
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Fluctuation theorem convergence in a viscoelastic medium
demonstrated experimentally using a dusty plasma

Dong Huang, Shaoyu Lu, Xia-qing Shi, J. Goree, and Yan Feng
Phys. Rev. E 104, 035207 — Published 23 September 2021

DOI: 10.1103/PhysRevE.104.035207

https://dx.doi.org/10.1103/PhysRevE.104.035207


Fluctuation-theorem convergence in a viscoelastic medium demonstrated

experimentally using a dusty plasma

Dong Huang1, Shaoyu Lu1, Xia-qing Shi1, J. Goree2, Yan Feng1∗
1 Center for Soft Condensed Matter Physics and Interdisciplinary Research,

School of Physical Science and Technology,

Soochow University, Suzhou 215006, China
2 Department of Physics and Astronomy,

The University of Iowa, Iowa City, Iowa 52242, USA

∗ E-mail: fengyan@suda.edu.cn

(Dated: September 9, 2021)

The convergence of the steady-state fluctuation theorem (SSFT) is investigated in a shear-flow
experiment performed in a dusty plasma. This medium has a viscoelastic property characterized by
the Maxwell relaxation time τM . Using measurements of the time series of the entropy production
rate, for subsystems of various sizes, it is discovered that the SSFT convergence time decreases
with the increasing system size until it eventually reaches a minimum value of τM , no matter the
size of the subsystem. This result indicates that the convergence of the SSFT is limited by the
energy-storage property of the viscoelastic medium.

PACS numbers:

I. INTRODUCTION

Unlike in the thermodynamic limit, the entropy pro-
duction rate for a small system is a highly fluctuating
quantity, which may even have negative transients. The
probability of these events of negative entropy production
are expressed by fluctuation theorems [1–9]. The steady-
state fluctuation theorem (SSFT) is typically expressed
as the convergence of the ratio between the probability
of positive and negative entropy production rates, in the
long time limit:

1

τ
ln

[

P (στ = +C)

P (στ = −C)

]

= C as τ → ∞, (1)

where στ is the mean entropy-production rate over the
time duration τ in the steady state, and P (στ = C) is
the probability of στ equals the specified value of C.

This fluctuation theorem is useful for small systems,
where the events with negative entropy production can be
more easily detected. On the other hand, as the studied
system size increases, the negative fluctuations become
less frequent, and the fluctuation theorem converges to
the second law of thermodynamics [10].

Various experimental systems have been used for fluc-
tuation experiments. These include colloids [11, 12],
quantum heat conduction [13], turbulence [10, 14], and
nonequilibrium bath systems [15]. In our literature
search, we have found few previous studies of fluctua-
tion theorems in viscoelastic materials like [16], however,
none of them investigated in particular the convergence
time, as we do here.

The viscoelastic medium that we use is a strongly cou-
pled dusty plasma, which is a four-component mixture of
highly charged microspheres (dust), free electrons, ions,
and neutral gas [17–33]. Due to their high charges and

the related strong Coulomb interaction, these dust parti-
cles are strongly coupled [25]. When it flows, the collec-
tion of dust particles exhibits viscoelasticity [34–38]. As
demonstrated in [39], the viscoelastic property of dusty
plasmas can be described reasonably well by the simple
Maxwell model, characterized by the Maxwell relaxation
time τM , as described in Appendix A. Like other strongly
coupled systems, the viscoelasticity of dusty plasmas is
the combination of the liquid-like viscous dissipation and
the solid-like elasticity. For a shorter time scale <τM , the
solid-like energy-storing elasticity dominates [39]. For 2D
dusty plasmas [39], the value of τM is typically 3 to 5
times the inverse dusty plasma frequency ωpd

−1.

Experiments with dusty plasmas have the advantage
that they allow tracking the motion of individual parti-
cles, so that one can calculate the instantaneous shear
stress Pxy(t) and entropy production rate σ(t), which
are needed in the SSFT. This was exploited recently by
Wong et al. [40], who analyzed small subsystems within
a sheared flow in a liquid-like dusty plasma. In [40], it
was confirmed that in a dusty plasma there is a conver-
gence time beyond which Eq. (1) is satisfied. However,
the underlying physics that governs the value of this con-
vergence time is still largely unknown. Moreover, the de-
pendence of the convergence on the size of the subsystem
also requires studies. These are the questions that we in-
vestigate in this paper, using data from an experiment
and supporting simulations.

The rest of this paper is organized as follows. In Sec. II,
we introduce our dusty plasma experiment to investigate
the SSFT, as well as the corresponding computer simu-
lation methods. In Sec. III, we calculate the time series
of the entropy production rate for various subsystems in
our experiment. We find that the distribution of the aver-
aged entropy production rate for various subsystems can
be described as the Gaussian function. Then, based on
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the Gaussian distribution entropy production rate, the
asymptotic trend of our experimental data to the SSFT
is derived analytically. As a result, we obtain the depen-
dence of the convergence time of the SSFT on the sub-
system size, and find that the Maxwell relaxation time of
viscoelasticity is the lower limit of the convergence time.
Our computer simulation results further confirm these
findings. Finally, a summary of our findings is given in
Sec. IV.

II. EXPERIMENT AND SIMULATION

The experiment for this SSFT study was performed
in the setup similar to [28]. Using Argon gas at 15.5
mTorr, capacitively coupled rf power was applied to gen-
erate a plasma. Introducing >∼ 16000 polymer micro-
spheres of diameter 8.1µm diameter, they settled into a
single horizontal layer, where they were levitated in a
sheath above the lower electrode. A top-view video cam-
era imaged ≈ 4400 dust particles in a field of view of
(29.05× 21.78) mm2, at 55 frames per second. To gener-
ate a pair of counter-propagating dust flows, there were
two oppositely directed laser beams, each with 0.95 W
power. These were shaped into stripes of width 0.2 mm
using scanning mirrors rastered in the x direction at 200
Hz, as in [28]. These manipulation laser beams drove
a shear flow, leading to the shear-induced melting from
the solid lattice, with a much more anisotropic feature in
kinetic temperature than [40]. After the flow reached a
steady state, a 12 s movie was recorded and analyzed to
determine the coordinates and velocities of dust particles
in each frame. Note, in our dusty plasma experiment, the
strength of the vertical confinement is generally two to
three orders of magnitude larger than the in-plane con-
finement [41, 42], so that as compared with the in-plane
motion, the vertical displacement of dust particles can be
ignored.
Parameters for the collection of dust particles were as

follows. The spacing of particles was characterized by the
Wigner-Seitz radius [22] a = 0.21mm. As dust particles
moved, they experienced gas damping at the rate [41]
νf = 2.7 s−1. By analyzing wave spectra [43, 44] for
the thermal motion of the initial highly ordered lattice,
before applying the manipulation lasers [28], we deter-
mined the charge on each dust particle Q = −8100e, the
screening parameter κ = a/λD = 0.47, and the nominal
2D dusty plasma frequency ωpd = 86 s−1, which we will
use to normalize time scales.
The flow velocity of the dust particles was along the x

axis, while the velocity had a gradient in the y direction,
as shown by the time-averaged profile Vx in Fig. 1. To
calculate Vx(y), we converted the velocity data for in-
dividual particles into data for a fluid flow by dividing
the field-of-view into 103 bins (each with the width of a)
and using the cloud-in-cell algorithm [30]. In the inset of
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FIG. 1: (Color online). Velocity profile in the dusty
plasma experiment. Using laser manipulation, two counter-
propagating dust flows were generated, as shown in the inset.
The experiment was symmetric in the x direction, so that
the flow velocity varied only with y. We mainly analyzed
the central region, between the two dashed lines in the inset,
where the the velocity profile is nearly linear, as shown in the
main panel. The slope of a linear fit yields the shear rate γ,
which is used to calculate the entropy production rate. In
the SSFT analysis, subsystems of different sizes were chosen;
these spanned different ranges in the x direction, but always
the same range of y from 47 a to 52 a.
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FIG. 2: (Color online). Superposition of particle positions
for the time duration of 0.25 second in our experiment. The
rectangle around the central portion corresponds to the region
of one typical subsystem with N = 63 dust particles in our
data analysis reported.

Fig. 1, the two prominent peaks in the positive and neg-
ative directions correspond to two counter-propagating
flows in the experiment, as in [28, 45]. To illustrate
the motion of dust particles in our experiment, we also
present the superposition of particles positions for the
time duration of 0.25 second in our analyzed movie, as
shown in Fig. 2. Clearly, two counter-propagating dust
flows can be observed in Fig. 2, where y/a ≈ 40 and 60,
respectively. In our data analysis, we mainly focus on
the central region of the laminar flow, where the drift
velocity is nearly linear, as the straight-line fit shown in
Fig. 1, with a velocity gradient γ. To confirm the steady
conditions in our experiment, we divide the movie into
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four portions to calculate the drift velocity profiles, so
that the standard deviation of the velocity for each bin
can be determined, as the error bar shown in Fig. 1.

To further verify our findings from the experiment, we
also perform Langevin dynamical simulations to mimic
our shear-induced melting dusty plasma experiment. In
our simulations, we use the binary Yukawa repulsion
with N = 4096 particles in a 2D plane, with the pe-
riodic boundary conditions. All simulation parameters
are specified to be the same as our experiment condi-
tions. For example, we choose the screening parameter
as κ = 0.47, the initial coupling parameter as Γ = 800,
and the frictional gas damping rate as νf = 0.031 ωpd.
In fact, besides 4096 particles, we also perform a few test
runs with 16384 particles to make sure all results pre-
sented are not affected.

To mimic the strong dust particle flows generated by
laser manipulation in our experiment, we introduce two
external forces in two locations in our simulations. In
our experiment, the strong dust particle flow was gener-
ated by scanning one powerful laser beam with the width
of ≈ a in the x direction at 200 Hz, much higher than
the nominal 2D dusty plasma frequency. Thus, in our
simulations, the force to drive the particle flow is as-
sumed to be localized in the y direction, with the width
of ≈ a, and also uniform in the x direction. To sat-
isfy these requirements, we choose these two external

forces as F1 = A exp
[

− (y − 11.08a)2 /0.25a2
]

maω2
pdx

and F2 = −A exp
[

− (y + 11.08a)
2
/0.25a2

]

maω2
pdx in

the ±x directions, respectively. The force amplitude A
can be adjusted in simulations, so that one may calcu-
late the resulting flow velocity profile to compare with the
experimental result. For our simulation results reported
here, we choose A = 0.126 because the resulting drift
velocity in the central region is almost the same as that
in our experiment, as shown in Fig. 3. Other simulation
details are the same as [46].
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FIG. 3: (Color online). Drift velocity profiles from our ex-
periment and simulations. Using our specified force in our
simulations, the resulting drift velocity in the central region
is almost identical to our experiment results.

III. RESULTS AND DISCUSSION

The time series Pxy(t) of the shear stress was calcu-
lated [1, 47, 48] with an input of data for individual par-
ticle positions and velocities from our experiment. In the
central melted region, the shear stress is calculated using

Pxy =

N
∑

i=1



m(vix − Vx,i)viy −
1

2

N
∑

j 6=i

xijyij
rij

∂φ (rij)

∂rij



 ,

(2)
where the drift motion Vx,i is removed, as in [40,
46], φ(rij) is the binary interparticle Yukawa repul-
sion between the particles i and j, i.e., φ(rij) =
Q2 exp(−rij/λD)/4πǫ0rij . Here, we determine the drift
velocity Vx,i for the particle i from the linear fit of the
drift velocity Vx gradient of γ = 0.00789 ωpd in Fig. 1,
and the corresponding y coordinate of the particle i. For
the second term in Eq. (2) here, the interparticle force
may include the pairs of the particles inside i and out-
side j of the studied subsystem. Thus, we choose a cutoff
length of rij ≤ 10 a for the particle pairs in our data anal-
ysis, to exclude the effects of all particles outside the field
of view in our experiment, similar to [49].
Our obtained time series Pxy(t) of the shear stress was

used to obtain three quantities. Firstly, it was used to ob-
tain the entropy production rate σ(t) = −Pxy(t)γ/kBT .
Secondly, the Maxwell relaxation time τM was obtained
from Cs(t), the autocorrelation function of Pxy(t). In
particular, τM was identified as the time when Cs(t)
decays to 1/e of its initial value [48, 50]. Thirdly, we
used Cs(t) to obtain the the temperature T of the dust
particles, without undue error arising from the finite-
ness of the subsystem and time duration, using [46]
kBT = γ

(∫∞

0
Cs(t)dt

)

/Pxy.
For all three of these purposes, calculations were per-

formed within subsystems of various small spatial sizes.
Since the flow velocity varied with y, but not with x,
we chose the subsystems to have various ranges of x but
always the same range of y from 47 a to 52 a. In our
subsystems, the time-averaged numbers of dust particles
are 6, 13, 19, 25, 32, 38, 44, 51, 57, and 63, respectively,
for each size of subsystem, we sample ≥ 4 sets of data
by varying the location of the x range, so that the uncer-
tainties of these analyzed quantities can be determined,
as the error bars shown in latter figures. The rectan-
gle drawn in Fig. 2 indicates the corresponding region
of one typical subsystem with N = 63 dust particles in
our data analysis. In fact, the number of dust particles
inside this fixed-region subsystem fluctuates around 63
briefly, with the 48% observation time of 63 particles or
the 86% observation time of 61 to 65 particles, mainly
due to the density fluctuation and the non-uniformity of
the shear-induced melting.
As an example, the time series of our calculated en-

tropy production rate per unit area σ(t)/A is presented
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in Fig. 4(a), for the subsystem with N = 32 particles.
Clearly, the obtained σ(t) fluctuates around a positive
average value, as expected for the second law of thermo-
dynamics, but sometimes it fluctuates negatively as one
would expect for the SSFT.

twpd

P
( 

  
  
  
  
  
  
  
  
  
  
  
  
)

(s
  
/A

)/
( 

  
  
  
  
  
)

w
p

d
a

-2
t

-0.005 0.000 0.005 -0.01 0.00 0.01

6

19

32

44

51

63
N=

(b) (c)

1.57

4.71

7.86

11.00

14.14

17.28
pdtw =

(s  /A)/(           )wpda-2
t

0

1

2

3

4

5

6

0 200 400 600 800 1000

-0.01

0.00

0.01

0.02
(a)

(s
(

)/
A

)/
( 

  
  
  
  
  
)

t
w

p
d
a

-2 N=32

1.57N=32 pdtw =

(s  /A)/(           )wpda-2
t

FIG. 4: (Color online). Time series of the entropy produc-
tion rate per unit area σ(t)/A for the subsystem of N = 32
dust particles (a), and the corresponding distribution of the
entropy production rate στ/A averaged for different time du-
rations (b), as well as the distribution of στ/A of different
subsystems for the same time duration of tωpd = 1.57 (c).
For all panels, the dotted and dashed lines correspond to the
averaged and zero entropy production rates, respectively. In
(b) and (c), we find that our obtained distributions of στ/A
can fit to a Gaussian distribution quite well. When the time
duration increases in (b), or the subsystem size increases in
(c), the negative entropy production rate always occurs less
frequently. In (b) and (c), the center of the Gaussian fit is
almost unchanged, suggesting that the averaged entropy pro-
duction rate is an unchanged positive value due to viscous
heating. Note, for clarity we lift different distributions up-
ward in steps of unity, and magnify the vertical probability
10 times in (b) and (c).

Besides the time series of σ(t), the averaged en-
tropy production rate within the time duration τ , στ =
(
∫ τ

0 σ(t)dt)/τ , is calculated to characterize its behaviors
within different time intervals. In Fig. 4(b) we present
distributions of στ for different time intervals, all for a
fixed subsystem size of N = 32. Similarly, for a fixed
time interval of τωpd = 1.57, we also prepared distribu-
tions of στ for various sizes of subsystems in Fig. 4(c).
We find that these distributions of στ/A are well fit by a
Gaussian distribution

P (στ ) = exp[−(στ − σ̄)2/(2σ2
d,τ)]/(

√
2πσd,τ ), (3)

as curves shown in Figs. 4(b) and (c). In Eq. (3), σ2
d,τ is

the variance of στ , and σ̄ is the average of στ . Clearly,
as the time duration increases in Fig. 4(b), or as the sub-
system size increases in Fig. 4(c), σ2

d,τ becomes smaller,

i.e., the Gaussian distribution becomes narrower, while
σ̄ is almost unchanged.
The results in Figs. 4(b) and (c) show that the exten-

sion of the time duration and the expansion of the system
size both suppress the στ fluctuations, and the distribu-
tion of στ becomes narrower. As a result, the probability
of the negative στ/A events is reduced, indicating the
second law of thermodynamics is obeyed more. The fit-
ting result of σ̄ just corresponds to the viscous heating
term −ηγ2/kBT [28, 48, 51], where η is the viscosity, so
that for the same subsystem of N = 32, the peak loca-
tion of the Gaussian fitting is unchanged in Fig. 4(b).
In Fig. 4(c), the peak location from fitting varies briefly,
probably due to the non-uniformity in the x direction in
our experiment, and the viscous heating effect fluctuates
for various sizes of subsystems.
According to the SSFT, as the time duration in-

creases, the left-hand side (LHS) of Eq. (1) gradu-
ally approaches the RHS of Eq. (1), C. For conve-
nience, we define the left side of Eq. (1) as f(στ ), i.e.,
f(στ ) = (ln[P (στ )/P (−στ )])/τ , so that the SSFT is just
limτ→∞ f(στ ) = στ .
As shown in Fig. 5(a), the results of f(στ ) for different

time durations are plotted as the function of στ , calcu-
lated from Fig. 4(a). For each time duration, the f(στ )
results show the linear relationship with στ , as the linear
fit shown with the straight lines. This linear character-
istic of f(στ ) is the key evidence of the SSFT [7]. More
importantly, as the time duration increases, the linear
fit gradually converges to the dashed line of the RHS of
Eq. (1), indicating that Eq. (1) of the SSFT is satisfied
then.
To quantify this asymptotic behavior of the linear fit

in Fig. 5(a), we define this discrepancy D as

D = slope(f(στ ))− slope(στ ), (4)

= (2
σ̄

σ2
d,ττ

)− 1, (5)

which is the discrepancy of the slopes between the solid
and dashed lines in Fig. 5(a), for various time durations.
Here, Eq. (5) is our simplified version of Eq. (4) derived
from the combination of Eqs. (1) and (3), described in
Appendix B, valid for any systems with the Gaussian
distribution entropy production rates. The calculated
results of D from the data in Fig. 5(a) are presented in
Fig. 5(b), with two sets of data corresponding to Eqs. (4)
and (5), respectively. Clearly, as the time duration in-
creases, the discrepancy D diminishes monotonically to
zero, as predicted by the SSFT. These two sets of data
in Fig. 5(b) are almost the same, further suggesting that
our simplified Eq. (5) from the Gaussian distribution can
be used with our experimental data analysis, as we will
use later. Besides the discrepancy D data for the sub-
system of N = 32 in Fig. 5(b), we also calculate the dis-
crepancy of various time durations for all other studied
subsystems, as in Fig. 5(c).
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After our further derivation in Appendix C, we find
that the key term in Eq. (5) can be expressed as

σ2
d,τ τ = I1 − I2. (6)

Here, I1 and I2 are two time integrals, suggesting that
σd,ττ exhibits the long-time and short-time convergence
behaviors, respectively. The convergence of Eq. (5) is
mainly dominated by the behavior of the long-time in-
tegral of I1 from Appendix C, so that we mainly focus
on the determination of the convergence time scale of I1
from our calculated D. Since the time scale of I1 is much
longer than that of I2, the obtained discrepancy D data
at longer times are almost completely from I1, like those
in Fig. 5(b). Thus, for each subsystem, we always ignore
the first four data points of D, marked as the filled sym-
bols in Fig. 5(c), and only focus on the later data points,
marked as the open symbols.

We obtain the convergence time τC using these dis-
crepancy data. For each subsystem, we fit the obtained
discrepancy D to an exponential, starting from the fifth
data point using the expression of D0 exp (−τ/τC). This
fit, as the dashed line shown in Fig. 5(c), has two free
parameters: D0 and τC . This fit is good, indicating that
the long-time convergence trend of the discrepancy is ex-
ponential, no matter the system size varies, consistent
with [40]. The result of this fitting that is of greatest
interest to us is the convergence time, τC . The discrep-
ancy D data and the fitting result from Fig. 5(c) are also
replotted in Fig. 5(d) in linear coordinates, to show their
asymptotic feature.

The Maxwell relaxation time was also determined for
various subsystem sizes. The Maxwell relaxation time
τM , shown as square symbols in Fig. 6, was obtained as
the 1/e decay time of Cs(t), the autocorrelation function
of the fluctuations of the shear stress Pxy [48, 50], as de-
scribed in detail in Appendix A. Generally, the Maxwell
relaxation time here is in the range of 4 < τMωpd < 4.5.

As the major result of this paper, we find that the
SSFT convergence time τC decreases with the increas-
ing system size only until it reaches a minimum value,
which is the Maxwell relaxation time τM . This result
is clearly presented in Fig. 6, where the filled circular
symbols of the convergence times τC are obtained from
fitting in Fig. 5(c). Clearly, as the subsystem size in-
creases, this convergence time τC decreases rapidly at
first, but this decrease ceases at a minimum convergence
time and thereafter becomes a constant. That minimum
convergence time is τCωpd ≈ 4, which nearly matches the
Maxwell relaxation time.

We provide our interpretation of the convergence time
of SSFT in our experiment, which has its minimum of the
Maxwell relaxation time. This result can be regarded as
a consequence of the elastic properties of a viscoelastic
substance. It seems that the SSFT convergence time τC is
always limited, which means that Eq. (1) is not satisfied

0 2 4 6

N=
6
13
19
25
32
38
44
51
57
63

exp(- )t/tC

Eq. (4)
Eq. (5)

FIG. 5: (Color online). Obtaining the SSFT convergence
time τC . Variation trends of the LHS of Eq. (1) for dif-
ferent τ values are shown in (a), and discrepancies between
the two sides of Eq. (1) are shown in (b). In (a), the sym-

bols are 1
τ
ln

[

P (στ=+C)
P (στ=−C)

]

, the LHS of Eq. (1), calculated from

Fig. 3(a), exhibiting the linear feature. Solid lines in (a) are
the linear fit of the symbols, while the dashed line corresponds
to the RHS of Eq. (1). As the time duration increases, clearly
the linear fit converges to the dashed line, following the SSFT.
In (b), we use Eq. (4) to quantify the discrepancy D of the
slopes between the solid and dashed lines in (a), for various
time durations. For the Gaussian distribution of στ as for
our system in Fig. 3, Eq. (4) can be simplified to Eq. (5), as
verified from the data points overlapping in (b). In (c) and
(d), with logarithmic and linear coordinates respectively, we
use the values from Eq. (5) to represent the discrepancy D
of the two sides of Eq. (1) for various subsystem sizes. From
Appendix C, the decay of Eq. (5) for the Gaussian distribu-
tion of στ contains two time scales, and we mainly focus on
the longer one, so that we ignore the first four data points
for each set, marked as filled symbols. We find that all open
symbols in (c), i.e., the discrepancy for longer times, can fit
D0 exp (−τ/τC) well. The result of this analysis is the fit
parameter τC , for the convergence time of the SSFT.

when the time scale is shorter than this limit, no mat-
ter how large the studied system. For the sheared flow
systems where the entropy production rate mainly arises
from viscous heating, as studied here, this limit of τC
equals the Maxwell relaxation time τM . For a viscoelas-
tic substance, the energy-storing elastic effects dominate
for the time scales shorter than τM , while at the longer
time scales the dissipative viscous property is dominant.
The entropy production rate studied here arises only from
the dissipative processes.
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FIG. 6: (Color online). Convergence times of SSFT τC
for various subsystems, compared to the Maxwell relaxation
times τM . We discover that, as the analyzed system size in-
creases, the convergence time of SSFT τC rapidly decreases,
but this decrease ceases when τC reaches a minimum value
that nearly matches the Maxwell relaxation time τM . This
is our chief result, which we attribute to the elastic property
that dominates our viscoelastic substance at short time scales.

To further verify the experimental result that the con-
vergence time trends toward a minimum value of the
Maxwell relaxation time, we also perform the same cal-
culations using our Langevin simulation data. The ad-
vantage of our simulation is that the much longer time
duration provides much better statistics than in the ex-
periment, and also allows us to vary the subsystem size
over a wider range. The calculation procedure of the time
series of the shear stress and the latter physical quantities
in our simulations is exactly the same as our experiment
data analysis. We also confirm that the distribution of
the entropy production rate per unit area στ/A can also
be described as the Gaussian, the same as the experi-
ment result. From Fig. 6, clearly, the obtained results
of τC and τM from our simulation follow the same varia-
tion trend as those from our experiment. Especially for
the larger system size, τC diminishes to a minimum value
of ≈ 4ω−1

pd which nearly matches the Maxwell relaxation
time τM , as in the experiment. In short, all of our ex-
perimental findings described above are further verified
from our simulations.

IV. SUMMARY

In summary, we studied the SSFT using the entropy
production rate in our sheared flow dusty plasma exper-
iment with various subsystem sizes containing 6 to 63
dust particles. Using the observed particle positions and
velocities in our experiment, we calculate the time series
of the entropy production rate for various subsystems.
For various subsystems, it is found that the distribution
of the averaged entropy production rate can be fit to the

Gaussian function quite well. Using the Gaussian distri-
bution entropy production rate, we derive the analytical
expression of the the asymptotic trend of our experimen-
tal data to the SSFT, Eqs. (4-5). Based on these obtained
data, we find that, as the subsystem size increases gradu-
ally, the SSFT convergence times τC diminishes gradually
until reaching its minimum, which is just the Maxwell re-
laxation time τM . Using our Langevin simulations, these
findings are further verified by a wider range of the sub-
system size. We interpret the observed minimum con-
vergence time as a consequence of the elastic properties
of a viscoelastic substance. For other experiments, such
as the heat conduction or convection dominated systems,
the corresponding SSFT convergence time may be quite
different from our current result, which can be studied in
the future.
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Plan, startup funds from Soochow University, and the
Priority Academic Program Development (PAPD) of
Jiangsu Higher Education Institutions. The experiment
is performed in Iowa, supported by the National Science
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APPENDIX A: THE MAXWELL MODEL

It is widely known that most materials in nature are
viscoelastic [28, 52], which means that they exhibit both
the liquidlike viscous and the solidlike elastic proper-
ties to the mechanical disturbance. In the viscoelastic-
ity theory, to characterize the viscoelastic property, the
frequency-dependent viscosity η(ω) [30], i.e., the viscous
and elastic properties varying with the frequency (or dif-
ferent time scales), is obtained using the Laplace-Fourier
transformation of

η(ω) =
1

AkBT

∫ ∞

0

〈 Pxy(t) Pxy(0)〉 eiωtdt. (A1)

Here, Pxy is the off-diagonal element of the stress tensor,
kBT is the kinetic temperature, and A is the area of the
analyzed region for 2D systems. In general, η(ω) is a
complex function, which is

η(ω) = η′(ω)− iη′′(ω), (A2)

with the real part η′(ω) corresponding to the viscous
property, and the imaginary part η′′(ω) corresponding to
the elastic property. Based on the viscoelastic approxi-
mation [48], η(ω) can be expressed as

η(ω) =
G∞

−iω + 1/τM
, (A3)

where G∞ is an instantaneous (high-frequency) modulus
of rigidity, and the τM is the Maxwell relaxation time. As
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a result, for the shorter time scales of ω−1 ≪ τM , the re-
sponse of the material is dominated by the solidlike elas-
tic property, corresponding to the energy storage, while
for the longer time scales of ω−1 ≫ τM , the response of
the material is dominated by the liquidlike viscous prop-
erty, corresponding to the energy dissipation. The real
and imaginary parts of Eq. (A3) can also be expressed
as [28]

η′(ω)/η0 =
1

1 + τ2Mω2
(A4)

and

η′′(ω)/η0 =
τMω

1 + τ2Mω2
. (A5)

The Maxwell relaxation time refers to the time scale
when the real and imaginary parts of the frequency-
dependence η(ω) are the same, i.e., ω=1/ τM , as in [39].
Typically, to determine the Maxwell relaxation time τM ,
one can calculate the autocorrelation function of stress
fluctuation 〈Pxy(t)Pxy(0)〉, and then determine the time
when this autocorrelation function falls to 1/e of its ini-
tial value [48, 50], as we do in the main text.

APPENDIX B: DERIVATION OF EQ. (5)

Here, we present our detailed derivation of the dis-
crepancy D expression of Eq. (5), from the combination
of Eq. (4) and the Gaussian distribution of στ . From
Fig. 4, we find that the distribution of the entropy pro-
duction rate στ in our experiment can be described as the
Gaussian distribution, Eq. (3), quite well. In Eq. (3), σ̄ is
the average of the time series of σ(t) over the whole time
duration, and σ2

d,τ is the variance for στ . Thus, from the
Gaussian distribution function, we obtain

P (στ )

P (−στ )
= exp

(

2
στ σ̄

σ2
d,τ

)

. (B1)

On the other hand, the steady-state fluctuation theorem
(SSFT) predicts that the ratio of the relative probabilities
as

1

τ
ln

[

P (στ )

P (−στ )

]

= στ as τ → ∞, (B2)

which is just Eq. (1). After comparing Eq. (B1) with
Eq. (B2) here, we obtain

1

τ
ln

[

P (στ )

P (−στ )

]

= 2
σ̄

σ2
d,ττ

στ , (B3)

which is the SSFT form for the Gaussian distribution of
στ .

For convenience, we define the LHS of Eq. (B3) here as
f(στ ), so that the SSFT is expressed as limτ→∞ f(στ ) =
στ . As a result, the discrepancy D can be simplified as

D = slope(f(στ ))− slope(στ ) = (2
σ̄

σ2
d,ττ

)− 1, (B4)

which is just Eq. (5). This expression indicates that,
for the Gaussian distribution of στ , this discrepancy D
can be analytically expressed as the function of the time
duration τ , as well as the variance and the mean value of
στ .

APPENDIX C: DERIVATION OF EQ. (6)

Here, we present our detailed derivation of Eq. (6). In
Eq. (5), or Eq. (B4) here, the mean value of στ for our
observed dust flow is a constant value, corresponding to
the dotted line in Fig. 4(a). As a result, the variation
of D purely depends on the change of σ2

d,τ τ as the time
goes. We know that the variance of στ is defined as

σ2
d,τ =

〈

(στ − σ̄)
2
〉

=

〈

1

τ2

(
∫ τ

0

(σ(s1)− σ̄) ds1

)(
∫ τ

0

(σ(s2)− σ̄) ds2

)〉

=
1

τ2

∫ τ

0

ds1

∫ τ

0

〈(σ(s1)− σ̄) (σ(s2)− σ̄)〉 ds2

=
1

τ2

∫∫

S

〈(σ (s1)− σ̄) (σ (s2)− σ̄)〉 ds1ds2.
(C1)

Here, the integral region S is in the squared region of
0 ≤ s1 ≤ τ and 0 ≤ s2 ≤ τ . For convenience, we define
J(t) = σ(t)− σ̄ as the fluctuation of σ. Then, we change
the variables as x = s1 − s2 and y = s1 + s2, following
the integral transformation rule [53]. Thus, Eq. (C1)
above can be rewritten as

σ2
d,τ =

1

τ2

∫∫

S

〈(J(s1))(J(s2))〉 ds1ds2

=
1

τ2

∫∫

SD

〈(

J

(

x+ y

2

))(

J

(

y − x

2

))〉

∣

∣

∣

∣

∂ (s1, s2)

∂(x, y)

∣

∣

∣

∣

dxdy,

(C2)

where
∣

∣

∣

∂(s1,s2)
∂(x,y)

∣

∣

∣
is the Jacobi determinant. In our integral

transformation,
∣

∣

∣

∂(s1,s2)
∂(x,y)

∣

∣

∣
=

∣

∣

∣

∣

0.5 0.5
−0.5 0.5

∣

∣

∣

∣

= 0.5 with the

integral region, which satisfies the two conditions of 0 ≤
x + y ≤ 2τ and 0 ≤ y − x ≤ 2τ simultaneously, as the
square with the four corners of ABCD shown in Fig. C1.

To simplify the derivation later, we divide this square
of ABCD to two triangles of ∆ADC and ∆ABC as
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FIG. C1: (Color online). Sketch of the integral region in the
x−y coordinate system for Eq. (C3). Using changing variables
of x = s1 − s2, y = s1 + s2 in Eq. (C3), the integral region
of 0 ≤ s1 ≤ τ and 0 ≤ s2 ≤ τ in the s1 − s2 coordinate is
changed to 0 ≤ x + y ≤ 2τ and 0 ≤ y − x ≤ 2τ in the the
x−y coordinate, as the square with the four corners of ABCD
shown here. To simplify the later derivation, we divide this
square to two triangles of ∆ABC and ∆ADC next.

shown in Fig. C1, so that

σ2
d,τ =

1

2τ2

∫∫

∆ADC

〈(

J

(

x+ y

2

))(

J

(

y − x

2

))〉

dxdy

+
1

2τ2

∫∫

∆ABC

〈(

J

(

x+ y

2

))(

J

(

y − x

2

))〉

dxdy.

(C3)
For the integral region of ∆ADC, we can convert the
integral to

∫∫

∆ADC

〈(

J

(

x+ y

2

))(

J

(

y − x

2

))〉

dxdy

=

∫ τ

0

dy

∫ y

−y

〈(

J

(

x+ y

2

))(

J

(

y − x

2

))〉

dx.

(C4)
For the integral region of ∆ABC, we can convert the

integral to
∫∫

∆ABC

〈(

J

(

x+ y

2

))(

J

(

y − x

2

))〉

dxdy

=

∫ 2τ

τ

dy

∫ 2τ−y

y−2τ

〈(

J

(

x+ y

2

))(

J

(

y − x

2

))〉

dx

=

∫ 0

τ

d(−z)

∫ z

−z

〈(

J

(

x+ 2τ − z

2

))(

J

(

2τ − z − x

2

))〉

dx

=

∫ τ

0

dz

∫ z

−z

〈(

J

(

x+ 2τ − z

2

))(

J

(

2τ − z − x

2

))〉

dx

=

∫ τ

0

dz

∫ z

−z

〈(

J

(

x− z

2

))(

J

(−z − x

2

))〉

dx

=

∫ τ

0

dz

∫ z

−z

〈(

J

(

x+ z

2

))(

J

(

z − x

2

))〉

dx.

(C5)
Here, we use the variable z to replace the vari-
able y as z = 2τ − y. We also simplify
the expressions of

〈(

J
(

x+2τ−z
2

)) (

J
(

2τ−z−x
2

))〉

=
〈(

J
(

x−z
2

)) (

J
(

−z−x
2

))〉

and
〈(

J
(

x−z
2

)) (

J
(

−z−x
2

))〉

=
〈(

J
(

x+z
2

)) (

J
(

z−x
2

))〉

, using the translation invariance
of the correlation function [54], because only the differ-
ence between the two variables of the correlation func-
tion (which both are x here) determines the final inte-
gral. Thus, the integral of Eq. (C5) is just the same as
Eq. (C4). As a result, we get

σ2
d,τ =

1

τ2

∫ τ

0

dy

∫ y

−y

〈(

J

(

x+ y

2

))(

J

(

y − x

2

))〉

dx

=
2

τ2

∫ τ

0

dy

∫ y

0

〈(J(x))(J(0))〉 dx,
(C6)

also from the translation invariance of the correlation
function [54] in the last step. Finally, we swap the in-
tegral order of variables of Eq. (C6) from Fig. C2 to get

τσ2
d,τ =

2

τ

∫ τ

0

dy

∫ y

0

〈(J(x))(J(0))〉 dx

=
2

τ

∫ τ

0

dx

∫ τ

x

〈(J(x))(J(0))〉 dy

=
2

τ

∫ τ

0

〈(J(x))(J(0))〉(τ − x)dx

= 2

∫ τ

0

〈(J(x))(J(0))〉dx

− 2

τ

∫ τ

0

〈(J(x))(J(0))〉xdx

= I1 − I2,

(C7)

where

I1 = 2

∫ τ

0

〈(J(x))(J(0))〉dx, (C8)

and

I2 =
2

τ

∫ τ

0

〈(J(x))(J(0))〉xdx. (C9)
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t

y

y=x

o x

FIG. C2: (Color online). Sketch of the integral region for
Eq. (C7), the shaded region in the x − y coordinate system.
In Eq. (C7), we swap the integral order of variables, so that
the integral is simplified as I1+I2.

We know that, as τ increases, 〈(J(x))(J(0))〉 in Eq. (C8)
is an autocorrelation function of J(x), indicating that I1
increases gradually and approaches to a constant value
of the total integral of this autocorrelation function when
τ increases to infinity. However, since there is a denomi-
nator of τ in Eq. (C9), as τ increases, I2 decays quickly
to 0. From Eq. (C7), the value of τσ2

d,τ is mainly de-
termined by the value of I1 as τ increases. Thus, when
the value τ is larger, as the time range for our data fit-
ting in Fig. 5(c) increases, the value of τσ2

d,τ is almost
completely determined by I1.
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