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Three-dimensional (3D) simulations of electron beams propagating in high energy density (HED)
plasmas using the quasi-static Particle-in-Cell (PIC) code QuickPIC demonstrate a significant in-
crease in stopping power when beam electrons mutually interact via their wakes. Each beam electron
excites a plasma wave wake of wavelength ∼ 2πc/ωpe, where c is the speed of light and ωpe is the
background plasma frequency. We show that a discrete collection of electrons undergoes a beam-
plasma like instability caused by mutual particle-wake interactions that causes electrons to bunch in
the beam, even for beam densities nb for which fluid theory breaks down. This bunching enhances
the beam’s stopping power, which we call “correlated stopping,” and the effect increases with the
“correlation number” Nb ≡ nb(c/ωpe)

3. For example, a beam of monoenergetic 9.7 MeV electrons
with Nb = 1/8, in a cold background plasma with ne = 1026 cm−3 (450 g cm−3 DT), has a stopping
power of 2.28 ± 0.04 times the single-electron value, which increases to 1220 ± 5 for Nb = 64. The
beam also experiences transverse filamentation, which eventually limits the stopping enhancement.
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Energetic particle stopping power is a critical issue
in many plasma physics contexts, including self-heating
by fusion products, magnetic fusion devices, space plas-
mas, cancer therapy, and high energy density (HED)
systems. We focus on the last, where energetic (non-
thermal) charged particles are of interest for several rea-
sons. Laser-plasma interactions, such as stimulated Ra-
man scattering and two-plasmon decay, produce ener-
getic electrons that alter energy coupling in an inertial
fusion system. Ultra-intense short-pulse lasers can also
produce energetic ions and relativistic electrons. An in-
teresting application is the Fast Ignition (FI) approach
to inertial fusion [1], in which a beam of energetic elec-
trons (ideally with kinetic energy ∼ 1− 3 MeV) deposits
energy into a compressed target’s core, beginning the ig-
nition process. This application motivates our choice of
parameters. The important role of electron wakes in this
work is also relevant to plasma-based particle accelerator
research.
Most calculations of electron beam transport for MeV

and higher particle energies in HED plasmas use a single-
electron stopping formula based on quantum electrody-
namics (QED) and a collective dielectric response or wake
(discussed in Appendix A) [2–6]:

dγ

ds
= −

e2b
mbc2

ω2
pe

v2
ln Λqm;

Λqm ≡ [2(γ − 1)]1/2
2πδsk
λdb

. (1)

We use CGS units throughout. Energy loss per distance
traveled s is to background electrons, and −e, me, ne,
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and ωpe ≡ (4πnee
2/me)

1/2 are the electron charge, mass,
number density, and plasma frequency respectively, and
δsk ≡ c/ωpe is the collisionless skin depth. We have omit-
ted small non-logarithmic terms and radiative loss, the
latter of which is small in hydrogen for electron ener-
gies < 100 MeV, though for high-Z materials like gold
it is significant for ∼ 10 MeV [2, 7]. The beam electron
has charge eb (distinguished from −e to show correlation
effects), mass mb, speed v and β = v/c, Lorentz fac-
tor γ = [1 − β2]−1/2, kinetic energy E = mbc

2(γ − 1),
and de Broglie wavelength λdb ≡ h/mev. Eq. 1 applies
for E ≫ Te, with Te the background electron tempera-
ture, and Λqm assumes mb = me, eb = −e. The stop-
ping power in Eq. 1 scales as e2b/mb, so if N beam elec-
trons act like a single “macro-particle” with eb = −Ne,
mb = Nme, then their stopping is ∝ e2b/mb ∝ N [8].
This is the basic idea behind correlated stopping, and re-
quires discrete beam particles – it would not occur for a
smooth beam of “jellium.” Such stopping has also been
studied in the field of electron plasma accelerators in an
attempt to design a more compact beam dump [9].

In this paper, we closely examine how the stopping
power of a collection of particles can be enhanced above
the single-particle stopping, Eq. 1, due to “correlated
stopping,” in which the beam electrons mutually inter-
act via their plasma wave wakes. An increase in stopping
power may increase the energy deposited by an electron
beam in an FI target core, thus making the concept more
feasible. In contrast to the “collective stopping” consid-
ered by others [10], in which fluid beam-plasma insta-
bilities lead to an increase in stopping power, correlated
stopping is caused by discrete particle-wake interactions.
This can occur when the electron beam density nb is too
low for a fluid description to strictly apply, such as in a
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FI target core. Collective stopping has been studied ex-
tensively for ion beam stopping [11] and for static beam
electron configurations [8, 12, 13]. We present here the
first 3D PIC simulations of dynamic correlated electron
stopping in HED plasmas. We observe a consistent in-
crease in stopping power beyond the single-particle result
with increasing “correlation number” Nb defined as:

Nb ≡ nbδ
3
sk = 4.50× 106

nb

nc

(

nc

ne

)3/2

λ[µm]. (2)

The second practical form is for electron beams produced
by a short-pulse laser of wavelength λ with nc the laser
critical density.

I. PIC METHOD

We examine the stopping power for finite-size rela-
tivistic electrons using the particle-in-cell (PIC) method.
The standard PIC method can suffer from numerical
Čerenkov radiation as well as self-forces created by alias-
ing. Numerical Čerenkov radiation [14, 15], which is a
common issue in finite-difference (FD) electromagnetic
PIC codes, is caused by particles moving faster than
light propagates on the mesh. Issues related to numeri-
cal Čerenkov radiation are different than those that arise
from the numerical Čerenkov instability [16]. Aliasing
can also lead to artificial self-fields on the particle, even
for solvers with superluminal light waves or perfect dis-
persion solvers. These effects can increase the single-
electron stopping power. New solvers developed for FD
PIC codes may mitigate numerical Čerenkov radiation
[15, 17] and permit studies of correlated stopping in di-
vergent beams in the future.
To circumvent these issues, we use the quasi-static

PIC code QuickPIC [18, 19]. QuickPIC uses coordi-
nates (x, y, ξ ≡ ct − z, s ≡ z), where z is the direction
of beam propagation. The quasi-static approximation is
∂/∂s ≪ ∂/∂ξ, meaning the length-scale of variations of
the beam or wake with s is much greater than the wake
wavelength; i.e., the beam evolves on a time-scale much
slower than it takes a beam particle to pass a plasma
particle. This approximation decouples the wake calcula-
tion from the beam particle push, and allows much larger
time-steps than fully electromagnetic codes. QuickPIC
does not include radiative fields, has similarities to the
Darwin approximation, and is not an electrostatic model.
QuickPIC sends a 2D plasma slice across the box in the
ξ-direction at each s-step. We can therefore view ξ as the
“time” after the box begins passing through a transverse
plasma slice at position s.
The simulation parameters are listed in Table I. They

are relevant to an electron beam propagating through
a fully-ionized deuterium-tritium (equal atomic fraction)
plasma of ≈ 450 g cm−3, where the background elec-
tron number density ne = 1026 cm−3; typical of the com-
pressed fuel in FI designs. Under these conditions, if nb is

QuickPIC Simulation Parameters

ne 1026 cm−3

Te 0 eV

Interpolation Linear

Cell Width ∆x = ∆y = ∆ξ = 0.0405δsk

ds 2δsk

Small Box Dimensions 41.515δsk × [1, 1, 2] in [x, y, ξ]

Small Beam Dimensions 10δsk × [1, 1, 8]

Large Box Dimensions 83.03δsk × [1, 1, 2]

Large Beam Dimensions 40δsk × [1, 1, 8]

TABLE I. The parameters for the QuickPIC simulations.

the critical density nc ≈ 1.11× 1021 cm−3 for 1 µm light,
then Nb = 0.15. For these conditions, lnΛqm = 8.35.

We primarily study monoenergetic beams with Nb

from 1/8 to 64 and momentum pz = 20mec (E = 9.7
MeV). The energy, while larger than the ∼ 1 − 3 MeV
in an optimal FI beam [5, 6, 20], is chosen to ensure the
validity of the quasi-static approximation. We expect the
instabilities we observe in our simulations to evolve faster
in beams closer to the 1-3 MeV range due to the lower
Lorentz factor.

Two major assumptions we make are using a cold back-
ground plasma (plasma electrons are initialized with zero
initial velocity) and neglecting collisions. Since the stop-
ping power is independent of Te for E ≫ Te, we do not
expect our results to vary appreciably with finite Te. The
question of how Te could affect the plasma wakes is future
work, though a brief discussion is provided in Appendix
B, and we note that the plasma-based accelerator liter-
ature has used Green’s functions for Te = 0 for many
years. Finite Te also leads to a numerical instability that
develops in the particle wake when a warm plasma is
used. The increased temperature will cause transverse
spreading of the wake via diffraction [21] and will affect
the motion of the beam particles via discrete particle
thermal fluctuations.

As for collisions, the background electron-ion collision
frequency for momentum transfer, including Fermi de-
generacy, is ν ≈ 7.46 × 10−6ne[(ne/2.05 × 1022)2p/3 +
T p
e ]

−3/2p, p = 1.72, (ne in cm−3, Te in eV, ν in s−1)
[6]. When ne = 1026 cm−3, ωpe ≈ 5.64 × 1017 rad/s.
At Te = 0 eV, ν/ωpe ≈ 0.27 and neglecting collisions
is unrealistic. At Te = 1 keV, which is typical of the
fuel in FI designs at the time the electron beam starts,
ν/ωpe ≈ 0.038 and the collisionless assumption is more
feasible. As the fuel heats, collisions become less impor-
tant, e.g. at Te = 5 keV, ν/ωpe ≈ 0.0037. Collisions
should generally be less important in other HED systems
at lower electron densities than the 1026 cm−3 we con-
sider. Despite these limitations, our work with a cold
plasma provides significant insight into correlated stop-
ping.

We set up an electron beam centered transversely in
the box. We simulate two different beam sizes, whose
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dimensions and respective box sizes are listed in Table I.
Both sizes have cell width ∆ = 0.0405δsk. There is one
background electron per cell and, for both the beam and
plasma, one PIC particle represents one physical particle,
avoiding the enhanced stopping experienced by macro-
particles (a PIC particle typically has a charge and mass
of many electrons) [22].
The simulations use a window moving at c in the direc-

tion of beam propagation ẑ. The transverse boundaries
are conducting with specular reflection for the particles.
The 2D plasma sheet is initialized with the plasma par-
ticles in a stable configuration. Therefore, with a cold
plasma, as the sheet crosses the box, the arrangement
of the plasma particles does not change unless there is a
beam particle present.
We perform simulations for four cases:
1) small, monoenergetic beam; immobile ions
2) same as 1) but mobile ions of charge +e and mass

1836.15me

3) same as 1) but 1 MeV beam temperature in z (cold
in transverse directions)

4) same as 1) but large beam
All electrons in the monoenergetic beams are initialized
with a momentum pz = 20mec (E = 9.7 MeV). When
the beam has a temperature in z, the electrons are ini-
tialized using a Maxwell-Jüttner distribution with Tb =
1 MeV centered around pz = 20mec. The assumption of
no transverse temperature is unrealistic [23]. For each
simulation case, we run with Nb = 1/8, 1, 8, and 64
by varying nb and keeping ne = 1026 cm−3 fixed. For
example, when Nb = 64, nb = 4.26 × 1023 cm−3. For
each Nb, we run eight simulations. For each run, the
beam electrons are initially placed on a cubic lattice of

spacing ∆l = δsk/N
1/3
b , then displaced in each Cartesian

direction by a random distance chosen uniformly from
[−∆l/2,∆l/2).

II. CORRELATED STOPPING RESULTS

Fig. 1 shows the s-evolution of the stopping power en-
hancement averaged over eight runs for each Nb and sim-
ulation type. We first find dγ/ds|PIC

N , the stopping of one
electron in a full, N -beam-electron simulation, by averag-
ing over all beam electrons, up to 16,384,000 for Nb = 64
in large-beam simulations, then average the eight results
and find the standard deviation. The stopping enhance-
ment

ηPIC ≡
dγ/ds|PIC

N

dγ/ds|PIC
1

, (3)

where dγ/ds|PIC
1 is the stopping power of a lone beam

electron measured in a separate QuickPIC simulation.
ηPIC rapidly moves above unity in all cases and increases
with Nb, reaching a dramatic enhancement of ∼ 103 for
Nb = 64. For ease of comparison, Fig. 2 plots the peak
values of ηPIC from Fig. 1 vs. Nb, along with that for
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FIG. 1. The s-evolution of the stopping power enhancement
ηPIC from Eq. 3 for four values of Nb. Each line is an aver-
age over eight QuickPIC runs, and the associated transpar-
ent blooming is the associated uncertainty, which can become
thinner than the line itself as Nb increases. We also plot the
minimum physical stopping enhancement ηqm

min from Eq. 4 at
the s of maximum ηPIC . The results with and without mobile
plasma ions are mostly indistinguishable.
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FIG. 2. The peak stopping enhancement ηPIC vs. Nb for all
four simulation cases. A curve fit for the large box, case 4, is
also plotted.

Nb = 1/64 in simulation case 4. We include a curve fit
for case 4: ηPIC = 1 + 10.58N1.14

b .
We now estimate the enhancement of the phys-

ical, quantum-mechanical stopping power: ηqm ≡
(dγ/ds|qmN )/(dγ/ds|qm1 ). The single-particle stopping in
QuickPIC dγ/ds|PIC

1 is well below the single-particle
quantum result dγ/ds|qm1 , as discussed in Appendix A.
Our simulations therefore do not show how much this
“unresolved stopping,” dγ/ds|qm1 − dγ/ds|PIC

1 , is en-
hanced by correlation effects. A likely upper bound is
to assume the unresolved stopping is enhanced by the
same factor as the stopping resolved in the PIC code,
or ηqmmax = ηPIC . For a lower bound, we assume none
of the unresolved stopping is enhanced: dγ/ds|qmN −
dγ/ds|PIC

N = dγ/ds|qm1 − dγ/ds|PIC
1 , or

ηqmmin =
lnΛPIC

1

ln Λqm
1

(

ηPIC − 1
)

+ 1 ≈ 0.38ηPIC + 0.62. (4)
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This lower bound still gives significant stopping enhance-
ment, as shown in Fig. 1 by the discrete symbols.
Fig. 1 clearly shows stopping power increasing with

Nb. The different simulation cases change the evolution
of the stopping power for each Nb. Mobile plasma ions
make the least difference, as results with and without mo-
bile ions are mostly indistinguishable. This small effect
is explained by the relatively small ion density perturba-
tion. For Nb = 64, when s = 100δsk, at the tail of the
beam, max(δni)/max(δne) ≈ 0.025, which is negligible
in this context.
In all cases except Nb = 1/8, adding a 1 MeV beam

temperature in z causes the stopping power to peak at
approximately the same time as the monoenergetic beam
but at a lower value, then remain below it thereafter.
However, for Nb = 1/8, the temperature causes the stop-
ping power to peak earlier and at a higher level, then drop
below that of the monoenergetic beam. This discrepancy
may be a result of the small number of particles, 1,000
when Nb = 1/8, and may disappear with a larger beam.
In the simulations using the large box, the stopping

power reaches a higher peak level than that of monoen-
ergetic beams in the small box in the cases of Nb = 1/8,
1, and 8, and the stopping power remains above those
of the smaller beams thereafter. In all three cases, the
stopping power grows more rapidly early in s than for the
smaller monoenergetic beams. For Nb = 64, the large-
box stopping power peaks later than for the small beam
and stays above it until s ≈ 800δsk. For Nb = 1/8, the
stopping enhancement in the large box is still near 2 at
s = 3, 000δsk, which may have a significant impact on
applications like FI.

III. BEAM-PLASMA-LIKE INSTABILITIES

AND SATURATION

The stopping power in all cases initially increases due
to fluid-like instabilities, then peaks and begins to de-
crease due to saturation. We say “fluid-like” because,
for the parameters used here, the inter-particle spacing
can be ∼ the wake wavelength 2πδsk, and larger than the
wake transverse radius δsk, violating the continuum as-
sumption of the fluid approximation. The uncertainties
in Fig. 1 and the variation between runs in Fig. 3 illus-
trate the increasing effect of particle discreteness with
decreasing Nb. The spreading of a single-particle wake
with increasing ξ, discussed in Ref. [24], will also work to
invalidate fluid results with decreasing Nb.
Fig. 4 illustrates the effect of the fluid-like instabili-

ties on a small monoenergetic beam with Nb = 64 at
s = 200δsk. The beam contains regions of alternating
bunching and spreading in all three dimensions, which is
the primary source of the stopping enhancement. This
bunching is caused by the oscillating electric fields of the
particle wakes in the longitudinal direction and the corre-
sponding transverse focusing fields, as seen in the figure.
The longitudinal behavior is related to the fluid beam-
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FIG. 3. Stopping power enhancement for five values of Nb

using large beams (case 4), each averaged over eight runs.
The dashed curves indicate the average over the runs, and
the thickness of the faint solid curve associated with each
line is the uncertainty. The faint solid curves are typically
thinner than the dashed lines on the plot, and are clearer in
Fig. 1. The relative uncertainty increases as the stopping
power decreases, illustrating the increasing effect of particle
discreteness with decreasing Nb.

plasma or two-stream instability [25], and the transverse
behavior is related to the transverse self-modulation in-
stability [26] studied in plasma wakefield accelerators. As
the particles begin to bunch, bunches tend to align in the
logintudinal direction and merge in the transverse direc-
tion, with the transverse merging limited by beam size
or filamentation. Due to constructive interference, the
wakefields are largest at the tail of the beam, and the
process occurs most rapidly there.
Multidimensional electron beam-plasma instabilities

have recently been studied in the relativistic regime [25],
and an exact kinetic theory for them has been devel-
oped using Maxwell-Jüttner distribution functions [27].
The beam-plasma and transverse self-modulation insta-
bilities in particular have been studied extensively in the
context of laser-plasma interactions [28]. Ref. [24] has
detailed derivations of them, the former of which is gen-
eralizable to 1D fluid streaming instabilities. To briefly
summarize, beam and plasma densities satisfy

(

∂2

∂s2
+

k2pb
γ3
b

)

δnb = −
k2pb
γ3
b

δne,

(

∂2

∂ξ2
+ k2pe

)

δne = −k2peδnb, (5)

with subscript j = (b, e) for (beam, background plasma)
quantities, δnj is the density perturbation, kpj ≡ ωpj/c,
and (ωpb, γb) are the beam (plasma frequency, Lorentz
factor). We Fourier analyze with δnj ∝ exp[i(kξξ−kss)].
Recall that s and ξ are akin to time and space, so insta-
bility entails Im[ks] > 0 for real kξ. The unstable modes
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FIG. 4. The beam density in a cut plane through the middle
of the box at y = 20.76δsk is plotted along with its corre-
sponding longitudinal and focusing fields for simulation case
1 with Nb = 64 at s = 200δsk.

satisfy

Im[ks] =
kpbkξ

γ
3/2
b

[

k2pe − k2ξ

]1/2
, |kξ| < kpe. (6)

A large growth rate occurs for kξ = kpe = 1/δsk, which
is strongly seeded by the wakes of individual beam elec-
trons, as we observe in Fig. 4.
After an electron bunch forms, the front of the bunch

begins to break apart first. This disintegration occurs be-
cause the focusing field in the middle of the beam shifts
back, which occurs as bunches form further forward in the
beam, leading to a defocusing part of the field overlap-
ping with the front of the bunch. This process saturates
the instabilities. While saturation occurs at different s
values for different parts of the beam, its effect is obvi-
ous in the drop in stopping power after the peaks in Fig.
1. The effect of this saturation process in beams large
enough to filament is unclear. Once a bunch breaks apart
in one filament, its constituent electrons may move into
adjacent filaments, become constituents of new bunches,
and cause the stopping power to grow again.
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The filamentation we observe in Fig. 5 is the primary
motivator for the large beam simulations (case 4). We
observe such filamentation when Nb = 8 and 64. How-
ever, we see no signs of it when Nb = 1/8 and 1. We also
observe that the stopping power of the two denser beams
peaks later than in the small-box simulations, which does
not occur with the less dense beams, suggesting that
the filamentation is delaying the growth of the instabil-
ities. The fact that the stopping power for Nb = 64
peaks with about the same stopping enhancement as in
the smaller box also implies that the filamentation may
be limiting the enhancement. Therefore, filamentation
may also limit the stopping enhancement in applications
where larger beams are used, such as FI.
A second peak in stopping power occurs around s =

1300δsk for the small monoenergetic beam with Nb = 64,
which is caused by four bunches at the same ξ forming
at the very front of the beam. These bunches are ar-
ranged in a square pattern but rotated relative to the
initial square cross-section of the beam. The bunching
forces are weakest at the front of the beam, causing those
bunches to form later. This second peak appears down
to Nb = 1 in monoenergetic small-beam simulations with
pz = 10mec, but is caused by a bunch that forms fur-
ther back in the beam [24]. These four bunches are also
clear evidence of filamentation, but it does not spread
backwards in the beam because the streaming-like insta-
bilities have already saturated there and the beam has
diffused transversely. We do not see the filamentation
limitation in other small-beam simulations, likely due to
the limited transverse size of the beams. The beam with
a 1 MeV temperature does not have this peak due to the
density in the bunch reaching a lower peak level, ≈ 0.1ne

vs. ≈ 0.27ne for the monoenergetic beam. The beam
with 1 MeV temperature also does not filament.

IV. DISCUSSION

The correlated stopping enhancement is more pro-
nounced at lower electron densities than the extreme 1026

cm−3 considered here. Short-pulse lasers generally pro-
duce electron beams with nb ∼ nc at background den-
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sities ne . nc. For the typical short-pulse laser wave-
length λ = 1 µm, our runs with Nb = 1/8 correspond
to nb ≈ nc and ne ≈ 105nc. Typical values at the ab-
sorption region of nb = ne = nc give extremely high
correlation: Nb = 4.5 × 106. The same beam in a solid
density target with ne = 100nc also has very high corre-
lation: Nb = 4500. Collisional stopping may be greatly
enhanced in these conditions due to correlation effects.
A major open question is whether our enhanced stop-

ping persists over the much larger length and time scales
relevant to practical applications. Past simulations of
beams of energetic electrons incident on uniform dense
plasmas show that the beams penetrate much deeper
than the distance traveled in our simulations. A Monte
Carlo simulation of electron transport including stopping
and scattering using a 2D Lagrangian fluid code shows
that a beam of monoenergetic 1.5 MeV electrons incident
on a 300 g cm−3 DT plasma at 5 keV has its peak en-
ergy deposition at ∼45,000 skin depths [5]. Similarly,
a hybrid reduced model for relativistic electron beam
transport based on the Vlasov-Fokker-Planck equation
using an electron beam with mean electron energy of 1.5
MeV incident on a 50 g cm−3 hydrogen plasma with a
temperature of 1 eV has its peak energy deposition at
∼20,000 skin depths [29]. There is no indication that
beam-plasma instabilities were included in either simula-
tion. Regardless, they indicate the scale of future simula-
tions that may be required to study the beam transport
problem, including beam-plasma-like instabilities.
Our simulations demonstrate that correlation effects

can significantly enhance electron beam stopping in HED
plasmas. We observe the stopping power increase to
1200× the single-electron value for beams with Nb = 64.
As the beam density decreases, discrete particle-wake
interactions become more important, and the fluid ap-
proximation breaks down. All our simulations indicate
that beam-plasma-like instabilities lead to an increase in
stopping power for Nb ≥ 1/8. Ignoring the coherent in-
teractions of discrete particle wakes and the related self-
focusing, filamentation, and beam-plasma-like instabil-
ity leaves out important factors in the stopping power.
In particular, because correlated stopping increases with

Nb ∝ n
−3/2
e , it may make FI feasible at lower core densi-

ties than currently envisaged. Future work should deter-
mine the effects of background temperature, beam diver-
gence, angular scattering, and energy spread, and employ
fully electromagnetic codes.
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Appendix A: Single-Particle Stopping Power

In this appendix, we discuss the basic physics of single-
particle stopping power and compare various stopping
power formulas with the stopping power measured in
QuickPIC using various cell widths. We provide the for-
mulas here for reference, detailed derivations of which
can be found in Ref. [24].
Collisions in a plasma and the stopping power of ener-

getic particles can be described from two distinct points
of view, which we discuss from a classical approach. In
one, Lenard-Balescu, they are viewed as the interaction of
particles through the plasma response from test charges
moving in straight lines (unperturbed orbits). For en-
ergetic electrons, the plasma response is a plasma wave
wake and the stopping power is determined from the de-
celerating electric field at the location of the moving par-
ticle. In the other, Landau-Boltzmann, they are viewed
as two-body Coulomb interactions. In both cases, the re-
sulting stopping power is ∝ ln Λ with Λ ≡ bmax/bmin, the
ratio of a large length bmax to a small length bmin, that
diverges for different reasons. In the first case, bmax is
well defined as a finite screening length, but bmin is not
defined and is often chosen to be the scale near where
large-angle scattering events might occur. In the latter,
bmin is well defined as the distance of closest approach,
but bmax is not well defined and is often chosen as the
Debye length. Although not rigorous, the two views are
often “summed” together such that Λ is the ratio of bmax

from the wake calculation and bmin from the two-body
collision calculation. The same result follows from the
wake approach and cutting off the integral at bmin. Com-
bining the wake and two-body views has more merit for
the relativistic stopping power, as it is not clear how to
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include quantum effects in the wake calculation.
Although PIC calculations do not rigorously include

QED effects, they can provide a qualitatively correct be-
havior for the stopping power and naturally permit a
study of mutual – or correlated – stopping. As noted
above, the stopping power from the wake of a single par-
ticle diverges as bmin approaches zero. In most cases, the
wake is calculated using the Vlasov equation and solv-
ing for the wake potential as an integral in wavenumber
space. In order obtain simple expressions, the plasma
is then assumed to be cold. If the cold limit is consid-
ered first, then the electric field from the wake can be
obtained from cold fluid theory. The plasma-based ac-
celerator community has used this approach to calculate
the Green’s function response, which can be viewed as
the response for a single charged particle moving near
the speed of light in a cold plasma [24, 30]. The axial
electric field for the Green’s function for a point charge
q moving in the z > 0 direction is

Ez(r, z) = −2qδ−2
sk K0(r/δsk)η(t− z/c) cos(ωpe(t− z/c)),

(A1)
where r = (x2+y2)1/2, K0 is the modified Bessel function
of the second kind, and η(x) is the Heaveside step func-
tion. Although this Green’s function diverges at r = 0,
the response from a beam or a finite-size particle does not
[22]. If a particle has a finite size given by a Gaussian
charge density ρ(r, z) = q/((2π)3/2σ2

rσz) exp[−r2/2σ2
r −

z2/2σ2
z ], then Ez on the particle becomes

Ez = −qδ−2
sk ln

(

1.12δsk
σr

)

. (A2)

Qualitatively, physical quantum particles have a finite
size that scales with the de Broglie wavelength λdb, so the
wakes produced by particles of finite size ∼ λdb are qual-
itatively similar to those produced by relativistic elec-
trons. In fact, the expression in Eq. 1 in the paper can
be obtained from evaluating the wake from classical ar-
guments for a finite-size particle and setting σr to λdb in
the center of mass frame between the moving charge and
a plasma electron [24]. Furthermore, the divergence of
the Green’s function cannot be correct for a real classical
plasma, so the assumptions of a fluid background and
linearized response must break down. We will address
this issue in a separate publication and below.
We now present several different formulas for relativis-

tic single-electron stopping power. For convenience, we
write the stopping power as

dγ

ds
= −

e2

mec2
ω2
pe

v2
Ld. (A3)

Ld is often called the “stopping number,” and the d in Ld

means “drag.” Other variables are the same as those used
in the paper. As discussed above, Ld is approximately
the logarithm of a ratio of two lengths,

Ld = ln
bmax

bmin
. (A4)

In all our formulas, we set bmax = v/ωpe, which is the
dynamic screening length for a moving charge.
The most basic stopping power is that due to a cold

fluid wake. Using the formula for the electric field given
in Eq. A1, the stopping power is given by

Ld =
δ2sk
e

Ez

(

r → 0, t−
z

c
= 0
)

= 2K0(δ
−1
sk r → 0)

1

2

≈ ln

(

δsk
r → 0

)

, (A5)

which clearly diverges. However, the formula can be used
to roughly approximate the stopping power of a finite-size
particle in a PIC code with cell width ∆, in which case

Ld ≈ ln

(

δsk
∆

)

. (A6)

We compare this formula with single-particle stopping
power measured in QuickPIC in Fig. 6 below.
The stopping power for a relativistic electron taking

into account quantum electrodynamics and a dielectric
response is given by [2]

Ld = ln

(

[2(γ − 1)]1/2mecv

~ωpe

)

− ln 2 +
9

16

+
ln 2 + 1/8

2γ2
−

ln 2 + 1/8

γ
. (A7)

Eq. 1 of the paper uses just the first term of Eq. A7.
Finally, the classical and relativistic (so-called “Bohr”)

stopping power formula uses the classical distance of clos-
est approach for bmin and is given by [31–33]

Ld = ln

(

[(2(γ − 1)]1/2mecv
2

e2ωpe

)

. (A8)

We compare Λ in different models, and discuss the
role of PIC particle size. The physics to bear in mind
for our problem is that the classical bmin (distance of
closest approach for binary collisions) is much smaller
than the quantum one (de Broglie wavelength), which,
in turn, is much smaller than the PIC spatial grid
sizes (PIC particle size) that are feasible on current
computers. The classical result for a relativistic elec-
tron is Λcl ≈ βδsk/b

bc
min = Λqm

~v/e2 with bbcmin =
e2/[[2(γ − 1)]1/2mecv]. We estimate the PIC cell size ∆
imposes bPIC

min ≈ max(bbcmin,∆). For our simulations, ∆ =
32, 300bbcmin, so Λ

PIC
1 = (136/32, 300)Λqm = 0.00422Λqm,

or lnΛPIC
1 = lnΛqm − 5.47. We use the measured value

of this difference in Fig. 6, not this estimate. The quan-
tum, single-particle stopping is thus larger than that in
our PIC simulations. The question arises of how much
of this additional single-particle stopping would be en-
hanced in a PIC simulation with much smaller cell size
∼ λdb. In Fig. 6, we present results for how the stopping
power of a single electron with momentum pz = 10mec
increases as the cell size (particle size) decreases from our
standard value ∆0 to ∆0/32. The PIC stopping increases
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FIG. 6. The stopping power for an electron with pz = 10mec
as measured in the QuickPIC simulations across various cell
widths and calculated using Bohr, QED, and fluid wake for-
mulas.

from roughly 0.3 to 0.5 of the quantum stopping. Com-
puter limitations prevent us from carrying out correlated
stopping simulations using the smaller cell sizes.
We compare the stopping power given by the formu-

las with the single-particle stopping power measured in
QuickPIC in Fig. 6 for an electron with pz = 10mec. The
simulation parameters are listed in Table II. To compare
with the stopping power in Eq. A6, we vary the cell width
in the simulations between the initial cell width ∆0 and
∆0/32 while keeping the box size constant.

QuickPIC Simulation Parameters

ne 1026 cm−3

Te 0 eV

Interpolation Linear

ds δsk for all cell widths

Box Dimensions 10.3787δsk [1× 1× 1/32]

Box Cells 256 × 256× 8 for ∆0 = 0.0405δsk

TABLE II. The parameters for the QuickPIC stopping power
simulations.

The stopping power given by Eq. A6 agrees well with
the stopping power measured in QuickPIC until ∆ <
∆0/4, after which it diverges. It is possible that taking
into account the particle shape when calculating the stop-
ping power would produce better agreement. The satura-
tion of the stopping power as ∆/∆0 → 0 is caused by test
electron passing between plasma particles. As we move
the test charge closer to a plasma particle transversely,

the stopping power increases. Therefore, a more accurate
simulation of stopping power will require a warm plasma,
allowing for random encounters between the test electron
and plasma particles. However, QuickPIC does not cur-
rently allow for these simulations due to the numerical
instability mentioned in the paper.
Our simulations in the paper simply use a cell width

∆ = ∆0. As discussed in the paper, we then use the dif-
ference between the single-particle stopping measured in
the simulation (using pz = 20mec) and the QED stopping
to bound the enhancement from correlated stopping. Fu-
ture research should study the change in beam evolution
with cell width, which may lead to a greater understand-
ing of how single-particle stopping power is enhanced by
correlation effects.

Appendix B: The Effect of Plasma Temperature on

Particle Wakes

To illustrate that the use of cold plasma to study the
stopping power is meaningful we take advantage of re-
cent progress in simulation capability. Maxwell solvers in
standard PIC codes lead to spurious errors in the fields
that surround relativistic particles. Recently, a detailed
analysis of these showed that they arise due to numerical
Čerenkov radiation and aliasing effects [34]. This analysis
also indicated how to create a field solver that could mit-
igate these effects and it was implemented into our code
OSIRIS, including a quasi-3D version [35]. Using these
recent improvements, we simulated the wakes created by
a single electron in plasmas with different temperatures.
We used the subtraction technique [24, 36], in which two
identical runs, one with the test charge and one with-
out, and the same random number generator seed for the
plasma particles, are conducted. The results from the
two simulations are then subtracted, which makes the
wake from the test charge clearly visible even though it
is below the noise level of the simulation. We show these
results in Figs. 7 and 8. They clearly show that the field
at the location of the particle is nearly identical for all
temperatures in the range from 0 to 5 keV. Furthermore,
even after four oscillations, the wakes are clearly present.
This indicates that the wake from one electron will per-
sist and influence the trajectories of those behind it in
warm plasmas in a qualitatively and quantitatively sim-
ilar manner as in a cold plasma. These simulations show
that wakes in warm plasmas can also spread.
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