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We develop non-equilibrium theory by using averages in time and space as a generalized way to
upscale thermodynamics in non-ergodic systems. The approach offers a classical perspective on the
energy dynamics in fluctuating systems. The rate of entropy production is shown to be explicitly
scale dependent when considered in this context. We show that while any stationary process can be
represented as having zero entropy production, second law constraints due to the Clausius theorem
are preserved due to the fact that heat and work are related based on conservation of energy. As
a demonstration we consider the energy dynamics for the Carnot cycle and for Maxwell’s demon.
We then consider non-stationary processes, applying time-and-space averages to characterize non-
ergodic effects in heterogeneous systems where energy barriers such as compositional gradients are
present. We show that the derived theory can be used to understand the origins of anomalous
diffusion phenomena in systems where Fick’s law applies at small length scales but not at large
length scales. We further characterize fluctuations in capillary-dominated systems, which are non-
stationary due to the irreversibility of cooperative events.

Introduction

The ergodic hypothesis is central to many results of
statistical physics. The basic premise is that a system
will explore all possible energetic micro-states if consid-
ered over a sufficiently long interval of time. The concept
of ergodicity is thereby linked with the mixing of informa-
tion within a system [1]. Canonical proofs of the ergodic
hypothesis rely on the equivalence of spatial, temporal
and ensemble averages in the limit of infinite time [2, 3].
Scale considerations and the rate of mixing necessarily
constrain the applicability of the ergodic hypothesis when
considering finite regions of time, particularly for systems
where mixing is slow compared to the physical timescale
of interest [4]. Many physical systems are known to ex-
hibit behavior that is inconsistent with the ergodic hy-
pothesis. Well-known examples include anomalous dif-
fusion in biological systems [5–7], glassy systems [8–10],
capillary phenomena and nucleation [11–16] and granu-
lar systems where multiscale effects are present due to
jamming and force chains [17–20]. A common element
for these systems is that they involve spatially heteroge-
neous materials where available thermal energy is insuffi-
cient to overcome internal energy barriers. This inhibits
mixing and prevents the system from exploring all possi-
ble micro-states within the timescale of interest.

In this paper, we demonstrate that time-and-space av-
eraging can be applied as a mechanism to mathematically
mix information at a desired scale, providing a natural
path forward in systems where non-ergodic effects are
encountered. Multiscale fluctuation terms arise in the

FIG. 1. The length scale for ergodicity can be estimated based
on
√
Dτm, the mean distance for diffusion over timescale τm.

We consider heterogeneous systems where the ergodic hypoth-
esis holds at the scale of V, but not at the larger scale of Ω.

non-equilibrium description due to spatial and temporal
deviations associated with intensive thermodynamic vari-
ables. Our approach is rooted in classical thermodynam-
ics and offers a formally distinct perspective on fluctua-
tions as compared to statistical theory, e.g. [21–25]. The
presented methods can be a general tool for understand-
ing how energy dynamics translate across length and time
scales. First we consider a basic example, demonstrating
that the Carnot cycle and Maxwell’s demon can be in-
terpreted in terms of energy fluctuations. Then we con-
sider mass transport phenomena in the context where
Fick’s law applies at a small length scale but fails at
larger scales. Finally, the approach will be applied to
non-equilibrium behavior in multiphase systems, where
fluctuations occur due to capillary effects and confine-
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ment. How to characterize and interpret these fluctu-
ations has been a long-standing problem for immiscible
fluid flow in porous media, and has broad applications to
other systems [28–37].

Time-and-space averaged thermodynamics

A classical thermodynamic description is defined by
considering the internal energy to depend on the entropy
S as well as other extensive physical properties of the
system, Xi (e.g. volume, number of particles, etc.) [38–
40]

U = U(S,X1, X2, . . . , Xn) . (1)

Intensive quantities are then defined according to Euler’s
homogeneous function theorem,

T =
(∂U
∂S

)
Xi

, Yi =
( ∂U
∂Xi

)
S,Xj 6=i

, (2)

such that

U = TS + YiXi (3)

describes the internal energy of the system at equi-
librium. In practice, measurements of thermodynamic
quantities are always averages carried out over some finite
region of space and time. The measurement timescale
τm can be used to infer the size of the region where lo-
cal equilibrium conditions exist. For example, if a ther-
mometer is used to measure the temperature, any mate-
rial that is close enough to the measurement point can be
considered to be in local equilibrium with the measured
value. Diffusive mechanisms are responsible for mixing
energy within the system, since it is the movement of
the molecules and their interaction with each other that
creates ergodic conditions. Given a fixed timescale τm,
an associated length scale is obtained from the Einstein
relation, which predicts the mean squared displacement
(MSD) for molecular trajectories x(t),∫ τm

0

x2(t)dt ∼ Dτm , (4)

where D is the diffusion coefficient. Since MSD predicts
the average distance that molecules drift within time τm,
the system is locally well-mixed at that length scale. Er-
godic behavior should therefore be observed within a sur-
rounding spherical region with volume

V ≤ 4π

3
(Dτm)3/2 . (5)

During the elapsed time τm, molecules will explore a spa-
tial region with size V such that spatial, temporal and en-
semble averages are interchangeable at this scale. Smaller
V can be chosen as long as the defined region is larger

than the molecular length scale. At the scale of V, the
theoretical bridge between the molecular and hydrody-
namic description can be provided by statistical theory,
relying on the validity of the ergodic hypothesis [43]. Eq.
3 can then be rescaled to treat extensive measures on a
per-unit-volume basis,

U

V
= T

S

V
+ Yi

Xi

V
. (6)

As depicted in Figure 1, we wish to develop theory
that holds over some arbitrarily larger spatial region Ω
(with volume V > V), and time interval Λ (with dura-
tion λ ≥ τm). While the ergodic hypothesis must hold
at the scale of V, the system may be non-ergodic when
considered at the larger scale of Ω. Due to the potential
failure of the ergodic hypothesis statistical mechanics is
less well-suited to derive relevant hydrodynamic theory
at at larger scales. In this situation is desirable to de-
fine averages such that the ergodic hypothesis applies at
a small scale but not at larger scales. To define larger
scale measures we apply the time-and-space averaging
operator

〈
f
〉
≡ 1

λV

∫
Λ

∫
Ω

fdV dt . (7)

We note that this convention does not define an ensem-
ble average, but instead represents an explicit average
over a region in time and space. The integral is there-
fore constructed to include the actual dynamics of the
system, such that insights into the system behavior can
be inferred based on conservation of energy with mini-
mal assumptions. Averages are defined such that exten-
sive quantities retain the same physical meaning across
scales,

U ≡
〈
U
〉
, S ≡

〈
S
〉
, Xi ≡

〈
Xi

〉
. (8)

The intensive quantities are then defined as a weighted
average with the conjugated extensive quantity from Eq.
8,

T ≡
〈
TS
〉〈

S
〉 , Y i ≡

〈
XiYi

〉〈
Xi

〉 . (9)

These definitions ensure that the representation of the
system energy is scale-consistent, e.g., the product of en-
tropy and temperature corresponds to the thermal energy
[41]. Since entropy is additive, the temperature should
be defined as the average thermal energy per unit of en-
tropy. The averaged form is thus consistent with Eq. 3,

U = TS +XiY i . (10)

Non-equilibrium behavior can be considered by aver-
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FIG. 2. Carnot cycle as a fluctuation: time averaging around the entire cycle result in constant average values of the entropy,
S and temperature T ; volume V and pressure p. For any cyclic process a stationary time series will be obtained for all
thermodynamic quantities. Using a time average the energy dynamics can be embedded within fluctuation terms that capture
the net energy contribution over the cycle.

aging the differential form of Eq. 3

∂U

∂t
=
〈
T
∂S

∂t

〉
+
〈
Yi
∂Xi

∂t

〉
= T

∂S

∂t
+
〈

(T − T )
∂S

∂t

〉
+Y i

∂Xi

∂t
+
〈

(Yi − Y i)
∂Xi

∂t

〉
. (11)

We now define multiscale deviation terms as

T ′ ≡ T − T , Y ′i ≡ Yi − Y i . (12)

Using the definitions from Eqs. 8 and 9 we can show that〈
T ′
∂S

∂t

〉
= −

〈
S
∂T ′

∂t

〉
,
〈
Y ′i
∂Xi

∂t

〉
= −

〈
Xi
∂Y ′i
∂t

〉
.

(13)
which can be substituted into Eq. 11 and rearranged to
obtain an entropy inequality

∂S

∂t
=

1

T

[∂U
∂t
− Y i

∂Xi

∂t
+
〈
S
∂T ′

∂t

〉
+
〈
Xi
∂Y ′i
∂t

〉
︸ ︷︷ ︸

fluctuation terms

]
≥ 0 .

(14)

The result is easily recognizable as the fundamental rela-
tion of non-equilibrium thermodynamics (e.g. [44]), but
with additional terms associated with fluctuations. The
fluctuations contribute to the energy dynamics whenever

intensive variables deviate non-linearly from their aver-
age values within the spatial region Ω and time interval
Λ.

The Carnot Cycle as a Fluctuation

Spatial averages have been explored extensively in
the context of classical non-equilibrium thermodynamics
[41]. Extending this approach to also include time av-
erages provides a way to smooth the temporal dynamics
of the system. To illustrate how this works, we consider
the familiar example of the Carnot cycle, as depicted in
Figure 2. The cycle begins at time t0 and completes at
time tf , repeating in periodic fashion. The time average
does not depend on the region of time Λ as long as the
duration λ is an integer multiple of the period tf − t0.
We choose λ = tf − t0 so that 1/λ corresponds to the cy-
cle frequency. For the Carnot cycle the thermodynamic
state is described by U(S, V ). The non-equilibrium be-
havior is described in an average form according to Eq.
14,

∂U

∂t
− T ∂S

∂t
+ p

∂V

∂t
+
〈
S
∂T ′

∂t

〉
−
〈
V
∂p′

∂t

〉
= 0 , (15)

where U , S, V , T and p are time-and-space average values
for the complete cycle. Since the associated time series is



4

stationary, these are each constant when the time aver-
aging interval is an integer multiple of λ = tf − t0. This
means that

∂U

∂t
= 0 ,

∂S

∂t
= 0 ,

∂V

∂t
= 0 . (16)

In other words, S, V , T and p are the average values
around which the system is fluctuating, as shown in Fig.
2a –f. The energy dynamics are fully described by the
relationship between the fluctuations,〈

V
∂p′

∂t

〉
=
〈
S
∂T ′

∂t

〉
. (17)

We now separately consider each fluctuation. First, the
pressure fluctuation is identical to the rate of pressure
volume work W (with the sign convention chosen to ob-
tain positive external work),〈

V
∂p′

∂t

〉
= −

〈
p
∂V

∂t

〉
=
〈∂W
∂t

〉
. (18)

This is a consequence of the fact that the averages p and
V are each constant. The pressure fluctuation therefore
directly corresponds to the power output. Next we treat
the temperature fluctuation. For the Carnot cycle all
temperature changes occur during isentropic conditions.
Using the additive property for the time integral, it is
straightforward to show that〈

S
∂T ′

∂t

〉
=
〈
S
∂T

∂t

〉
=

1

λ

(∫ t2

t1

Sa
∂T

∂t
dt+

∫ tf

t3

Sb
∂T

∂t
dt

)

=
1

λ
(Sb − Sa)(Th − Tc) . (19)

Inserting these into Eq. 15 and using the fact that the
heat added to the system is given by Qh = Th(Sb − Sa)
we obtain 〈∂W

∂t

〉
=

1

λ

Qh(Th − Tc)
Th

. (20)

This is identical to the standard result for the efficiency
of a Carnot engine, but is formulated as an expression for
the power output based on the cycle frequency λ. This
demonstrates that in a time averaged formulation, any
energy dynamics that occur faster than the duration for
the time averaging window will be re-cast as fluctuations.
Since the integral defined by Eq. 7 explicitly accounts for
the path of the system, the energy dynamics are fully cap-
tured by the homogenized representation. With respect
to the second law of thermodynamics, a critical insight
from this exercise is that the interpretation of the entropy
is scale dependent, since the rate of entropy production
depends explicitly on the timescale at which a process is
considered. This will be particularly important in het-
erogeneous systems where the are crossover times due to

the scaling behavior for dominant physical processes. For
any stationary process the rate of entropy production will
be zero if the dynamics are considered over a sufficiently
long timescale. We note that this does not contradict the
Clausius theorem, since the relationship between the rate
of of heat added and the rate of work is unchanged based
on the time average. In other words a scale-consistent
representation of the energy dynamics is recovered.

Fluctuations of Maxwell’s demon

FIG. 3. “Maxwell’s demon” considers a thought experiment
in which a demon selectively permits the migration of hot
molecules from one chamber to the other. Due to the heat
flux carried by the transmitted molecules, the temperature
of the hot chamber increases, leading to a thermal gradient
between the chambers. The demon’s actions are constrained
by a symmetry law relating thermal fluctuations.

To further illustrate the role of fluctuations, we con-
sider the actions of Maxwell’s demon based on the two-
chamber system shown in Figure 3 [45, 46]. The de-
mon operates a gate, selectively allowing fast-moving
molecules to move from the cold chamber to the hot
chamber. In apparent violation of thermodynamic intu-
ition, the associated transfer of kinetic energy increases
the temperature of the hot chamber. Maxwell’s de-
mon can be considered in the context of non-ergodic
behavior, as the demon controls the mixing of informa-
tion between the two chambers. The demon defines lo-
cally non-stationary behavior by applying molecular scale
rules that prevent prevent a forward process from reach-
ing equilibrium with the corresponding reverse process.
However, this does not mean the process is irreversible;
it only means that the equilibrium has been delayed. We
will show that if a conservative demon is disabled, the
system will return to it’s original state. Fluctuations are
an appropriate tool for understanding the energy dynam-
ics in such a system. Furthermore, the system is spatially
heterogeneous, and the chambers can be denoted as sub-
regions of the system, Ωh and Ωc. Based on these def-
initions a discrete aspect is introduced into the system
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representation, since the crossing of molecules from one
sub-region to the other occur as discrete events. Time
averaging smooths the effect of these crossings such that
the action of the demon can be modeled as being contin-
uous with respect to time.

For an ideal monatomic gas the entropy is given by the
Sackur-Tetrode equation [48–50]

S(U, V,N) = kBN

[
5

2
+ ln

V

N
+

3

2
ln
U

N
+

3

2
ln

2πm

h2

]
,

(21)
where m is the particle mass and h is Planck’s constant.
The expression for entropy as a state function is suffi-
cient to determine the form U(S, V,N). The intensive
quantities can be determined directly from their thermo-
dynamic definitions

T ≡

(
∂U

∂S

)
N,V

=
2U

3kBN
,

p ≡ −

(
∂U

∂V

)
N,S

=
kBNT

V
,

µ ≡

(
∂U

∂N

)
S,V

= −kBT
(

ln
V

N
+

3

2

U

N
+

3

2
ln

2πm

h2

)
.

(22)

Noting that U = 3
2kBNT for an ideal gas, it is easy to

show these forms are consistent with Eq. 2 in the particu-
lar form U = TS−pV +µN . To treat the demon we must
subdivide the system based on thermodynamics within
each chamber. This is accomplished by sub-setting the
system into regions based on the indicator function Υi

Υi(x) =

{
1 if x ∈ Ωi
0 otherwise

(23)

for i ∈ {h, c}. Consistent with Eqs. 8 and 9, separate
temperature, entropy, pressure, chemical potential and
number of molecules are obtained for each chamber. For
extensive properties, fields are constructed based on the
subset operation,

Si
V
≡ SΥi

V
,

Ni
V
≡ NΥi

V
, Vi = VΥi , (24)

where V has been included explicitly in the definitions
to account for the fact that the reference volume used
to define fields should not be infinitely small (i.e. should
exceed the molecular length scale). Averages are then
defined as time-and-space averages

Si ≡
〈
Si
〉
, T i ≡

〈
TSi

〉〈
Si
〉 ,

V i ≡
〈
Vi
〉
, pi ≡

〈
pVi
〉〈

Vi
〉 ,

N i ≡
〈
Ni
〉
, µi ≡

〈
µNi

〉〈
Ni
〉 . (25)

For simplicity we consider the case where volume for each
chamber is constant, with Vc = Vh. These definitions
ensure that the entropy is additive,

S = Sc + Sh , (26)

and that the total thermal energy is conserved based on
the definition of the temperature,

TS = T cSc + ThSh . (27)

For the number of molecules and chemical potential,

µN = µcN c + µhNh . (28)

It is clear that generic thermodynamic quantities can be
defined by sub-setting a heterogeneous system into re-
gions. The result of the sub-setting operation is func-
tionally equivalent to an alternative specification of the
extensive variables,

U = U(Sh, Sc, Vh, Vc, Nh, Nc) . (29)

However, since the set operation defined from Υi intro-
duces a discrete element into the system representation,
apparent discontinuities can result when considering en-
ergy exchanges between the entities. Averaging in time
removes these discontinuities to ensure a smooth repre-
sentation for the dynamics within sub-regions. As an
example, even though the Hamiltonian for the molecu-
lar system is continuous, the molecular crossing shown
in Figure 3 is a discrete event. Combining the sub-set
operation with a time average leads to a corresponding
fluctuation theorem because any energy gained by the
hot chamber is directly lost by the cold chamber. The
fluctuation terms impose a symmetry constraint on the
demon’s action on the basis that the demon must con-
serve mass and energy.

Since the system is closed the total number of particles
is conserved,

∂Nh

∂t
= −∂N c

∂t
. (30)

Subdivision of the system into hot and cold compart-
ments leads to the following fluctuation constraint based
on conservation of energy,

∂S

∂t
=

1

T

∑
i

[〈
Si
∂Ti
′

∂t

〉
−
〈
Vi
∂pi
′

∂t

〉
+
〈
Ni
∂µ′i
∂t

〉]

+
(µh − µc

T

)∂N c

∂t
, (31)

where T ′i = Ti − T , µ′i = µi − µ, and p′i = pi − p on Ωi
with i ∈ {c, h}.

It has been argued from an information theory perspec-
tive that the demon must be able to perform measure-
ments in order to function as described by Maxwell [47].
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FIG. 4. Fluctuations due to operation of a conservative Maxwell’s demon: the demon is activated at t = 0 second and de-
activated at time t = 1.0 second to obtain a stationary time series. Fluctuations to the intensive properties are observed based
on the redistribution of mass and energy within the system.

For example, the demon would need to know the tem-
perature of the hot chamber so that it could determine
which molecules should pass through the gate. However,
a simple thought experiment demonstrates that a demon
can generate gradients without relying on any non-local
information or altering the energy for any molecules that
it comes into contact with. Consider a demon that is
tuned to operate at some particular temperature Td. The
demon will allow any molecule with speed greater than
one standard deviation above the mean for the Maxwell
distribution of speeds to pass from the cold chamber to
the hot chamber, i.e. molecules with speed

vd ≥
√

3kBTd
m

. (32)

The statistics for the crossings can be determined from
the Maxwell distribution. If the demon operates at tem-
peratures in the vicinity of Td, it can drive the forma-
tion of a gradient without any knowledge of the system
state. The demon only needs to measure the molecular
speed, which may be done locally and reversibly without
retaining any memory of the measurement. Of course,
this action cannot be performed without a constraint:
molecules with sufficient speed must hit the portion of
the wall where the demon gate is located, since the de-
mon cannot impose any forces to attract particles toward
its location. The probability for fast molecules to hit the
demon gate depends on Tc based on the Maxwell distri-
bution of speeds and also on the area of the gate relative

to the area of the partition between the two chambers.
As Tc decreases, so too will the rate at which sufficiently
energetic molecules hit the gate. With the demon’s be-
havior defined statistically based on Eq. 32 we can calcu-
late the rate for mass exchange. The number of particles
moving from the cold chamber to the hot chamber is

∂Nch
∂t

=
NcAg
Vc

∫ ∞
vd

√
m

2πkBTc
se−ms

2/2kBTcds ,

= −NcAg
Vc

√
kBTc
2πm

e−mv
2
d/2kBTc . (33)

where Ag is the area of the gate between chambers. Sim-
ilarly, the rate of energy exchange is

∂Uch
∂t

=
NcAg
Vc

∫ ∞
vd

√
m

2πkBTc

ms3

2
e−ms

2/2kBTcds , (34)

= −mNcAg
Vc
√

2π

(
kBTc
m

)3/2(
1 +

mv2
d

2kBTc

)
e−mv

2
d/2kBTc .

We consider a two-way valve so that a steady-state can be
achieved based on the redistribution of slower molecules
to the cold chamber. A simple way to achieve this is to
allow any molecule that hits the gate to travel back to
the cold chamber. This clearly requires no measurement
and meets the constraints used previously. The statistics



7

for the particles gained by the cold chamber are given by

∂Nhc
∂t

=
NhAg
Vh

√
kBTh
2πm

, (35)

∂Uhc
∂t

=
mNhAg√

2πVh

(
kBTh
m

)3/2

. (36)

Since the rules used to define this behavior do not re-
quire non-local information, the demon will be able to
spatially segregate particles based on conservation of en-
ergy and without violating physical laws. Fast particles
will accumulate in the hot chamber, and slow particles
will accumulate in the cold chamber. The primary mech-
anism needed to achieve this is to prevent slow molecules
from entering the hot chamber. The role played by the
demon is therefore to delay equilibrium by preventing
energy from partitioning itself equally between the two
chambers. Compared to the initial state, the forward
process (particles move from hot to cold) cannot reach
an equilibrium with the reverse process (particles move
from cold to hot). This produces a non-stationary pro-
cess. However, since no energy is removed or added, sta-
tionary behavior can be restored by simply disabling the
demon.

We now treat the fluctuations that are created due
to operation of the hypothetical demon. Based on Eqs.
33 and 36 the total mass and energy exchange between
chambers is defined for each timestep δt

δNc =

[
NhAg
Vh

√
kBTh
2πm

− NcAg
Vc

√
kBTc
2πm

e−mv
2
d/2kBTc

]
δt ,

δUc =
mAg√
2πVh

[
Nh

(
kBTh
m

)3/2

−Nc

(
kBTc
m

)3/2(
1 +

mv2
d

2kBTc

)
e−mv

2
d/2kBTc

]
δt ,

(37)

The energy and particle number are updated so that con-
servation is strictly obeyed

Nc(t+ δt)← Nc(t) + δNc ,

Nh(t+ δt)← Nh(t)− δNc ,
Uc(t+ δt)← Uc(t) + δUc ,

Uh(t+ δt)← Uh(t)− δUc . (38)

The system is closed by assuming that Eqs. 21 and 22
hold separately within each sub-region. The initial con-
dition sets equilibrium conditions in each chamber with
1 mol of Helium atoms equally divided between the two
chambers at Td = 298K. The demon is activated at t = 0
with δt = 0.00025 sec. The demon operates until t = 1.0
second, ultimately reaching a steady-state. The differ-
ence in pressures is accounted for by the differential mo-
mentum transfer that results from the demons operation

according to Eqs. 33 – 38. Once steady-state is achieved
the demon is disabled, and the system returns exactly
to its initial state and producing a stationary time se-
ries (See Supplemental Material at [URL will be inserted
by publisher] for complete implementation [42]). For the
results shown in Fig. 4, the system is explicitly ergodic
by construction, since the Maxwell distribution has been
assumed (meaning equipartition of energy is strictly ob-
served within each chamber). At this fast timescale en-
tropy production occurs based on the redistribution of
mass an energy between the two chambers (see Fig. 4a).
We note that molecular rules do not necessarily need to
satisfy positive entropy production, since entropy is a sta-
tistical concept that does not apply at the deterministic
scale of an individual molecule. However, since no heat
is added to the two-chamber system, the Clausius theo-
rem remains valid. Unlike the Carnot engine, the demon
does not require added heat or work to generate the fluc-
tuation. The demon is simply delaying the equilibrium
of the system. Since no energy has been removed from
the system, it can be treated as a reversible process when
considered over longer time intervals.

If the timescale for averaging is small, fluctuations to
intensive properties will be zero based on the fact that
rate of change is locally linear over short timescales.
Fluctuation terms contribute when considering behavior
over long timescales. At the end of the cycle, the en-
tropy and particle number returns exactly to their origi-
nal value, meaning that

∂S

∂t
= 0 ,

∂N c

∂t
= 0. (39)

In other words, zero entropy production is observed when
the system is considered over the longer timescale. In-
serting Eq. 39 into Eq. 31 leads to fluctuation criterion
at long times〈

Si
∂Ti
′

∂t

〉
−
〈
Vi
∂pi
′

∂t

〉
+
〈
Ni
∂µ′i
∂t

〉
= 0 . (40)

This result simply means that thermal fluctuations must
obey conservation of energy, consistent with results es-
tablished from the perspective of microscopic reversibility
[63, 64]. The result is a simple fluctuation theorem that
is distinct from approaches proposed by other treatments
[51–56]. A basic challenge presented by Eq. 40 is that
the fluctuation criterion depends on the total entropy,

since this is needed to compute
〈
Si

∂T ′
i

∂t

〉
. While the

Sackur-Tetrode equation provides an adequate approx-
imation for an ideal gas, the situation for thermal fluc-
tuations is not easily generalized. The demon illustrates
two important features of systems where multi-scale fluc-
tuations are important. First, it defines an energy barrier
that prevents mixing between the hot and cold chambers.
Second, the problem is associated with gradients in an in-
tensive thermodynamic property. We now demonstrate
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the importance of these terms in capillary-dominated sys-
tems, where gradients in composition and chemical po-
tential lead to length scale heterogeneity.

Mass diffusion

The advantages of time-and-space averaging are par-
ticularly intriguing for spatially heterogeneous systems.
In this section we consider the application to mass diffu-
sion, which is a common source of spatial heterogeneity.
Compositional gradients are a key feature in these sys-
tems, and these heterogeneities cause fluctuations when
the system is stimulated. In such cases the fluctua-
tion terms can be directly linked to classical microscopic
non-equilibrium thermodynamics using phenomenologi-
cal equations established based on the theory of Onsager
[57]. Phenomenological equations provide the basis to
establish the rates at which particular processes occur,
linking the temporal, spatial and energy scales. Fick’s
law can be directly recovered at length scales that are
accessible based on molecular dynamics simulations [58].
In the context of Onsager, phenomenological equations
are derived based on a local near-equilibrium assumption.
The associated reciprocal relations can be derived based
on an assumption of microscopic reversibility. These con-
ditions are presumed to hold at the scale of V, since this
scale is defined based on the local diffusion coefficient.
The relevant linear phenomenological equation is Fick’s
law, which is assumed to describe the non-equilibrium
behavior at the small scale of V,

∂ρk
∂t
−∇ · (Dk · ∇µk) = 0 , (41)

where Dk is the mass diffusion tensor, ρk is the density
and µk is chemical potential. Fick’s law asserts that there
is a locally linear non-equilibrium response to composi-
tional gradients. However, we note that in a heteroge-
neous system linear response theory will fail at larger
scales due to non-linearity in the composition, diffusion
coefficient and chemical potential. Such non-linearities
will inevitably lead to anomalous diffusion phenomena,
and associated non-equilibrium behaviors can be under-
stood in terms of multi-scale fluctuations.

Standard non-equilibrium treatment for mass diffu-
sion is obtained by considering the internal energy to
be described by U(S,Nk), with Nk being the number of
molecules of component k. For a closed system Eq. 14
can be written as

∂S

∂t
=

1

T

[〈
S
∂T ′

∂t

〉
− µk

∂Nk

∂t
+
〈
Nk

∂µ′k
∂t

〉]
≥ 0 . (42)

In an isothermal system the temperature fluctuation is
zero. The remaining terms can be directly interpreted

based on Fick’s law,

µk
∂Nk

∂t
−
〈
Nk

∂µ′k
∂t

〉
= µk

∂Nk

∂t
−
〈
Nk

∂(µk − µk)

∂t

〉
= µk

∂Nk

∂t
+Nk

∂µk
∂t
−
〈
Nk

∂µk
∂t

〉
=
∂(µkNk)

∂t
−
∂
〈
µkNk

〉
∂t

+
〈
µk
∂Nk
∂t

〉
.

The first two terms cancel based on the fact that µkNk =〈
µkNk

〉
according to the definition given in Eq. 9. Now

assuming that Fick’s law holds at the microscopic scale
with ρk = Nk/V, we arrive at

1

V

〈
µk
∂Nk
∂t

〉
=
〈
µk∇ · (Dk · ∇µk)

〉
. (43)

Inserting this into Eq. 42 it is evident that the dissipa-
tion is entirely determined from the contribution of the
spatial gradients. In other words, the length scale as-
sociated with gradients is fundamentally linked with the
timescale for energy dissipation based on the phenomeno-
logical coefficient. Furthermore, assuming Fick’s law at
the microscopic scale does not imply it will hold at larger
scales. To see this we can formally average the right-hand
side of Eq. 43,〈
µk∇ · (Dk · ∇µk)

〉
= µk∇ · (Dk · ∇µk) + µk∇ ·

(
Dk · ∇

〈
µ′k
〉)

+µk

〈
∇ · (D′k · ∇µk)

〉
+
〈
µ′k∇ · (Dk · ∇µk)

〉
.

Scale invariance for Fick’s law will therefore be obtained
if the following conditions are satisfied〈

∇µ′k
〉

= 0 , (44)〈
∇ · (D′k · ∇µk)

〉
= 0 , (45)〈

µ′k∇ · (Dk · ∇µk)
〉

= 0 , (46)

where the deviation for the diffusion tensor is D′k = Dk−
Dk. In ideal systems the chemical potential is directly
related to the density,

µ = µ0 +RT ln(ρ/ρ0) , (47)

with µ0 and ρ0 being constant reference values. Ideal
conditions imply that Eq. 44 must hold due to the def-
inition of ρk. Eq. 45 will hold if Dk is independent of
space and time, since this would mean that D′k = 0. Fi-
nally, Eq. 46 suggests that the existence of gradients
in Dk or µk that have a length scale smaller than Ω will
cause Fick’s law to fail at the averaged scale, as will tran-
sient changes to these gradients that occur faster than the
averaging timescale Λ. At the intuitive level, these crite-
ria require that the diffusion coefficient, composition and
chemical potential should vary only linearly over Λ and
Ω. For such cases the fluctuation terms disappear and
Fick’s law will hold in the larger-scale system. However,
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in real systems non-Fickian behaviour is quite common
[59–61]. Diffusive and dispersive processes within com-
plex micro-structure give rise to the development of het-
erogeneous structures, including fractals, based on local
instabilities and material heterogeneity [62]. The impli-
cation is that Eqs. 44 and 45 do not hold under typical
conditions, since mass transport routinely leads to tran-
sient spatial heterogeneity for the composition, chemical
potential, and diffusion coefficient.

Capillary fluctuations

In heterogeneous systems it is common for chemical po-
tential gradients to exist at multiple length scales. Mul-
tiphase systems arise due to the dependence of µ on com-
position, e.g. in the Cahn-Hilliard equations,

µ = φ3 − φ− γ∇2φ . (48)

The order parameter φ = ρ − (ρ∗l + ρ∗g)/2, where the
equilibrium densities for the liquid and gas are ρ∗l and
ρ∗g. The parameter γ determines the width of the inter-
face separating the two pure phase regions. It is entirely
possible to describe multiphase systems using Eq. 48 in
combination with Eq. 42. As a matter of convenience,
we can also describe the thermodynamics of the system
by considering Eq. 2 in the form

U = U(S, Vw, Vn, Awn) , (49)

where Vw and Vn are the volume of the droplet and the
surrounding fluid and Awn is the interfacial area between
fluids. The associated intensive variables are the pres-
sures pw and pn and the interfacial tension γwn. Averag-
ing in time and space we assume: (1) isothermal condi-
tions; (2) constant interfacial tension; (3) the volume of
each fluid is constant; and (4) compositional effects are
negligible. Subject to these restrictions Eq. 14 simplifies
to

∂S

∂t
= − 1

T

[〈
Vw

∂p′w
∂t

〉
+
〈
Vn
∂p′n
∂t

〉
+ γwn

∂Awn
∂t

]
≥ 0 .

(50)
Dissipative effects are understood by considering the fluc-
tuation of the fluid pressures that are induced by the
spontaneous change in surface energy.

The coalescence of two fluid droplets represents one
the simplest examples of topological change in fluid me-
chanics. The topological event induces an apparent sin-
gularity followed by a cascade of energy dissipation gov-
erned by distinct scaling regimes as the system estab-
lishes a new equilibrium. At equilibrium, the fluid pres-
sures and interface curvature are related based on the
Young-Laplace equation

pn − pw = γwn

(
1

R1
+

1

R2

)
, (51)

FIG. 5. Droplet coalescence leads to fluctuations in the pres-
sure field (color) due to the rapid change in capillary forces.
Scaling for the coalescence event is limited by viscous forces
during the initial bridge formation, and is dominated by in-
ertial forces at late times.

where R1 and R2 are the principal curvatures along the
interface between fluids. Detailed studies of the droplet
coalescence mechanism show that the flow behavior and
associated geometric evolution are coupled on a very fast
timescale [65–72]. At the molecular level, coalescence is
initiated based on thermal effects [73]. Hydrodynamic
effects become dominant after approximately 30 picosec-
onds, based on the formation of a bridge that joins the
droplets. The ensuing dynamics can be separated into
two distinct regimes [71]. At early times, viscous effects
dominate and the growth of the bridge radius scales as

r

rc
∼ t

τc
, (52)

where τc is the crossover time and rc is the associated
length scale. At late times, inertial effects dominate and
the growth of the bridge radius scales as

r

rc
∼
√

t

τc
. (53)

Analogous results have been obtained for droplet snap-off
[37]. The rate of entropy production will be a non-linear
function of time based on the crossover between the two
regimes. The non-equilibrium response is therefore non-
linear. Averaging in time and space can be applied to
homogenize these non-linear dynamics so that they can
be treated explicitly as energy fluctuations.

The sequence depicted in Fig. 5 shows the effect of the
coalescence event on the fluid pressure field as simulated
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by a lattice Boltzmann model [74]. Results demonstrate
that simulation accurately recovers the predicted scaling
behavior. In Fig. 5 the pressure field p∗i = piRf/γwn, is
normalized relative to the final droplet radius, Rf = 80
voxels. Non-equilibrium effects develop in response to the
near instantaneous curvature disruption along the inter-
face at the point where the droplets first touch. The asso-
ciated pressure shock drives the ensuing dynamics. The
behavior is non-ergodic because capillary energy barriers
inhibit the thermal mixing between the droplets prior to
the event. Rapid mixing occurs after coalescence, once
the energy barrier separating the two droplets has been
destroyed.

Thermal fluctuations due to molecular effects are usu-
ally assumed to be stationary with respect to time as a
consequence of the time reversibility of the Hamiltonian
at the molecular level [22]. Capillary fluctuations are dis-
tinct from thermal fluctuations due to the fact that they
are inherently cooperative in nature, are linked to both
reversible and irreversible energy transfer. Symmetry-
breaking is a consequence of the structural rearrangement
associated with the transition to a new local minimum
energy configuration. For a closed system the dissipated
energy is easily calculated from the initial and final con-
figurations, since at equilibrium the droplets are spheri-
cal,

∆S =
1

T

(
Vw∆pw + Vn∆pn − γwn∆Awn

)
. (54)

The radius for the initial and final droplets can be com-
puted analytically based on the volume, making use of
the Young-Laplace equation to determine the equilibrium
fluid pressures.

The rate of energy change associated with capillary
fluctuations is shown in Figure 6. The timescale is nor-
malized by the crossover time, τc, which can be consid-
ered as defining the intrinsic timescale for coalescence.
In our analysis, the full system is used as the domain for
spatial averaging and the time interval is Λ = 0.108τc.
Since this timescale is faster than the non-linear dynam-
ics, the frequency for the fluctuations is directly visible in
Figure 6a. The energy scale is normalized based on the
interfacial tension and the capillary length scale, which
is accomplished by dividing the energy associated with
capillary fluctuations final surface energy 4πγwnR

2
f . The

scales in Fig. 6 are therefore non-dimensional. From Eq.
50 it is clear that the changes in surface energy are driv-
ing the fluctuations. Immediately after coalescence, in-
terfaces perform local work against the fluid pressure due
to unbalanced capillary forces. The pressure fluctuation
terms are understood as resulting from local gradients in
the pressure field that are generated due to the curva-
ture discontinuity. These gradients are clearly visible in
Fig. 5. Since the initial and final droplet states have dif-
ferent capillary pressure, the pressure fluctuation is not
stationary over the event. Nevertheless, a degree of sym-

metry is clear based on the mirroring effect between the
pressure fluctuation in one fluid and the other. This sug-
gests that the choice to represent the system in a discrete
way introduces asymmetry into the system description.
The Gibb’s dividing surface sub-divides the system into
distinct sub-regions for each fluid, each with its own pres-
sure. While topological changes such as droplet coales-
cence are fundamentally discrete events when considered
from the perspective of set theory, set construction is a
choice imposed on the system, as opposed to an underly-
ing property of the physical system itself. Set operations
are the basis for separately defining pw and pn. Detailed
balance is not evident when the fluids are considered sep-
arately, since irreversible energy exchanges occur between
the fluids due to cooperative rearrangement of the inter-
face. For this reason symmetry is a property of the global
system and not a property of the sub-regions.

Pressure fluctuations are multiscale rate effects that
arise due to spatial heterogeneity. The length scale as-
sociated with the heterogeneity is the driving factor that
determines the spectral properties. Due to length scale
effects the noise signature associated with capillary fluc-
tuations is distinct from pink noise, where the relation-
ship between the spectral density SP and frequency F is
SP ∼ 1/F [75–77]. For the data shown in Fig. 6, the
time and energy scales are non-dimensionalized as de-
scribed previously. A simple power law is insufficient to
describe noise due to capillary fluctuations. Instead, we
find that the scaling relationship is a stretched exponen-
tial,

logSP ∼ αF p . (55)

The coefficients α and p are associated with the rate
of decay in the spectral density as the frequency in-
creases. SP decays rapidly with F for frequencies that
are faster than a typical event. This can be considered
as a transition between two distinct scaling regimes. At
the length and time scale for the coalescence event the
behavior is super-diffusive based on the fact that coop-
erative capillary forces move mass faster than the local
diffusion rate. Ultimately the capillary forces that drive
these events originate due to gradients in composition at
smaller scales. At smaller length scales sub-diffusive be-
havior is obtained based on the strong anti-diffusion asso-
ciated with the interface region. The crossover between
these distinct scaling regimes leads to a corresponding
transition in the fluctuation spectrum. For droplet co-
alescence α = −15 and p = 1/2 match well with the
simulated fluctuation spectrum.

The scaling relationship given by Eq. 55 also holds
for immiscible displacement in porous media. Cooper-
ative events occur routinely as fluids migrate through
complex micro-structure under the influence of capillary
forces [31]. Experimental data demonstrates that the
timescale for these events is directly linked to the fre-
quency for fluctuations in the pressure signal [78]. Re-
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FIG. 6. Pressure fluctuation due to the coalescence of two fluid droplets. (a) rate of energy change associated with pressure
fluctuation relative to the final surface energy during droplet coalescence event; and (b) noise spectrum associated with capillary
fluctuations can be predicted by logSP ∼ αF p.

sults shown in Fig. 7 were obtained using synchrotron
micro-tomography imaging. For complete experimental
details the reader is referred to Berg et al. [28]. The
system was initially saturated with brine, and oil was
injected into the sample at a rate of 0.35 µL/minute.
Pressure transducer measurements were collected at an
interval ∆t = 0.32 sec. The absolute permeability for the
Berea sandstone was κ = 0.7 µm2. Initial and final states
for a pore-scale event known as a Haines jump are shown
in Fig. 7A and 7B. Haines jumps are spontaneous events
that occur when the fluid meniscus passes through nar-
row pore throats within the solid micro-structure, where
the capillary pressure is high. As fluid spontaneously
flows into the adjacent pore body, the capillary pressure
drops rapidly causing a fluctuation in the signal. The
timescale for pore-scale events is controlled by the solid
micro-structure, which means that the statistics for the
associated noise signal are linked to length scale hetero-
geneity within the system. In spite of this considerable
complexity, the scaling behavior is predicted from Eq. 55
with identical coefficients to the droplet coalescence. In
the spectral analysis, a non-dimensional timescale for the
experiments can be defined as

t∗ =
γwnt

µ
√
κ
, (56)

where µ = 0.89 mN · s/m2 and γwn = 25 mN/m. Since
the permeability is related to the microscopic length
scale, a non-dimensional energy scale can be defined by
normalizing based on γwnκ. Averaging over a longer time
interval reduces the amplitude of the fluctuations, but
does not change α and p. Both droplet coalescence and
Haines jump events are examples of critical phenomena.
The length scale for an individual Haines jump is con-
trolled by the solid microstructure, and a single event

may cause fluids to invade multiple pores very rapidly,
as shown in Fig. 7A–B. The timescale for pressure fluc-
tuations is therefore determined based on the distribu-
tion of length scales for the solid microstructure, which
is typically very heterogeneous. It should be expected
that the distribution of fluids will exert strong influence
on the fluctuation spectrum, as the probability for fluid
coalescence events depends on how mass is distributed
within the solid micro-structure. Further study is needed
to understand if universal coefficients can be established
in heterogeneous systems. As in droplet coalescence, the
pressure fluctuations are non-stationary. For the data
shown in Fig. 7 the net contribution from fluctuations
is 7.84% of the total pressure-volume work when consid-
ered over Λ = 512 seconds. In this situation fluctuation
terms must be included explicitly in the non-equilibrium
thermodynamics, since these terms are needed to state
conservation of energy for the system.

Summary and Conclusions

We derive non-equilibrium thermodynamic expres-
sions using time-and-space averaging, showing that fluc-
tuations occur due to non-linear dynamics associated
with the intensive variables. Considering a particular
timescale of interest, the approach is constructed to treat
systems that are ergodic at small length scales but non-
ergodic at larger scales. Time and space averages are
formulated by directly integrating the energy dynamics,
meaning that the actual system evolution is captured
within the averaged representation. The approach is
scale-consistent based on the fact that thermodynamic
quantities retain their physical meaning, and the form
of the Euler equation will independent of the length and
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FIG. 7. Capillary fluctuations during displacement in porous media are linked with spontaneous pore-scale events that occur due
to capillary forces within the solid micro-structure. Haines jumps occur spontaneously during immiscible displacement as the
system “jumps” from (a) one energy minimum to (b) the subsequent quasi-static configuration; (c) fluid pressure fluctuations
arise due to these dynamics; and (d) scaling behavior for the power spectrum is independent of the time averaging interval.

time scales. Fluctuations are linked with sub-scale gra-
dients in systems that exhibit multiscale heterogeneity.
When stimulated, these systems have a tendency to relax
toward equilibrium at macroscopically slow timescales
determined based on the length scale associated with
the gradients. We illustrate how anomalous diffusion can
arise in a system where Fick’s law applies at some small
length scale, but fails at larger scales due spatial het-
erogeneity. Explicit conditions for scale invariance are
obtained.

Averages in time demonstrate that the rate of entropy
production is scale dependent, e.g. due to crossover times
that are frequently encountered when considering the
dynamic response of heterogeneous systems. For any
stationary process, the time average of the rate of en-
tropy production is zero, since net changes to any ther-
modynamic state function imply that a system is non-
stationary. Averaging does not alter the interpretation
for the Clausius theorem, since averages are constructed
based on conservation of energy. Treatment of station-
ary processes is thereby simplified, since dissipation is ex-

pressed in terms of the rate of work and heat exchange,
which are linked to fluctuations based on the internal
energy dynamics of the system. We consider basic appli-
cations to the Carnot cycle and to Maxwell’s demon to
illustrate how thermodynamic cycles can can be under-
stood in the context of fluctuations.

More generally, fluctuations describe the internal en-
ergy dynamics of thermodynamic systems away from
equilibrium. Since fluctuations must conserve energy,
symmetry laws can be derived relating fluctuations
within heterogeneous systems. These statements gov-
ern the possible energy transfers that can occur within
non-equilibrium systems. In contrast with thermal fluc-
tuations, multiscale fluctuations are linked with coopera-
tive events and therefore may not obey detailed balance.
Non-stationary fluctuations occur when there are net en-
ergy transfers within a system. We consider droplet co-
alescence as a clear example of a non-equilibrium sys-
tem where multiple crossover times are present. In con-
trast with a thermodynamic cycle, droplet coalescence is
non-stationary based on the fact that entropy produc-
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tion occurs. Considering coalescence along with immis-
cible displacement in porous media, we show that cap-
illary fluctuations can be predicted by a simple scaling
law, logSP ∼ αF p, with α = −15 and p = 1/2 match-
ing the fluctuation spectrum in both cases. Multiscale
fluctuations are extensible to other systems where gradi-
ents in composition, chemical potential, and other inten-
sive variables are operative at a scale smaller than the
scale of interest. Classes of non-ergodic behavior that
are defined by macroscopically slow physics are particu-
larly relevant. The formulation is based on classical ther-
modynamic theory, and defines fluctuations in terms of
standard quantities that are straightforward to measure
in a practical setting.
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