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We consider a rudimentary model for a heat engine, known as the Brownian gyrator, that consists of an over-
damped system with two degrees of freedom in an anisotropic temperature field. Whereas the hallmark of the
gyrator is a nonequilibrium steady-state curl-carrying probability current that can generate torque, we explore
the coupling of this natural gyrating motion with a periodic actuation potential for the purpose of extracting
work. We show that path-lengths traversed in the manifold of thermodynamic states, measured in a suitable
Riemannian metric, represent dissipative losses, while area integrals of a work-density quantify work being ex-
tracted. Thus, the maximal amount of work that can be extracted relates to an isoperimetric problem, trading off
area against length of an encircling path. We derive an isoperimetric inequality that provides a universal bound
on the efficiency of all cyclic operating protocols, and a bound on how fast a closed path can be traversed before
it becomes impossible to extract positive work. The analysis presented provides guiding principles for building
autonomous engines that extract work from anistropic fluctuations.

Harvesting energy is a principal characteristic of living or-
ganisms. Yet, relevant processes rarely conform to the set-
ting of Carnot’s engine alternating contact between heat baths
of different temperature. Instead, fluctuations and anisotropic
chemical concentrations in conjunction with varying electro-
chemical potentials seem to provide the universal source of
cellular energy [1, 2]. The present work studies far-from-
equilibrium transitions that are fueled by anisotropic thermal
excitation, by adopting the frame of Stochastic Thermody-
namics [3–6] and fluctuation theories [7–11]. Specifically, we
study a minimal thermodynamic engine built around the con-
cept of the Brownian gyrator [12], a system that exhibits a
characteristic non-equilibrium steady-state circulating current
due the to misalignment between the anisotropic temperature
field and the confining potential.

Previous work on the Brownian gyrator focused on the
circulating current and torque generated at steady-state [12–
17] and on optimal transitioning between states [18]. In the
present work, we take the next natural step to consider en-
ergetics of a cyclic operation. We utilize a controlled pe-
riodically time-varying potential to extract work from the
anisotropy of the temperature field. To this end, we extend
concepts of thermodynamic geometry [19–21] to regimes far-
from-equilibrium. Specifically, we show that the length of
a path in the two-dimensional Riemannian manifold of ther-
modynamic states represents dissipative losses, while the area
integral of a work-density within a closed curve quantifies
extracted work over the cycle. Thus, the problem to deter-
mine an optimal protocol reduces to an isoperimetric prob-
lem, where a path of a given length that encircles a maximal
(weighted) area is sought. In this way, we quantify tradeoffs
between efficiency and power that can be extracted.

Model and analysis: We consider a two-dimensional over-
damped Brownian particle in an anisotropic heat bath and
subject to a time-varying potential U(t, x, y), obeying the
Langevin dynamics

dxt = −γ−1∂xU(t, x, y)dt+
√

2γ−1kBTxdB
x
t , (1a)

dyt = −γ−1∂yU(t, x, y)dt+
√

2γ−1kBTydB
y
t , (1b)

where {Bxt }t≥0 and {Byt }t≥0 are two independent standard
Brownian motions, while Tx and Ty represent temperature
along each of the two degrees of freedom x and y, respec-
tively. Throughout, kB denotes the Boltzmann constant, γ a
dissipation constant assumed identical in both directions, and
∂x and ∂y the partial derivatives with respect to x and y, re-
spectively. Without loss of generality, we assume Tx > Ty
and define ∆T := Tx − Ty > 0.

The probability distribution, that constitutes the state of
the system, is denoted by p(t, x, y) and satisfies the Fokker-
Planck equation ∂p

∂t +∇ · J = 0 where

J =

[
Jx
Jy

]
= −γ−1

[
∇U +

1

2
T∇ log(p)

]
p,

is the probability current, ∇ is the gradient operator with re-
spect to spatial coordinates, and

T =

[
2kBTx 0

0 2kBTy

]
.

The system exchanges energy with the environment
through work done by changes in the potential and through
heat transfer with the two thermal baths. The total energy of
the system is E =

˜
Updxdy, while the rate of work due to

a change in the potential is given by

Ẇ =

¨
∂U

∂t
p dxdy. (2)

The heat uptake from the respective thermal baths is

Q̇x =

¨
Jx∂xU dxdy = −

¨
U∂xJx dxdy,

Q̇y =

¨
Jy∂yU dxdy = −

¨
U∂yJy dxdy,

resulting in the total heat uptake

Q̇ = Q̇x + Q̇y = −
¨

U∇ · J dxdy. (3)
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Assume the potential is fixed and the system (1) reaches a
steady state. Stationarity only requires that ∇ · J = 0, imply-
ing zero total heat uptake. However, unless the detailed bal-
ance condition J = 0 holds, the steady-state is not an equilib-
rium distribution and the non-zero probability current medi-
ates a steady-state heat transfer rate Q̇x = −Q̇y 6= 0 between
the two thermal baths, which has been the subject of study of
previous works [15, 22].

In order to advance our analysis, we henceforth assume a
quadratic potential

U(t, x, y) =
1

2
ξ>K(t)ξ, where ξ =

[
x
y

]
,

withK(t) a symmetric 2×2 matrix seen as a control variable.
If the initial state is Gaussian, N(0,Σ0) (i.e., with mean 0 and
covariance Σ0), then it remains Gaussian. Its mean remains
0 while the covariance Σ(t) satisfies the Lyapunov equation
(see the appendix for the derivation)

γΣ̇(t) = −K(t)Σ(t)− Σ(t)K(t) + T. (4)

In terms of the state covariance and control, the energy is

E =

¨
Updxdy =

1

2
Tr[K(t)Σ(t)],

where Tr[·] denotes the trace. The rates of work input (2) and
total heat input (3) simplify to

Ẇ =
1

2
Tr[K̇(t)Σ(t)] and Q̇ =

1

2
Tr[K(t)Σ̇(t)].

Our goal is to design K(t) so as to extract work by steer-
ing the covariance matrix Σ(t) along a closed trajectory with
{Σ(t); t ∈ [0, tf ],Σ(0) = Σ(tf )} in a cyclic manner.

To simplify our analysis we consider Σ̇(t) as our design
parameter, instead of K(t). We can do so since the unique
K(t) that satisfies (4) is obtained in terms of (Σ̇(t),Σ(t)) as

K(t) = LΣ(t)[T − γΣ̇(t)],

where, for any positive definite matrix A, we define

X 7→ LA[X] :=

ˆ ∞
0

e−τAXe−τAdτ.

The heat rate, also expressed in terms of (Σ(t), Σ̇(t)), is

Q̇ =
1

2
Tr

[
LΣ(t)[T ]Σ̇(t)

]
− γ

2
Tr

[
LΣ(t)[Σ̇(t)]Σ̇(t)

]
.

Integrating over [0, tf ] we obtain thatQ = Qqs−Qdiss, where

Qqs =
1

2

ˆ tf

0

Tr

[
LΣ(t)[T ]Σ̇(t)

]
dt, (5a)

Qdiss =
γ

2

ˆ tf

0

Tr

[
LΣ(t)[Σ̇(t)]Σ̇(t)

]
dt. (5b)

FIG. 1. Work-density (9) with values color coded, expressed in state-
coordinates (r, θ) in (6). Area integrals over closed cycles represent
quasi-static work. The red cycle encompasses the region of positive
work-density within a given radius.

These are integrals along the curve {Σ(t) | t ∈ [0, tf ]}. Note
that the first one is independent of the time parameter while
the second term converges to zero as the speed in traversing
the path converges to zero. Thus, the first term corresponds
to the effective heat uptake in the quasi-static limit and the
second corresponds to dissipation. When integrating over a
cycle, the work output is precisely their difference,

Wout = Qqs −Qdiss.

Moreover, we define the efficiency of the cycle as the ratio
between the work output and the maximum amount of work
that can be extracted in a quasi-static setting [21],[23], i.e.,

η =
Wout

Qqs
.

From this point on, we restrict the controlled degrees of
freedom on the state manifold (Σ-space) to two by impos-
ing that det(Σ(t)) (or equivalently the entropy of the state)
be constant. Under this restriction, the 2 × 2 positive defi-
nite covariance (state) can be expressed in polar coordinates
(r, θ) ∈ [0,∞)× [0, 2π) as

Σ(r, θ) = R
(
− θ

2

)
σ2(r)R

(θ
2

)
, (6)

where R(·) and σ2(·) are orthogonal and diagonal matrices,
respectively, given by

R(ϑ) =

[
cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

]
and σ2(r) =

[
lc

2er 0
0 lc

2e−r

]
,

where lc = 4
√

det(Σ(t)) is a (constant) characteristic length
for the system. Therefore, the rate Σ̇ can be expressed as
the sum of two terms, one accounting for the rotation and the
other for the expansion/contraction, that is,

Σ̇ =
1

2
R>(σ2Ω− Ωσ2)Rθ̇ +R>σ2ΞRṙ,
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FIG. 2. Cyclic protocol for the semicircle path of radius rmax in Fig-
ure 1. The two phases represent: (1) expansion of the Σ(t)-ellipsoid
along the x-axis with simultaneous compression along the y-axis,
and (2) rotation to bring Σ(t) to the starting value. The area of the
ellipsoid remains constant during the cycle. When Tx > Ty , work is
extracted during phase 1 and added during phase 2.

where

Ω =

[
0 1
−1 0

]
and Ξ =

[
1 0
0 −1

]
.

After substituting this expression for Σ̇ into (5), the quasi-
static heat and dissipation can also be readily expressed in po-
lar coordinates as follows,

Qqs =
kB∆T

2

ˆ tf

0

(
cos(θ)ṙ − tanh(r) sin(θ)θ̇

)
dt, (7a)

Qdiss =
γl2c
2

ˆ tf

0

(
cosh(r)ṙ2+sinh(r) tanh(r)θ̇2

)
dt. (7b)

Geometric interpretations: We now consider the integrals
(7a-7b) over a cycle that encircles a domain D, that is, over
the boundary ∂D of D. Using Stoke’s theorem, Qqs can be
expressed as an area integral over D,

Qqs =
kB∆T

2

˛
∂D

(cos(θ)dr − tanh(r) sin(θ)dθ)

= ±kB∆T

2

¨
D

tanh2(r)

r
sin(θ)rdθdr, (8)

where the sign is positive if the direction in traversing the
cycle is counter clockwise (CCW), and negative otherwise.
Thus,

wqs(r, θ) =
kB∆T

2

tanh2(r)

r
sin(θ), (9)

represents a quasi-static work density, which is depicted in
Figure 1, and is positive on upper half plane and negative on
the lower. Any CCW cycle encircling a domain in the upper
half plane results in positive work output. Likewise, a CW
cycle in the lower half plane results in positive work output as
well. The opposite is true when the flow is reversed. Below
we always consider CCW-cycles.

The dissipation (7b) can be written as the (action) integral

Qdiss =
γl2c
2

ˆ tf

0

‖α̇(t)‖2gdt,

0 1 2 3 4 5
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FIG. 3. Efficiency and work output for the cycle depicted in Figure
2 as a function of rmax.

where {α(t) = (r(t), θ(t)) | t ∈ [0, tf ]} traces ∂D, and
‖α̇‖2g := α̇>gα̇ is the square norm of the velocity with re-
spect to the Riemannian metric

g =

[
cosh(r) 0

0 sinh(r) tanh(r)

]
.

By the Cauchy-Schwartz inequality, one obtains

Qdiss ≥
γl2c
2tf

(ˆ tf

0

‖α̇(t)‖gdt
)2

, (10)

where equality holds when ‖α̇(t)‖g remains constant. The
integral in parentheses is the length of the closed curve
{α(t); t ∈ [0, tf ]} in the metric g [24]. Therefore, the min-
imum dissipation is equal to the square of the Riemannian
length of the curve (modulo a factor γl2c/2tf ) achieved when
‖α̇(t)‖g is constant. From here on, we denote byM the Rie-
mannian manifold of thermodynamic states equipped with the
metric g.

The above results are exemplified in Figures 2 and 3.
Specifically, Figure 2 displays Σ(t)-ellipsoids, relative to the
principal axes of T , for the semicircle cycle (red) of Figure 1.
Then, Figure 3 displays efficiency and work output for the
same cycle, as a function of the radius of the semicircle, with
the period of cycle fixed at tf = 2 × 10−3. Here, work is
computed by subtracting the dissipation for constant veloc-
ity (RHS of (10)) from the quasi-static work (8). Moreover,
in Figure 3 we observe that an optimal value for rmax bal-
ances the two terms, the increase in area against increase in
the perimeter, so as to maximize work output. This observa-
tion exposes an inherent isoperimetric problem that we dis-
cuss next.

Define the (weighted) area of D and its perimeter by

Af =

¨
D
f(r, θ)

√
det(g)dθdr, ` =

˛
∂D
‖α̇(t)‖gdt,

respectively, where

f(r, θ) =
sin(θ) sinh(r)

cosh2(r)
,

is a work-density relative to the Riemannian canonical 2-form√
det(g)dθdr. The area and the perimeter characterize the
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state coordinates (r, )

f(r
,

)

= 0.9/8
= 0.7/8
= 0.5/8
= 0.3/8
= 0.1/8

FIG. 4. Optimal cycles, in polar coordinates (r, θ), that maximize
work output for different values of µ. The cycles are drawn on the
f -density surface and solve an isoperimetric problem.

quasi-static heat Qqs and dissipation Qdiss, as

Qqs =
kB∆T

2
Af , Qdiss =

γl2c
2tf

`2,

and these determine the work outputWout and efficiency η, as

Wout =
kB∆T

2

(
Af − µ`2

)
and η = 1− µ `

2

Af
, (11)

where µ = tc
tf

is a dimensionless constant, with tc = γlc
2

kB∆T

the characteristic time that a Brownian motion with intensity√
γ−1kB∆T needs to traverse a distance lc on average.
We now consider maximizing work output over cycles on

the manifold of thermodynamic states, i.e., to determine

W ∗(µ) :=
kB∆T

2
max
D
{Af − µ`2}, (12)

for different values of µ. Maximization ofAf −µ`2 relates to
the isoperimetric problem

A∗f (`) := max
D
{Af | ` is specified }, (13)

since µ in (12) can be seen as a Lagrange multiplier for (13).
We obtain a first-order condition that characterizes opti-

mal cycles through variational analysis. To this end, we
parametrize the closed curve α(·) tracing ∂D by the ar-
clength s. We let ds and du denote the differentials along
the curve and normal to the curve respectively, so that the
corresponding local coordinates form an orthonormal sys-
tem. Under a perturbation α(s) → α(s) + φ(s)n̂(s)du,
where n̂(s) is the (outward) normal unit vector at s and
φ(·) is an arbitrary scalar function, the perimeter is per-
turbed to

´ `
s=0

(1 + κ(s)φ(s)du)ds, where κ(·) denotes the
geodesic curvature [25]. Thus, the variation of `2 is δ`2 =

2`
´ `
s=0

κ(s)φ(s)dsdu. On the other hand, as the domain D is

enlarged to D ∪ δD,

δAf =

¨
δD
f(r, θ)

√
det(g)dθdr

=

ˆ `

s=0

f(r(s), θ(s))φ(s)dsdu.

Hence, the first-order optimally condition δAf − µδ`2 = 0
gives that the ratio of the geodesic curvature κ over the density
f must be constant and equal to 1/(2`µ) at each point of the
curve that traces ∂D.

Figure 4 displays several such optimal curves that have
been obtained numerically using the first-order optimality
condition. It is observed that as µ becomes small, and thus,
the corresponding penalty on the length decreases, the area
that the optimal cycle encircles increases. On the other hand,
as µ becomes large, the optimal cycle shrinks to the point
p0 = (r0, θ0) = (sinh−1(1), π2 ), beyond which (i.e., for
larger µ) it is impossible to extract positive work. The point
p0 is where f achieves its maximum.

FIG. 5. Maximum area A∗
f (`) after solving the isoperimetric prob-

lem (13), shown with solid blue curve.

The impossibility of extracting positive work for large val-
ues of µ points to an isoperimetric inequality that bounds
the ratio between area and perimeter-squared, for all closed
curves, with

µ∗ := sup
D

{
Af
`2

}
<∞, (14)

being the isoperimetric constant. In order to see this, we nu-
merically evaluated the function A∗f (`) in the isoperimetric
problem (13) and reported the result in Figure 5. It can be seen
from the figure that the ratio Af/`2 is maximized as ` → 0,
which corresponds to vanishingly small cycles around p0 in
Figure 4. For such cycles, the ratio can be analytically eval-
uated using local analysis, Af/`2 ' f(p0)/(4π) = 1/(8π).
Thus we conjecture that µ∗ = 1/(8π). Although the conjec-
ture is not proven, we have established in the Appendix that
µ∗ ≤ 1/4π, and thus, finite.

The isoperimetric inequality (14) has two important impli-
cations. First, for µ ≥ µ∗ (equivalently, tf ≤ tc/µ

∗), it is
impossible to extract positive work. Thus, tc

µ∗ constitutes a
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threshold for the period of work producing cycles. Second,
the efficiency is bounded by

η ≤ 1− µ

µ∗
= 1− 1

µ∗
tc
tf
.

The bound depends on physical parameters and the period,
and turns negative when positive work output is not possible.

The shape of A∗f (`) helps answer a variety of questions on
optimizing protocols. Specifically, the maximal work output
W ∗(µ) in (12) corresponds to the maximal vertical distance
between A∗f (`) and the line µ`2, which takes place where
dA∗f (`)/d`2 = µ. Also, it allows computing the maximal
work for a given efficiency η. Operating points with efficiency
η provide work Wout = ηAf and lie on the line Af = µ

1−η `
2

shown (dash-dotted) in Figure 5. Therefore, the intersection
of this line with the (blue) curve A∗f (`) in Figure 5 gives the
sought optimal operating point for a given efficiency.

In the above, we tacitly assumed that the curve A∗f (`) in-
tersects any line µ`2, for µ < µ∗, and that it eventually stays
below the line, in that lim`→∞Af/`2 = 0. We show that this
is indeed true by proving the bound

Af − µ`2 ≤
1

4µ
(15)

for all µ > 0. This bound is established through a completion
of squares argument in the Appendix. Taking µ = 1

2` in (15),
we have that Af ≤ `, concluding that lim`→∞Af/`2 =
0. Another consequence of (15) is that the power output is
bounded as well, since

power =
Wout

tf
=
kB∆T

2tf
(Af − µ`2) ≤ kB∆T

8tc
.

It is important to note that this bound on power is independent
of the period tf , and only depends on the ratio between the
energy kB∆T and the characteristic time tc.

We conclude with two directions for future work. The
first pertains to the curvature of the thermodynamic mani-
fold. It is known that a stronger isoperimetric inequality
`2 ≥ Af/µ∗−GfA2

f , withGf < 0, holds for spaces with ev-
erywhere negative Gaussian curvature [25], [26, page 1206].
The concave shape of A∗f (`) suggests that a similarly strong
inequality holds forM, though at present, a proof is lacking.

A second direction pertains to the stability of optimal peri-
odic protocolsK(t) that induce a nominal Σ(t) via (4). Stabil-
ity is the property of the state converging to the nominal cycle
after any small perturbation, e.g., Σ(0)→ Σ(0)+∆(0). From
there on, the perturbation from the nominal cycle obeys

γ∆̇(t) = −K(t)∆(t)−∆(t)K(t).

It can be shown that ∆(t) → 0 if the integral of the smallest
eigenvalue of K(t) over a period is positive; this is a standard
argument and relies on showing that, under the eigenvalue
condition, V (t) := Tr[∆(t)2] decreases with time (Lyapunov
function). We numerically verified that the optimal curves
shown in Figure 4 satisfy the stated stability condition. How-
ever, providing a theoretical guarantee for the stability of all
optimal curves remains open and the subject of ongoing work.

Acknowledgments This research was partially supported by
NSF under grants 1807664, 1839441, 1901599, 1942523,
AFOSR under grant FA9550-20-1-0029.

Appendix A: Derivation of Lyapunov equation

By definition, the covariance matrix Σ(t) = E[ξtξ
>
t ], where

ξt = (xt, yt) and E[·] denotes expectation, is the state of
the two-dimensional Brownian particle. The derivation of the
Lyapunov equation hinges upon writing the stochastic differ-
ential equation for the tensor product ξtξ>t . In order to do so,
we write the dynamics for ξt in a compact form using matrix
and vector notation according to

dξt = −γ−1K(t)ξtdt+
√
γ−1TdBt,

where Bt = (Bxt , B
y
t ), and K(t) and T are matrices defined

in the main text. As a result, upon using the Itö rule and formal
Itö identities dB2 = dt, dBtdt = 0, and dt2 = 0,

d(ξtξ
>
t ) = (dξt)ξ

>
t + ξt(dξt)

> + (dξt)(dξt)
>

= −γ−1K(t)ξtξ
>
t dt− γ−1ξtξ

>
t K(t)dt

+
√
γ−1TdBtξ

>
t + ξt(

√
γ−1TdBt)

> + γ−1Tdt.

Taking the expectation, the stochastic terms disappear and the
Lyapunov equation follows.

Appendix B: Bounding µ∗

Isoperimetric inequalities bound the area that can be en-
circled by closed curves of a given length and are inherently
related to the Gaussian curvature of the space. In our case, by
Gauss’ celebrated theorema egregium [25, page 23],[27, page
400], the Gaussian curvature of the Riemannian manifoldM
is

G(r, θ) =
1

cosh3(r)
.

Thus, M is positively curved. However, the curvature de-
creases radially to 0. For such manifolds, where g is rotation-
ally symmetric, the following isoperimetric inequality holds
[25, Page 113],

`2≥ 4π ×A− 2

ˆ A
0

Ḡ(τ)dτ, (B1)

where

A =

¨
D

√
det(g)drdθ,

is the area of D with respect to the canonical 2-form of M,
and Ḡ(τ) is the area integral of the Gaussian curvature over a
circle centered at the origin with area τ . This circle has radius
r(τ) = cosh−1(1 + τ

2π ). Therefore,

Ḡ(τ) =

ˆ r(τ)

0

ˆ 2π

0

sinh(r)

cosh(r)3
dθdr =

πτ

2π + τ
.
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Using this result in (B1),

`2 ≥ 4πA− 4π2

(
A
2π
− log

(
1 +
A
2π

))
≥ 2πA.

SinceAf ≤ max(r,θ)∈D f(r, θ)×A = 1
2A, we conclude that

µ∗ ≤ 1

4π
.

This bound is not tight due to the fact that f is not rotation-
ally symmetric (as opposed to the curvature) and achieves its
maximum at (r0, θ0) = (sinh−1(1), π2 ).

Appendix C: Bounding work output

We have shown that

Qqs =
kB∆T

2

ˆ tf

0

(
cos(θ)ṙ − tanh(r) sin(θ)θ̇

)
dt,

Qdiss =
γl2c
2

ˆ tf

0

(
cosh(r)ṙ2+sinh(r) tanh(r)θ̇2

)
dt.

Thus the work output can be written in terms of their differ-
ence as

Wout =
kB∆T

2

ˆ tf

0

{
cos(θ)ṙ − tanh(r) sin(θ)θ̇

− tc cosh(r)ṙ2−tc sinh(r) tanh(r)θ̇2
}
dt

=
kB∆T

2

ˆ tf

0

{
−
(√

tc cosh(r) r − cos(θ)

2
√
tc cosh(r)

)2

−
(√

sinh(r) tanh(r) θ̇ +
sin(θ)

2
√
tc cosh(r)

)2

+
1

4tc cosh(r)

}
dt

≤kB∆T

8tc

ˆ tf

0

1

cosh(r)
dt ≤ kB∆T

8µ
,

where in the first step we have completed the squares, and for
the last inequality we used the fact that cosh(r) ≥ 1.
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