 < pc,hc −0.270891 0.270891 < rc,hc
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TABLE VI: Values of b̃[Λ,(Ly)P ] in Eq. (1.6) for infinite-length,
finite-width lattice strips with periodic transverse boundary

conditions, including a comparison with the value
b̃ = 5

√
3/24 = 0.360844 in Eq. (1.4) from Ref. [15] (see also [16]).

Λ (Ly)P b̃[Λ,(Ly)P ]

b̃[Λ,(Ly)P ]

b̃Λ

sq 2P 0.407695 1.129838

sq 3P 0.386545 1.071225

sq 4P 0.374786 1.038638

sq 5P 0.369185 1.023116

tri 2P 0.365190 1.012044

tri 3P 0.361720 1.002428

tri 4P 0.360890 1.0001279

hc 2P 0.350452 0.971201

hc 4P 0.359354 0.995871


