
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Model of spontaneous droplet transport on a soft
viscoelastic substrate with nonuniform thickness

S. I. Tamim and J. B. Bostwick
Phys. Rev. E 104, 034611 — Published 24 September 2021

DOI: 10.1103/PhysRevE.104.034611

https://dx.doi.org/10.1103/PhysRevE.104.034611


A model of spontaneous droplet transport on a

soft viscoelastic substrate with non-uniform thickness

S. I. Tamim and J. B. Bostwick
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA.

Dynamic wetting of droplets on soft solids has many industrial and biological applications which
require an understanding of the underlying fluid transport mechanism. Here, we study the case of a
droplet on a viscoelastic substrate of variable thickness which is known to give rise to a spontaneous
droplet transport. This phenomenon is known as droplet durotaxis and has been observed experi-
mentally. Here we develop a model assuming a small linear gradient in substrate thickness to reveal
the physical mechanism behind this transport phenomena. We show the variable thickness causes
an asymmetric deformation along the drop contact line which causes a variation in the contact
angle. This generates a net driving force on the drop causing it to move in the direction of higher
thickness. The resulting drop velocity is determined by balancing the work done by the moving
drop with the viscoelastic dissipation of the substrate (viscoelastic braking), and computed from
a self-consistent model. We find our results to be in qualitative agreement to previously reported
experimental findings.

I. INTRODUCTION

Soft surfaces that are easily deformed by capillary
forces from a liquid droplet show many unique phenom-
ena during fluid-solid interactions, such as viscosity in-
dependent spreading, stick-slip behavior, and swelling in-
duced deformation [1–5]. The recent review by Andreotti
et al. [6] provides an overview of the unique physics as-
sociated with the various cases of static and dynamic
wetting of soft solids as relevant to numerous industrial
applications such as controlled droplet manipulation in
microfluidics [7], enhanced condensation [8] and evapora-
tion [9]. Spontaneous droplet transport on soft surfaces
has received much attention recently as motivated by the
different forms of mechanotaxis found in nature [10–12].
This includes droplet durotaxis, as reported by Style et
al. [10], in which a drop is spontaneously transported
across a soft substrate with gradient in thickness. In this
work, we study droplet durotaxis by developing a theo-
retical model to better understand the physics of drop
transport in this phenomena.

Droplet durotaxis is inspired by a more general duro-
taxis phenomenon where living cells tend to move along
gradients in rigidity of their underlying soft substrate
[13–15]. Recently, similar behavior have been demon-
strated in droplets to create patterns on soft solids [10].
In this experiment, small glycerol drops were placed on
a soft silicone substrate with a thickness gradient and it
was found that drops spontaneously moved towards the
thicker regions of the substrate. They also noted that the
direction of drop motion was opposite to what is observed
in living cells. Here, we illustrate how elastocapillary de-
formation can give rise to such motions.

We briefly illustrate the physics of soft wetting. Con-
sider the canonical case of a drop resting on a solid sub-
strate. Here, the three phase contact line of the liquid
droplet forms an equilibrium contact angle α with the
solid, which is determined by the classical force balance

equation by Young-Dupre [16, 17],

γls + γlg cosα = γsg. (1)

Here, γls, γlg, and γsg are the liquid/solid, liquid/gas,
and solid/gas surface tensions, respectively. Note there
is a vertical component of γlg that remains unbalanced
and causes the substrate to deform at the contact line.
This deformation has size defined by the elastocapillary
lengthscale ℓe = γlg/E, where E is the elastic modulus
of the substrate. For wetting by droplets, ℓe can be com-
parable to the size of drop and in this case, the contact
line deformation in the solid becomes significant. The
substrate is pulled upwards at the contact line forming
a wetting ridge which takes the shape of a triangular
cusp [21–23]. The capillary pressure inside the droplet
causes the wetting ridge to rotate and change orienta-
tion. This rotation also changes the macroscopic contact
angle α, which is the angle liquid/gas interface makes
with the horizontal line (cf. Fig. 1). As the drop de-
forms, the equilibrium force balance at the contact line
deviates from Young’s law (1) and obeys Neumann’s law
for liquid/liquid wetting [24, 25] and is given by,

~γlg + ~γsg + ~γsl = ~0. (2)

For dynamic wetting with a moving contact line, the
exact description of force equilibrium can become more
complicated [26, 27]. This difficulty arises partly due
to fact that the solid surface tension is usually not a
constant material property, but rather a function of the
applied strain. This strain-dependence is known as the
Shuttleworth effect [28] and needs to be considered for
cases of large strain in stretched materials [29, 30]. In
this work, we follow Karpitschka et al. [31] in assum-
ing a constant solid surface tension and use Neumann’s
force balance at the contact line during dynamic wetting.
This is justified given the slow velocities associated with
droplet durotaxis and allows us to neglect the Shuttle-
worth effect. The surface tension of a soft solid is also
known to have non-trivial contribution to the deformed
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FIG. 1. Orientation of the triangular cusp formed at the tip
of the wetting ridge. Macroscopic solid/liquid contact angle
α changes as the cusp rotates throught a tilt angle φ which
depends upon the elastic response of the solid substrate. The
solid angle formed inside the cusp is denoted as θs.

shape of its interface [18–20] and we include that effect
in our model.

Previous researchers have demonstrated the depen-
dence of the wetting ridge geometry on the subtrate
thickness, especially for small size droplets [32, 33]. As
such, one could expect an asymmetric deformation of the
wetting ridge, and equivalently a contact angle asymme-
try, for drops on substrate with thickness gradient. Con-
tact angle asymmetry created by wettability gradients
on rigid solids have long been known to generate droplet
motion[34–37]. Droplet motion on soft solids have re-
ceived limited attention so far, in contrast to that on
rigid solids. Recently, Bardall et al. [38] have studied
the possibility of propelling droplets along soft interfaces
using either a stiffness gradient or a surface tension gradi-
ent. Molecular dynamics studies have also demonstrated
the promise of droplet durotaxis by studying the effect
of stiffness gradients [39]. Direct numerical simulations
have shown the relation between drop velocity and con-
tact angle during motion, proving that contact angle vari-
ation drives the drop motion [40].

Drop motion on soft solids like polymeric gels are
known to be strongly dependent on the viscous dissipa-
tion within the solid, rather than the liquid [31, 41–43].
In our model, we assume the substrate to be a linear vis-
coelastic material with a power-law rheology and com-
pute the response due to the interaction with a liquid
drop moving along the free surface with a constant ve-
locity. We assume the liquid viscosity to be small and
the drop to retain its spherical cap shape. Here, the liq-
uid only interacts with the solid through surface tension
forces applied at the contact line and capillary pressure
applied along the wet interface.

In this paper, we build upon the number of static de-
formation models that calculate the symmetric deforma-
tion profile of the wetting ridge [32, 33, 44, 45] by in-
troducing a variable substrate thickness that results in
an asymmetric deformation profile. To simplify our re-
sults and focus on the physics of transport we consider a
two-dimensional solid-liquid interface and incorporate a
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FIG. 2. Definition sketch showing a 2-D liquid droplet of
radius R in contact with the free surface of a solid substrate
with a variable thickness −h+ κx. The drop applies surface
tension forces on the solid at the contact line x = R and bulk
fluid pressure along the length of the droplet.

small unidirectional gradient to the substrate thickness
using a boundary perturbation method [46]. This allows
us to apply integral transform methods to solve the vis-
coelastic boundary value problem, in an approach similar
to the classic correspondence principle [47]. Our solu-
tion delivers the solid deformation profile and advanc-
ing/receding macroscopic contact angles, from which we
show that the local equilibrium conditions at these two
contact points generate a driving force in the direction of
the gradient. This driving force is balanced by the vis-
cous dissipation in the solid, giving rise to a steady drop
velocity, which we calculate in a self-consistent manner.
Our results show reasonable agreement with previously
reported experiments. Lastly, we provide some conclud-
ing remarks including future directions.

II. FORMULATION OF DYNAMIC WETTING

PROBLEM

Consider the two-dimensional geometry shown in
Fig. 2 in which a liquid droplet is in contact with the
free surface of a soft viscoelastic substrate fixed to a rigid
base. The soft substrate has a thickness h at the center
of the droplet of radius R. The system shown in Fig. 2 is
a moving reference frame with velocity v where the ver-
tical axis always passes through the center of the drop.
This is related to a fixed reference frame (x′) through
the relation, x′ = x − vt. Here, we are interested in the
case of spontaneous drop motion along the solid inter-
face which arises due to a small thickness gradient κ on
the substrate. We consider a linear gradient in thickness
from the left to the right side of droplet which implies the
base of the substrate is located at z = −h+κx. Based on
experimental observations of such cases we make a num-
ber of approximations to simplify the problem. First, the
drop is assumed to not deform, i.e., spread, such that the
wetted radius R is always maintained. We also limit our
analysis to small velocities which allows us to assume a
translational velocity v that is independent of time. In
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this case the liquid interacts with the solid through sur-
face tension forces only and the balance of these forces
at the contact point creates a local equilibrium contact
angle α.
The solid substrate is assumed to be linear viscoelas-

tic with a time-dependent stress-strain relationship given
by [48],

Tij(t) = 2

∫ t

−∞

µ(t− t′)
∂εij(t

′)

∂t′
dt′

+ δij

∫ t

−∞

λ(t− t′)
∂εkk(t

′)

∂t′
dt′,

(3)

where µ and λ are relaxation moduli related to shear
and bulk deformation, respectively. They are related to
each other through a constant Poisson’s ratio ν as, λ =
2µν/(1− 2ν).
The strain field εij is related to the two-dimensional

displacement field u = ux(x, z)êx + uz(x, z)êz as,

εij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

, (4)

Since we expect fluid motion to be in the low Reynolds
number regime, i.e., negligible inertia effects, we can as-
sume a quasi-steady state of motion defined by the equi-
librium condition,

∇ ·T = 0. (5)

A. Boundary Conditions

At the rigid base z = −h + κx, a zero displacement
condition is enforced,

ux(x,−h+ κx, t) = 0, uz(x,−h+ κx, t) = 0. (6)

Stress continuity is enforced at the free surface z = 0
where the normal stress is balanced by the contributions
from Laplace pressure due to curvature of the solid sur-
face and the contact line forces from the droplet,

Tzz(x, 0, t) = γs
∂2uz(x, 0, t)

∂x2
+ Fcl(x, t). (7)

Here, we assume a neutrally wetting substrate with the
solid surface tension on the dry and wet side being equal,
γls = γsg ≡ γs. In this case, a point load directed ver-
tically upwards and a uniformly distributed line load in
the opposite direction along the length of the droplet con-
stitute the contact line force being applied by the liquid
drop. This combined loading is described as,

Fcl(x, t) = γlg

(

δ(R− |x− vt|)− 1

R
H(R− |x− vt|)

)

,

(8)
where δ and H are the Dirac Delta and Heaviside Theta
functions, respectively. Finally, we consider the solid sur-
face to be free of shear,

Txz(x, 0, t) = 0. (9)

III. SOLUTION METHOD

A. Frequency domain

The boundary value problem is converted from the
time domain to the frequency domain ω by the Fourier
transform [49],

f̃(ω) =
1√
2π

∫

∞

−∞

f(t)e−iωtdt,

f(t) =
1√
2π

∫

∞

−∞

f̃(ω)eiωtdω.

(10)

Applying Eq. (10) to Eq. (3) gives,

T̃ij(ω) = 2µ̃(ω)ε̃ij(ω) + δij λ̃(ω)ε̃kk(ω), (11)

Here, µ̃(ω) is defined as [31, 42],

µ̃(ω) = iω

∫

∞

0

Ψ(t)e−iωtdt, (12)

where the relaxation function Ψ depends upon the rhe-
ology of the viscoelastic material. For cross-linked poly-
mers, such as silicone gels, it follows the power-law rela-
tion [31],

Ψ(t) = µ0[1 + Γ(1− n)−1
(τ

t

)n

], (13)

which yields,

µ̃(ω) = µo[1 + (iωτ)n]. (14)

Here, µo is the static shear modulus, Γ the gamma func-
tion, τ the viscoelastic relaxation timescale, and n the
power-law exponent. The classic Kelvin-Voigt model is
recovered at n = 1. In this work, we consider the case
where solid viscosity is much larger than the fluid vis-
cosity µ0τ > ηf , and thus droplet transport is governed
primarily by the solid response. Using the stress-strain
relation (11) we get the frequency dependent equilibrium
equation,

(1− 2ν)∇2
ũ+∇(∇ · ũ) = 0. (15)

We express the displacement field ũ(x, z) in terms of the
Galerkin vector G(x, z) [50] as,

ũ = 2(1− ν)∆G̃−∇(∇ · G̃), (16)

where, G̃(x, z) = ζ̃(x, z)êz. Applying Eq. (16) to the
governing equation (15) results in a biharmonic equation

for the potential function ζ̃(x, z),

∇4ζ̃(x, z) = 0. (17)
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B. Boundary perturbation

We assume the thickness gradient κ to be a small pa-
rameter and expand the boundary condition (6) at the
rigid base to first order of κ,

ũ(−h+ κx) ≈ ũ(−h) + κx
∂ũ

∂z

∣

∣

∣

∣

z=−h

= 0. (18)

Then we consider an asymptotic expansion of the prob-
lem in terms of κ,

ũ = ũ0 + κũ1, T̃ = T̃0 + κT̃1, ζ̃ = ζ̃0 + κζ̃1. (19)

C. Scaling and non-dimensional groups

All lengths are scaled by the droplet radius R and
wavenumbers by 1/R in the problem. Also, time is scaled
with the relaxation timescale τ and frequency by 1/τ ,

x = xR, z = zR, s = s/R, t = tτ, ω = ω/τ,

ho = hoR, h = hR, u = uR, v =
vR

τ
.

(20)

In the following sections, bars are dropped from the
scaled variables for simplicity. This choice of scaling
yields the following non-dimensional groups,

Γs =
γs
µoR

: Solid elastocapillary number

Γl =
γlg
µoR

: Liquid elastocapillary number

Λ =
ho

R
: Aspect ratio

D. Zeroth order problem

First, we derive the zeroth order base solution which
refers to constant thickness, i.e., κ = 0. The dimension-
less boundary value problem at this order is,

∇4ζ̃0 = 0, (21a)

T̃zz0

∣

∣

∣

z=0
= Γs

∂2ũz0

∂x2

∣

∣

∣

∣

∣

z=0

+ ΓlF̃cl, (21b)

T̃zx0

∣

∣

∣

z=0
= 0, (21c)

ũx0|z=−Λ = ũz0|z=−Λ = 0. (21d)

To solve these equations we introduce the spatial
Fourier transform pair between horizontal length x and
wavenumber s,

f̃(s) =
1√
2π

∫

∞

−∞

f(x)eisxdx,

f(x) =
1√
2π

∫

∞

−∞

f̃(s)e−isxds,

(22)

which when applied to the biharmonic equation (21a)

results in an ordinary differential equation for ˆ̃ζ0(s, z, ω),

(

d2

dz2
− s2

)2
ˆ̃
ζ0 = 0. (23)

E. Zeroth order solution

The general solution of Eq. (23) is given by,

ˆ̃ζ0(s, z) = (A+Bsz) cosh(sz)+(C+Dsz) sinh(sz), (24)

with the constants A,B,C,D to be determined from the
boundary conditions in Eqs. (21b)-(21d),

(ˆ̃ux0(s,−Λ), ˆ̃uz0(s,−Λ)) = 0, (25a)

ˆ̃Tzz0(s, 0) + Γss
2 ˆ̃uz0(s, 0) = Γl

ˆ̃Fcl(s, ω), (25b)

ˆ̃Txz0(s, 0) = 0. (25c)

Solution of the linear system of equations in Eq. (25)
gives the unknowns A,B,C,D. Then the transformed
displacement at the free surface z = 0 is given by
Eq. (16). In what follows we report the solution cor-
responding to incompressible materials ν = 0.5, as this
represents most soft materials used in experiment. The
vertical and horizontal components of the transformed
deformation are given by,

ˆ̃uz0(s, z, ω) =
Γl

ˆ̃Fcl(s, ω)Nz(s, z)

M(s, ω)
, (26a)

ˆ̃ux0(s, z, ω) = −i
Γl

ˆ̃Fcl(s, ω)Nx(s, z)

M(s, ω)
. (26b)

The definition of the functions M(s, ω), Nz(s, z), and
Nx(s, z) are given in the Appendix A.

The Dirac delta function appearing in Eq. (26) has the
following property,

∫

∞

−∞

f(ω)δ(ω − ω0)dω = f(ω0). (27)

This allows us to compute the inverse transform of the
deformation field by a single integral such as,

u0(x, z) =
1√
2π

∫

∞

−∞

û0(s, z,−sv)e−is(x−vt)ds. (28)
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F. First order solution

The dimensionless governing equation and boundary
conditions at O(κ) is given by,

∇4ζ̃1 = 0, (29a)

T̃zz1|z=0 = Γs
∂2ũz1

∂x2

∣

∣

∣

z=0
, (29b)

T̃xz1|z=0 = 0, (29c)

ũx1|z=−Λ = −x
∂ũx0

∂z

∣

∣

∣

z=−Λ
, (29d)

ũz1|z=−Λ = −x
∂ũz0

∂z

∣

∣

∣

z=−Λ
. (29e)

The functions ∂ũz0

∂z and ∂ũx0

∂z that are determined from
the zeroth order solution.
We take the general solution of Eq. (29a) to be,

ζ̃1 = e−ix((E + Fx) cosh z + (G+Hx) sinh z) (30)

The first order deformation components at z = 0 in the
transformed space are given by,

ũz1 =
8eix

ω

v xΛΓl
ˆ̃Fcl(−ω

v , ω)Pz(ω, z)

πM(−ω
v , ω)Q(ω, z)

, (31a)

ũx1 =
i8eix

ω

v xΛΓl
ˆ̃Fcl(−ω

v , ω)Px(ω, z)

πM(−ω
v , ω)Q(ω, z)

. (31b)

Defining ω = −sv we can compute the first order in-
verse transformed solutions by the same integral as shown
in Eq. (28) and combine with the zeroth order solution
to obtain the full deformation field. The functions Px,
Pz , and Q are given in the Appendix A.

IV. RESULTS

A. Deformation of solid substrate

Fig. 3 shows the vertical deformation profiles of the
solid at the free surface uz(x, 0) due to a resting liquid
droplet. The results are presented here in a moving refer-
ence frame putting x = vt. Fig. 3(a) shows that deforma-
tion is symmetric at two sides of droplet for κ = 0. For
κ > 0, this symmetry is broken as the liquid drop tends
to deform the thicker side of the substrate more than
the thinner side. The effect of viscoelasticity on the de-
formation is illustrated in Fig. 3(b) by plotting uz(x, 0)
as it depends on dimensionless velocity v. Recall that
the viscoelastic timescale is implied within v due to our
choice of scaling. We find that increased viscoelastic ef-
fects would lead to a decrease in the overall deformation
of the solid by the droplet.
The asymmetric deformation caused by the thickness

gradient induces a spontaneous motion on the droplet

(a)
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FIG. 3. Vertical deformation uz of a soft substrate at the
liquid/solid interface z = 0 as it depends upon (a) thickness
gradient κ (Λ = 1,Γs = 1,Γl = 2, v = 0) and (b) dimension-
less velocity v (Λ = 1,Γs = 1,Γl = 2, κ = 0.3, n = 0.5).

and makes it move towards the direction of higher thick-
ness. This motion is driven by a variation in the macro-
scopic contact angles α at the two contact points (c.f.
Fig. 1) that is a result of the asymmetry in deformation
at the contact line region. It is known that the solid
wetting ridge shown in Fig. 1 assumes a universally tri-
angular shape in the region very close to the contact line
x → 1 and undergoes a rotation that depends on the as-
pect ratio of the system [22]. Now, it is possible to obtain
the liquid contact angle directly from the rotation φ of the
wetting ridge given that the surface tension forces main-
tain a local equilibrium. This equilibrium would hold at
the contact line of a moving droplet if the solid angle θs
formed within the substrate at the contact line remain
constant for different velocities. For a neutrally wetting
substrate we have the simple relation, α + φ = π

2 . We
can calculate both φ and θs from the discontinuity of the
surface slope u

′

z(x, 0) at the contact line which is given
in Appendix B.

We find the cusp rotation angle φ to be sensitive to
the aspect ratio which makes the macroscopic contact
angle α vary along the contact line, given a thickness
gradient exists. We refer to the contact angle on the
higher thickness side as the advancing angle αa and the
one on the lower thickness side as the receding angle αr.
In Fig. 4(a) we plot these angles against aspect ratio Λ
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FIG. 4. (a) Advancing (αa) and receding (αr) receding con-
tact angles of the drop in degrees plotted against the aspect
ratio Λ. Here κ = 0.25. (b) Dimensionless driving force
∆ cosα against Λ for different thickness gradient κ. In both
figures, v = 0,Γs = 0.5,Γl = 2.

showing that both of the contact angles decrease as Λ
increases, which results from increased rotation of the
triangular cusp at the contact line. We note that the
difference between the two angles is also inversely related
to Λ and this difference approaches zero for large aspect
ratio. As mentioned above, this calculation relies upon
constant θs for all v, which we verify in Appendix C.
The difference in contact angles created by the thick-

ness gradient generates an unbalanced horizontal force
in the direction of lower contact angle, which drives the
droplet. This driving force per unit length is,

Fd = γlg(cosαa − cosαr), (32)

Fig. 4(b) plots ∆ cosα = cosαa − cosαr against Λ
showing a decreased driving force with increasing sub-
strate thickness. This reduction in the driving force pre-
dicts a slowing down of the drop as it moves towards
higher thickness regions. Style et al. [10] showed similar
trends with a nonlinear thickness gradient where a de-
celarating drop eventually comes to rest on a point of
high aspect ratio. We note that the presence of sur-
face imperfections will cause contact angle hysteresis,
which acts in the opposite direction to the driving force.
When the driving force becomes too small to overcome
this hysteresis effect, the drop will no longer be able to

move. Larger slopes always generate a higher driving
force. Similar driving forces have been studied for wet-
ting on rigid solids, where the wettability gradient in-
duces a contact angle asymmetry on liquid drop causing
motion [34, 35]. The key difference for soft wetting is
that a wettability gradient is not essential for generating
drop motion. In fact for the neutral wetting case with
γsg − γsl = 0 considered in our model here, drop motion
is induced through a change in the macroscopic contact
angles by the rotation of wetting ridge.

Λo 1 Λo 1.5 Λo 2

10-1 1 101 102
l0.00

0.02

0.04

0.06

0.08

Δcos

FIG. 5. Driving force ∆ cosα plotted against the elasto-
capillary number Γl with different aspect ratios Λ. Here,
ν = 0.5,Γs = 0.5Γl, κ = 0.3, v = 0.

Fig. 5 plots ∆ cosα against liquid elastocapillary num-
ber Γl with Γs = 0.5Γl. Here we find that ∆ cosα in-
creases with increasing elastocapillarity until it reaches a
maximum value beyond which it starts to decrease. The
maximum driving force is found to occur around Γ ∼ 1.
A lower elastocapillary effect is typically associated with
small solid deformation, resulting in a trivial amount of
rotation of the wetting ridge. On the other hand, a high
elastocapillary effect means the capillary pressure, which
scales as O(Γl) and pushes the solid downward, becomes
large. In this case, the substrate essentially behaves like a
fluid making the effect of underlying thickness negligible.
The driving force on a droplet also depends on the

velocity due to the viscoelastic response of the substrate.
Fig. 6 plots ∆ cosα against the scaled velocity v, as it
depends upon the power-law exponent n. From (14) we
know that increasing n increases both the storage (µ′)
and loss modulus (µ′′) which are given by,

µ′ = µ0

[

1 + (ωτ)n cos
nπ

2

]

, µ′′ = µ0(ωτ)
n sin

nπ

2
. (33)

We find that ∆ cosα decreases with increasing velocity.
The effect of n is observed in two different regions with
a transition point at v ∼ 1. For v < 1, we find a higher
driving force at the same velocity for higher n. This is
the region where µ′ is higher than µ′′. For v > 1, driv-
ing force decreases with increasing n, where µ′′ becomes
larger than µ′.
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FIG. 6. Driving force ∆ cosα against scaled velocity v for
different power law exponent n. Here, Λ = 1,Γs = 2,Γl =
5, κ = 0.4.

B. Velocity of the moving drop

Our deformation model predicts the driving force ex-
erted on the drop. For gradient driven droplet motion on
rigid substrates, a steady state velocity is obtained from
a steady state force balance between the driving force
and the resistive viscous force,

Pf + Ps = Fdv. (34)

Here, Pf and Ps are the dissipated powers within the fluid
and solid, respectively. The dissipation in the fluid scales
with fluid viscosity ηf and can be analytically determined
assuming slow Poiseuille flow as [51],

Pf
∼= 3ηfv

2

α
ln rc. (35)

Here, rc is a ratio of cutoff lengthscales to remove the con-
tact line singularity. The typical value of ln rc is O(10).
For motion on a rigid substrate, the dissipation occurs
primarily in the fluid and one need not consider Ps in
Eq. (34). However, the opposite is true for most soft
substrates. Viscoelasticity in a soft solid can significantly
affect the liquid motion reducing its velocity by orders of
magnitude in a phenomenon known as viscoelastic brak-
ing [2]. Therefore, to accurately predict drop velocity
on a soft substrate, we need to calculate the dissipation
within the solid,

Ps =

∫

Tij :
∂εij
∂t

d2x, (36)

which can be expressed as an integral over the free surface
using the divergence theorem,

Ps =

∮

~T · ∂~u
∂t

ds, (37)

This approach was followed by Van Gorcum et al. [26]
and allows further simplification for incompressible ma-
terials which only have a single nonzero stress component
at the free surface z = 0. If we consider the free surface to

extend over an infinite domain in the horizontal extent,
then Eq. (37) becomes,

Ps =

∫

∞

−∞

Tzz(x, 0, t)
∂uz

∂t
(x, 0, t)dx, (38)

Writing this integral in terms of the spatial transform we
get,

Ps =
µ0R

2

τ

∫

∞

−∞

dx

∫

∞

−∞

dsT̂zz(s, 0)e
−is(x−vt)

∫

∞

−∞

ds′(is′v)ûz(s
′, 0)e−is′(x−vt).

(39)

The case of an infinitely wide solid substrate only ap-
plies to the κ = 0 case. Therefore, in order to make
progress we use the zeroth order solutions to evaluate
the integral in Eq. (39). Since we consider κ to be a
small parameter the zeroth order analysis should provide
us with an estimate for the scale of the dissipated power.
Keeping the real part of the dissipated power only we can
write,

Ps
∼= 1

τ
µ0R

2vn+1Γ2
lH, (40)

with,

H =

∫

∞

−∞

ds
2sn+2

(

F̂cl(s)
)2

(M(s,−sv))2

(2sΛ− sinh(2sΛ))(1 + 2s2Λ2 + cosh(2sΛ)),

(41)

For low velocities we can approximate, M(s,−sv) ≈
M(s, 0) to simplify the computation. Putting Eq. (35)
and Eq. (40) in the force balance (34) we get the follow-
ing dimensionless equation,

vnΓ2
lH +

3ǫ

α
ln rc ∼= Γl∆cosα. (42)

Here, ǫ = η/µ0τ is a viscosity ratio, typically a small
parameter in viscoelastic wetting experiments, especially
when the viscoelastic timescale τ ≈ 0.1 − 1s. Therfore,
in this work we limit our analysis to the ǫ → 0 case and
assume that solid viscosity gives the dominant dissipa-
tion in the force balance (42), which gives the following
equation for velocity,

v ∼=
(

∆cosα

ΓlH

)1/n

. (43)

We combine Eq. (43) with the solution for ∆ cosα derived
in the previous sections and determine the magnitude of
the velocity of a spontaneously moving drop on a soft
substrate. We do this in a self-consistent manner where
we calculate the driving force for a initial velocity guess,
fit the solution to Eq. (43), and iteratively find the correct
velocity that satisfies this equation.
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FIG. 7. (a) Dimensionless velocity v plotted against aspect
ratio Λ with different thickness gradient κ. Here, Γs = 1,Γl =
2, n = 0.6. (b) Velocity in µm/s plotted against relaxation
timescale τ with different power-law exponent n. Here, Λ =
1,Γs = 3,Γl = 6, κ = 0.4, R = 10µm.

Previously, Long et al. [42] derived an expression for
the solid dissipation with similar rheology. They assumed
a small elastocapillary effect and calculated dissipation
over a small domain of wavenumbers where substrate
thickness has negligible influence on the dynamics. In
contrast, droplet durotaxis typically involves finite elas-
tocapillarity and substrate thickness, which can have a
significant effect on the solid dissipation. These are in-
corporated in our current numerical solution and provide
a more reliable method to calculate the drop velocity.

Fig. 7(a) plots the scaled velocities v obtained using
this method against aspect ratio Λ. We see that drop
velocity reduces with increasing Λ, similar to ∆ cosα in
Fig. 4(b). We also find higher velocities for higher values
of κ as expected. Fig. 7(b) shows the dependence of drop
velocity on the viscoelastic parameters τ and n. Higher τ
reflects a longer relaxation time in the solid and therefore
a smaller predicted velocity. The power law exponent n
has little effect on the velocity.

Style et al. [10] observed the motion of micro-sized
glycerol droplets on a PDMS substrate with a nonlin-
ear thickness gradient. They reported velocities as high
as v ∼ 0.1µm/s in the shallowest regions of the substrate.
We find from Eq. (43) that the drop velocity is strongly
dependent on the elastocapillary numbers, as well as the
viscoelastic parameters. Therefore, one needs to know

the exact value of the material parameters to accurately
compare the experimental findings with the theoretical
prediction. For example, we consider R = 7µm,Λ = 0.8,
and κ = 0.4 to represent one droplet reported in the ex-
periment which had v ≈ 0.08µm/s. If we let µ0 = 1kPa,
γs = 0.04N/m, γlg = 0.06N/m, n = 0.8, τ = 0.5s, our
model predicts a drop velocity of 0.2µm/s which is close
to the experimental value. The slightly higher numerical
value of theoretical prediction could be due to the con-
tact angle hysteresis, which would tend to decrease the
drop velocity.

V. CONCLUSION

We have developed a 2D boundary perturbation model
for the deformation of a soft viscoelastic substrate due to
a rigid droplet moving along the interface with velocity v
across its interface. The competition between elasticity
and capillary forces is characterised by non-dimensional
elastocapillary numbers for the solid and liquid, while
viscoelasticity is described using a power-law model for
the complex shear modulus. A small linear gradient in
the substrate thickness is shown to change the contact
angle along the contact line and generate a net driving
force in the direction of increasing substrate thickness.
We compute the contact angles by measuring the rota-
tion of the triangular cusp at the tip of the wetting ridge.
Here, Neumann’s law requires the solid angle to remain
constant for a moving drop and we show that this is valid
for droplets moving at low velocities. The drop velocity
is determined using a self-consistent calculation balanc-
ing the power with viscous dissipation in the solid. We
show the drop velocity decreases with increasing aspect
ratio, in agreement with experiments on droplet duro-
taxis. We also show the sensitivity of the drop velocity on
the viscoelastic parameters in the solid, where increased
relaxation time of the solid reduces the velocity. Our pre-
dictions compare favourably to the experiments of Style
et al.[10] when using reasonable parameter values.
We have identified the parameter regimes more

favourable to droplet motion and those should provide
directions for designing future experiments and shed light
on the droplet durotaxis phenomena. Cell motility in na-
ture by durotaxis is typically attributed to the inherent
ability of the cells to probe the elasticity of the substrate
by exterting traction forces. The elastocapillary mech-
anism offers an alternative and simpler understanding
of this biological process from a transport perspective.
More experimental investigation is needed to determine
under what circumstances the cell motion becomes in-
dependent of the internal properties of the cell and fol-
low the simple drop transport mechanism described here.
While cells move from lower to higher stiffness regions,
droplet motion occurs in the opposite direction. This dis-
crepancy has been attributed to the wetting conditions of
the solid in literature [52]. Incorporating partial wetting
effects is a natural extension to our model and needs to
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be investigated in future works to compare with cellular
durotaxis.

Our droplet transport model could be verified by an-
alyzing thickness gradients seen in experiment. For ex-
ample, the experiments of Style et al. [10] investigated
drop motion on a nonlinear thickness gradient. Solving
this problem with nonlinear gradients could shed light on
the effect that different types of gradients might have on
the droplet transport. In our model, we have assumed
a nontrivial but constant capillary pressure from the liq-
uid drop on solid substrate which is important for small
droplets and had not been included in previous dynamic
wetting models. If the contact angle difference is large,
the free surface of the drop will be significantly deformed
and our analysis would need to be modified. Future
works could focus on developing new techniques to in-
clude these effects in the dynamic model. Finally, we
have ignored the effect of liquid viscosity which affects
the dynamic contact angle for rigid substrates [53, 54].
The case where solid and liquid viscosity are of the same
scale have only received limited attention so far [27, 55].
A more general model is desired to reinterpret classical
wetting models for rigid substrates to soft surfaces which
would enable us to exploit the unique properties of soft
wetting in many industrial applications.

Appendix A: Functions defined in the solution of

deformation

The functions defined in Eqn. (26) are given by,

M(s, ω) = s[2(1 + (iωτ)n)(1 + 2s2Λ2 + cosh(2sΛ))

+ sΓs(sinh(2sΛ)− 2sΛ)]

Nz(s, z) = (1 + 2s2Λ(z + Λ) sinh(sz) + sinh(s(z + 2Λ)))

− s(z + 2Λ) cosh(sz)− sz cosh(s(z + 2Λ))

Nx(s, z) = 2sΛ(z + Λ) cosh(sz)

− z(sinh(sz) + sinh(s(z + 2Λ)))

The functions in Eqn. (29) are given by,

Pz(ω, z) = cosh z(2(1 + (iω)n)(z + Λ) coshΛ

+ z(Γs − 2Λ(1 + (iω)n)) sinhΛ)

− Λ(Γs + 2z(1 + (iω)n)) sinh z coshΛ

Px(ω, z) = sinhΛ(cosh z + z sinh z)(2Λ(1 + (iω)n)− Γs)

(2(zΛ− 1)(1 + (iω)n) + ΛΓs) cosh z coshΛ

− 2z(1 + (iω)n) sinh z coshΛ

Q(ω, z) = 2(1 + (iω)n)(1 + 2Λ2 + cosh(2Λ))

+ Γs(sinh(2Λ)− 2Λ)

The contact line force is,

ˆ̃Fcl(s, ω) =

√

2

π

(

cos s− sin s

s

)

δ(ω + sv). (A1)

Appendix B: Determining cusp rotation and solid

angle

The cusp rotation φ and the solid angle θs are calcu-
lated from the following relations using the slope at the
contact point u

′

z(x, 0),

φ =
1

2

(

tan−1 lim
x→1+

u
′

z(x, 0)− tan−1 lim
x→1−

u
′

z(x, 0)

)

,

(B1a)

θs = 180−
(

tan−1 lim
x→1+

u
′

z(x, 0) + tan−1 lim
x→1−

u
′

z(x, 0)

)

.

(B1b)

The + and − signs refer to the wet and dry sides of solid,
respectively. Here, we obtain the slope u

′

z(x, 0) using the
following property of the Fourier transform,

∫

∞

−∞

df(x)

dx
eisxdx = −is

∫

∞

−∞

f(x)eisxdx. (B2)

Appendix C: Validity of the Neumann force balance

in dynamic wetting
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FIG. 8. Solid angle θs plotted against the scaled velocity v
with different elastocapillary numbers Γs. Here, Λ = 1,Γs =
0.5Γl, n = 0.5, κ = 0.3.

Fig. 8 plots the cusp angle θs against dimensionless
velocity v for different elastocapillary numbers. This
shows that for small values of Γs, which refers to either
a nearly rigid substrate or a large droplet, θs increases
with increasing velocity until it reaches the maximum
value of 180o. This means that Neumann’s equilibrium
does not hold for this case. As we increase Γs, θs tends
to remain constant over a wider range of velocity before
starting to increase. Therefore, Neumann’s equilibrium
is sufficient for predicting the contact angle for this ve-
locity range. Since, the droplet durotaxis phenomenon
has been found to occur at low velocity with elastocapil-
lary numbers Γ ∼ O(1), we proceed with the assumption
of Neumann’s triangular force equilibrium at the contact
line is valid for our analysis. We also find the solid angle
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θs to be independent of the substrate thickness, in line
with previous findings [56].
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