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A long standing puzzle in the rheology of living cells is the origin of the experimentally observed
long time stress relaxation. The mechanics of the cell is largely dictated by the cytoskeleton, which
is a biopolymer network consisting of transient crosslinkers, allowing for stress relaxation over time.
Moreover, these networks are internally stressed due to the presence of molecular motors. In this
work we propose a theoretical model that uses a mode-dependent mobility to describe the stress
relaxation of such prestressed transient networks. Our theoretical predictions agree favorably with
experimental data of reconstituted cytoskeletal networks and may provide an explanation for the
slow stress relaxation observed in cells.

I. INTRODUCTION

Living cells are known to exhibit unusual mechani-
cal properties including an internal nonlinear stiffening
under external stress, in which their stiffness can in-
crease by orders of magnitudes [1], reversible softening
under compression [2], viscoplasticity [3] and poroelas-
ticity [4]. A long-standing puzzle is related to the sur-
prisingly slow stress relaxation that has been measured
in living cells [5–11]. This stress relaxation reveals more
than just a long relaxation time, but also a broad spec-
trum of relaxation times, with a dynamic modulus that
varies with frequency as a power-law with exponent β in
the range of ∼ 0.1− 0.3 [6]. It has been argued that this
may be related to the soft glassy rheology (SGR) model
[6, 9, 12], although the relevance and validity of this in
cell mechanics remains unclear.

Most of the mechanical properties of living cells orig-
inate in the cytoskeleton, a dynamic network composed
of crosslinked biopolymers, which gives the cell its shape
and rigidity [13]. One reason for its dynamic nature is
that many of the crosslinking proteins, for example α-
actinin, form transient bonds with both finite binding
and unbinding rates [14]. Such crosslinking proteins, de-
noted as transient crosslinkers, introduce a distinct type
of stress relaxation in semiflexible polymer networks,
since the unbinding of crosslinkers allows the networks
to flow at long time [15–20]. Previous theory and experi-
ments involving reconstituted biopolymer networks have
revealed a characteristic scaling exponent of β = 1/2 for
the frequency-dependent linear shear modulus [18–20].
Unlike the Rouse model, in which the same exponent ap-
pears in the high-frequency regime [21–23], transient net-
works only exhibit the 1/2 exponent in the low-frequency
regime, indicating a different mechanism of stress relax-
ation from the Rouse model. Moreover, the Rouse model
applies to flexible polymers, while the analogous high-

frequency regime for semiflexible polymers such as actin
is known theoretically and experimentally to exhibit a
3/4 exponent [24–30].

Within the cytoskeleton there are also molecular mo-
tors that generate internal stresses [31–33], which may
alter the rheological properties of living cells [7, 34, 35].
Recently, it has been shown experimentally that the ap-
parent scaling exponent of the linear shear modulus in re-
constituted actin networks with transient crosslinks can
be further reduced and systematically varied over the
range of 0.1 . β ≤ 0.5 by an applied external stress [36].
It is well known that applying external or internal stress
on a permanent biopolymer networks can cause nonlinear
stiffening [37–40] and a reduction in the high-frequency
exponent from 3/4 to 1/2 [39, 41–44]. When applied
to transient networks, aside from the stress-stiffening re-
sponse, external stress solidifies the network [19], sup-
pressing both stress relaxation and reducing the appar-
ent exponent of the frequency-dependent nonlinear shear
modulus [36]. This provides a possible explanation for
the weak scaling exponent observed in living cells, as liv-
ing cells are intrinsically under internal stress generated
by molecular motors or other active processes [31, 45–47],
although a microscopic model for how stress qualitatively
changes the dynamics is still lacking.

In this paper, we develop such microscopic theory for
the mechanical response of transient-crosslinked semiflex-
ible networks under applied stress. Based on equilibrium
thermodynamics, we show that the dynamics of tran-
siently crosslinked semiflexible polymer networks can be
described by a mode-dependent mobility. We analyti-
cally derive the form of this mobility in transient net-
works, and calculate the nonlinear modulus under exter-
nal stress. Our theoretical prediction of the nonlinear
modulus quantitatively agrees with experiment data of
reconstituted cytoskeletal networks. We also show that
external stress naturally leads to a weak frequency de-
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pendence by suppressing fluctuations of bending modes.
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Figure 1. (a) Schematic figure of a transient network, in which
polymers (lines) are connected by transient crosslinkers (cir-
cles). The unbinding and rebinding of a single crosslinker
(purple circle) relaxes its adjacent segments. (b) The relax-
ation of a long-wavelength mode requires successive unbinding
events (green circle -> blue circle -> brown circle in sequence).

II. OVERVIEW

Transient crosslinkers introduce a distinct type of
stress relaxation: when a crosslinker unbinds, it relaxes
the stress on adjacent polymer segments (the crosslinker
later bind on a different position), see Fig. 1(a). In order
for a long polymer to relax, multiple successive unbinding
events are required (Fig. 1(b)), resulting in a relaxation
time much longer than the timescale of a single unbinding
event [18, 29].

We propose a microscopic model that accounts for the
effect of unbinding/rebinding of transient crosslinkers. In
our model, that is described in detail below, we show
that the relaxation of semiflexible polymer networks can
be decomposed into the relaxation of the independent
bending modes (see Sec. III). The relaxation of each
mode follows a mode-dependent mobility, Mqq, (q being
the wave number) which leads to non-trivial dependences
on the frequency of the linear and nonlinear viscoelastic
moduli. In Fig. 2 (a) we show a schematic diagram of
the various regimes for a transient-crosslinked biopoly-
mer network in the (ω, σ) phase-space, where ω is the
frequency and σ is the applied shear stress. With only
transient crosslinkers in the system, reptation of finite
molecular weight polymers is expected to lead to liquid-
like behavior on the longest timescales. In the present
model we have focused on stress relaxation that is en-
tirely due to transient-crosslinking, and we therefore con-
sider the limit of high molecular weight and timescales
less than the reptation time. On these timescales, we
find that the stress relaxation can be devided into two
regimes: in the low-frequency regime the stress relaxation
is governed by the transient behavior of the crosslink-
ers, while in the high-frequency regime the network be-
haves as if the crosslinkers were permanent [18]. The
two regimes are separated by a characteristic frequency,
ωc(σ), which depends on σ (see Sec. V, Eq. (30)). These
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Figure 2. (a) Schematic regime diagram of a transient network
as function of frequency ω and prestress σ. The extremely
low-frequency regime is dominated by reptation, which is not
considered in our model. The rest of the diagram consists
of a transient and permanent regimes, separated by ωc(σ),
which is the characteristic frequency, see Eq. (30). σc and
σp are the characteristic stresses for the nonlinear-stiffening
in the transient and permanent regimes, respectively. (b)
Schematic curves of the differential elastic modulus K′ ver-
sus ω, for small prestress (linear transient and linear perma-
nent), intermediate prestress (non-linear transient and linear
permanent) and large prestress (nonlinear permanent). The
corresponding power-law regimes are indicated. With stress,
the low-frequency regime is not predicted to be a strict power
law, although we show that it may appear to be so.

two different regimes appear as a result of the different
q-dependence of the mode-dependent mobility Mqq, for
q > π/`c and q < π/`c, where `c is the average spacing
between crosslinkers in the network. The relaxation of
bending modes with q > π/`c is dominated by the sol-
vent viscosity, as in permanent networks [25, 26]. How-
ever, the relaxation of bending modes with q < π/`c is
limited by the transient nature of the crosslinkers, lead-
ing to Mqq ∼ q2 (see Sec. IV). This quadratic depen-
dence in Mqq results in a linear modulus G(ω) ∼ ω1/2.
Moreover, when external stress is applied, the network
may stiffen nonlinearly, where the characteristic stress,
σc(ω) ∼ ω1/3, governs the transition from the linear to
the nonlinear stiffening regimes (see Sec. V, Eq. (29)).
When the network stiffens nonlinearly, the differential
shear modulus K = K ′ + iK ′′ = dσ/dγ is used to char-
acterize the viscoelastic behavior, where γ is the shear de-
formation. As we show below (see Sec. VI) and sketched
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Fig. 2(b), the apparent exponent with which G depends
on ω is reduced with applied stress and can become arbi-
trarily small at high stress. This is consistent with recent
experiments [36] and may provide an explanation for the
week dependence seen in living cells [5–11].

III. MODEL

To predict the mechanical response of a biopolymer
network under stress, we begin by describing a single
semiflexible polymer under tension. For simplicity we
first discuss a polymer moving on a 2D plain where the
transverse deformation is limited in one direction, and
then extend the result to polymers in 3D. The Hamil-
tonian for such polymers with length ` under tension F
is [25, 26, 29]:

H =
κ

2

∫
dx

(
∂2u

∂x2

)2

+
F

2

∫
dx

(
∂u

∂x

)2

. (1)

Here κ is the bending rigidity and u(x) is the trans-
verse displacement at position x. The first term in
Eq. (1) is the bending energy of the chain, while the sec-
ond term is the work done by the external force, where
∆` =

∫
dx(∂u/∂x)2/2 is the contraction of the end-to-

end distance due to bending fluctuations. This transverse
displacement can be decomposed using Fourier series to
a series of bending modes, {uq}, with q being the wave
number:

u(x) =

√
2

`

∑
q

uqsin(qx)
(
q =

nπ

`

)
, (2)

where the dimension of u(x) is set to be [L]1/2 to simplify
the expression of the Hamiltonian. Using Eq. (2), the
Hamiltonian in Eq. (1) is diagonalized and assumes a
simple quadratic form:

H =
1

2

∑
q

(
κq4 + Fq2

)
u2
q. (3)

The dynamics of the amplitudes of all bending modes fol-
low a standard Langevin equation with {uq} as variables
(this model is usually referred to as Model A) [48],

duq
dt

= −
∑
p

Mqp({us})
∂H

∂up
+ ηq

= −
∑
p

Mqp({us})
(
κp4 + Fp2

)
up + ηq, (4)

whereMqp({us}) is the generalized mobility matrix, {us}
denotes the set of amplitudes of all bending modes, {uπ/`,
u2π/`, ...}, and ηq is a thermal Gaussian white noise with
zero mean and variance 〈ηp(t)ηq(t′)〉 = 2kBTMpqδ(t−t′),

where kB is Boltzmann constant and T is the tempera-
ture.

In general, Mpq is a function of all {us}, and Eq. (4) is
nonlinear. However, the transverse displacement of semi-
flexible polymers is small (u(x)� `), and as we shall see
below, when applying an external stress these displace-
ments are even smaller. Therefore, within our framework,
Eq. (4) should be linearized, leading to a constant mobil-
ity matrixMpq. The evolution of the correlation function
of mode q, 〈uq(0)uq(t)〉, is then

d

dt
〈uq(0)uq(t)〉 =

〈
uq(0)

duq(t)

dt

〉
= −

∑
p

Mpq

(
κp4 + Fp2

)
〈uq(0)up(t)〉

= −Mqq

(
κq4 + Fq2

)
〈uq(0)uq(t)〉, (5)

where 〈...〉 denotes average over thermal noise realiza-
tions. In the last equation we use the fact that H({uq})
is diagonal, implying that there are no correlations be-
tween different bending modes, i.e. 〈up(0)uq(t)〉 ∼ δpq.
Thus, the correlation function follows a simple exponen-
tial decay, where the variance at t = 0 is obtained from
Eq. (3) using the equipartition theorem (assuming the
system is in equilibrium at t = 0) [25], such that :

〈uq(0)uq(t)〉 =
kBT

κq4 + Fq2
e−Mqq(κq4+Fq2)t. (6)

For every bending mode q, there is only one parame-
ter associated with its relaxation process, Mqq, which is
the mobility for mode q. This mode-dependent mobility
naturally emerges from the linearization of the Langevin
equation and can thus be generally applied to any semi-
flexible polymer networks. Once the mode-dependent
mobility is known, the dynamics of the network is de-
termined.

Notice that Eq. (6) shows that the variance of uq de-
creases with increasing F , thus tension reduces bend-
ing fluctuations. This is consistent with our assumption
that linearizing Eq. (4) is always valid for semiflexible
polymers. For flexible polymers, although their Hamilto-
nian can also be diagonalized to a quadratic form (Rouse
Model [21]), the amplitude of the transverse fluctuations
is large and the linearization of Eq. (4) is not generally
valid.

Next, we use the correlation function of Eq. (6) to
calculate the correlation function of the end-to-end dis-
tance under tension F , CF (t) ≡ 〈δ`(0)δ`(t)〉. Here
δ` = 〈∆`〉 − ∆` is the projected end-to-end extension
of the polymer with respect to its rest length for small
u and ∆` =

∫
dx(∂u/∂x)2/2. This relation leads to a

simple formula for CF (t) [25]:
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CF (t) =
∑
q

q4〈uq(0)uq(t)〉2

=
∑
q

(kBT )2 q4

(κq4 + F q2)
2 exp

[
−2Mqq

(
κq4 + Fq2

)
t
]
. (7)

The Fourier-Transform of the correlation function is
then used to compute the end-to-end power spectrum,
PF (ω) ≡ |δ`(ω)|2,

PF (ω) =
∑
q

(kBT )2 q4

(κq4 + F q2)

4Mqq

ω2 + 4M2
qq(κq

4 + Fq2)
2 . (8)

Using the fluctuation-dissipation theorem, we can relate
this power spectrum to the response function χ(ω;F ):
`χ′′(ω;F ) = ωPF (ω)/2kBT , which together with the
Kramers-Kronig relations gives

χ(ω;F )=
∑
q

2kBTMqq

(
κq4 + Fq2

)
` (κq2 + F )

2
[2Mqq(κq4 + Fq2)− iω]

. (9)

This response function describes the mechanical response
of the chain, given that the tension is slightly perturbed
around F . For polymers in 3D, one should add a factor
of two to the right-hand-side of Eq. (9) in order to ac-
count for the transverse displacement in two directions.
In the rest of the paper we will use the 3D result. As we
will show later, the macroscopic modulus of the entire
network can be derived using the response function of a
single polymer, Eq. (9).

IV. MODE-DEPENDENT MOBILITY

A. Mode-dependent Mobility for
Transient-crosslinked Networks

In the previous section we have shown that the dynam-
ics of a single polymer in any biopolymer network is well
described by a mode-dependent mobility Mqq, while its
specific form depends on the network structure. In this
section we first derive Mqq for transient networks in the
small-q limit in a simple and intuitive way, and then de-
tail a general method that can be used to derive Mqq for
any q.

Lets us consider a transient netwrok in the hydrody-
namic limit (i.e. long-wavelength limit). For small q, we
can Taylor expand Mqq,

Mqq = a0 + a2q
2 + a4q

4..., (10)

where an denotes the coefficient of the n-degree term.
The form of Mqq is constrained by polymer symmetries.
Therefore, since the polymer does not have a preferred

transverse direction (it can have a preferred longitudi-
nal direction though due to the polarity [31]) Mqq must
be an even function of q. The term a0 stands for the
mobility for the q = 0 mode (infinite wavelength). For
transient networks, the value of a0 must be 0. The rea-
son for this can be seen from Fig. 1(b), where we sketch
the relaxation process of a long-wavelength mode. In or-
der to relax such a mode, multiple successive unbinding
events are required, indicating that transient crosslinkers
impose stronger limitations to long-wavelength modes,
leading to smaller mobilities. In order to relax the
infinite-wavelength mode there should be infinite succes-
sive binding events, each of them takes finite time, there-
fore leading to zero mobility. Hence, the leading term in
Eq. (10) is the quadratic term, and for small q we have
Mqq = a2q

2.
So far we have shown that the transient nature of the

network results in a quadratic dependence of Mqq. How-
ever, this quadratic dependence should only be valid for
q � qc, where qc = π/`c is the characteristic wave num-
ber with wavelength `c. Bending modes with q � qc are
not limited by transient crosslinking, and their relaxation
is determined by the substrate mode-independent viscos-
ity (rather than the networks itself), which corresponds
to a constant mobility M0. Together, we can approxi-
mate Mqq for all wavelengths:

Mqq =

{
a2q

2 (q ≤ qc)
M0 (q > qc)

. (11)

This mobility is discontinuous at q = qc, because we sim-
ply separate the bending modes into a crosslink-limited
and viscous-dominated parts. In fact, for bending modes
with q ∼ qc, both the transient crosslinkers and the sub-
strate viscosity contribute to the stress relaxation, and
we anticipate a transition in Mqq from the quadratic de-
pendence to the constant mobility. We determine the
dependence of Mqq for q ∼ qc in Sec. IV. B.

Although this form of the mobility is sufficient for pre-
dicting the macroscopic modulus (see Sec. V), a micro-
scopic understanding of the parameter a2 is important
for understanding the physics of the model we use. In
general, the mobility (and thus also a2) can depend on
F , for example due to catch/slip bond. For simplicity we
neglect this effect hereafter (see Sec. VI for further discus-
sion). We can then consider the dynamics of a polymer
for F = 0 and calculate a2. The relaxation time of bend-
ing mode q, τq, can be read from Eq. (6). When F = 0, it
is τq = 1/(κq4Mqq). For small q, we have τq = 1/(a2 κq

6).
On the other hand, the relaxation process for small q
is limited by binding/unbinding of crosslinkers, which is
characterized by a single timescale τoff (the unbinding
time, as appropriate for strong crosslinkers that spend
most of their time in the bound state [18]), therefore,
we also have τq ∼ τoff . From dimensional analysis, the
coefficient a2 can be written in terms of microscopic pa-
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rameters:

a2 = c
`6c
κτoff

, (12)

where c is a dimensionless constant. Here `c is the av-
erage spacing between crosslinkers which appears as it is
the only lengthscale associated with transient crosslink-
ers.

In order to find the value of c, we use the (mean-field)
result of Ref. [18] for the response function χ for F = 0
(see Appendix A for a complete derivation). In this case,
the relaxation rate of each bending mode, ωr(q), can be
written as [25]

ωr(q) =
2κq4

ξ(q)
. (13)

where ξ(q) = 1/Mqq is the mode-dependent friction.
Since a mode with longer wavelength must have longer
relaxation time, ωr(q) must increase monotonically, sug-
gesting the existence of the inverse function q(ωr). The
slowest relaxation rate is ωr(q = π/`) (` being the poly-
mer length), corresponding to the longest wavelength
mode, which must vanish as ` → ∞. Therefore, in the
long-chain limit we always have ω � ωr(q = π/`). This
allows us to approximate the summation in Eq. (9) with
an integral (as will be done in the rest of the paper),
leading to:

χ(ω;F = 0) ' 2kBT

πκ

∫ ∞
0

dq
2a2q

2

ωr(q)− iω

=
a

1/2
2 kBT

3κ3/2
ω−1/2(1 + i), (14)

where the −1/2 exponent is consistent with Ref. [18].
In Ref. [18], the linear response function χ(ω;F = 0)
is derived using a mean-field theory (see appendix for
details– note the factor of two for a polymer in 3D):

χ(ω;F = 0) = 0.0036
2kBT`

3
c

πκ2

∫ ∞
−∞

dq

q2 − 2iωτoff

= 0.0036
kBT`

3
c

τ
1/2
off κ2

ω−1/2(1 + i). (15)

Comparing this response function with our result
(Eq. (14)) gives the analytical expression of the coeffi-
cient a2

a2 = 0.00012
`6c
κτoff

. (16)

Although `c and κ can be measured experimentally, the
unbinding time τoff of the crosslinker is usually unknown.
Therefore, replacing a2 with Eq. (16) does not reduce the
number of fitting parameters. However, Eq. (16) gives a
microscopic understanding of the coefficient a2, and can
be further used to calculate τoff (see Sec. V).
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Figure 3. Mode-dependent mobility, Mqq, as a function of
q, calculated from Eq. (24) with M0 = 100a2κq

4
c . The form

of the mobility (including the cusp) is further discussed in
Appendix B.

B. Mode-dependent Mobility for Generic Networks

Heretofore we have derived the mode-dependent mo-
bility for transient networks. We find that a quadratic
dependence in the small-q-limit naturally emerges as a re-
sult of the transient nature of the network. However, the
mobility for q ∼ qc remains unclear, and the same deriva-
tion does not apply to other networks, despite the fact
that the mode-dependent mobility can be applied to any
semiflexible polymer networks. In this subsection we pro-
vide a general method for deriving the mode-dependent
mobility for any network, provided that the correlation
function of the end-to-end distance is known. The latter
can be found analytically, using numerical simulations,
or measured experimentally. We then use this method
to derive the mode-dependent mobility of transient net-
works for q ∼ qc.

The correlation function, CF (t), is related to the mode-
dependent-mobility, Mqq, via Eq. (7). Once CF (t) of a
given network is obtained, Mqq can be calculated by in-
verting Eq. (7). For simplicity, and as the mobility is as-
sumed to be independent of F , we only consider F = 0.
Following the same reasoning as in the previous section
(see paragraph before Eq. (14)) we approximate the sum-
mation in Eq. (7) with an integral:

C0(t) ≡ CF=0(t) =
2`(kBT )2

πκ2

∫
dq

q4
exp [−ωr(q)t]

=
2`(kBT )2

πκ2

∫
dωr
q4

dq

dωr
exp [−ωrt]. (17)

Surprisingly, we find that the correlation function at van-
ishing force is proportional to the Laplace transform of
q−4 dq/dωr. The inverse Laplace transform of Eq. (17)



6

gives a differential equation for q(ωr),

L−1{C0}(ωr) =
2`(kBT )2

πκ2q4

dq

dωr
, (18)

where

L−1{C0}(ωr) =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
esωrC0(s) ds. (19)

Here γ is any real number greater than the real part of all
singularities of C0(s). Using Eq. (18) and the correlation
function C0(t), one can derive the relaxation rate ωr(q).
Then the mode-dependent friction is easily found using
Eq. (13).

We now use this method to derive the mode-dependent
mobility of transient networks for all q’s. As discussed
above, the stress relaxation of transient networks is gov-
erned by two different mechanisms: a slow relaxation
relying on the transient crosslinkers and a fast relax-
ation dominated by the substrate viscosity. We assume
the timescales for the two processes to be separated, i.e.
τoff � τper or a2 � 2M0q

4
c , where τper = 1/(2κM0q

4
c )

is the longest relaxation time governed by the substrate
viscosity. Under this assumption, the contribution to the
correlation function from the two relaxation processes is
additive [18]:

C0(t) =
2(kBT )2`

πκ2

∫ ∞
0

dq

q4
exp

(
−2a2κq

6t
)

+
2(kBT )2`

πκ2

∫ ∞
qc

dq

q4
exp

(
−2M0κq

4t
)
, (20)

where the first term is the contribution due to the tran-
sient nature of the crosslinkers. The second term is the
classic result of the correlation function of a semiflexible
polymer with mobility M0 where the average crosslink-
ing distance is `c [25]. The inverse Laplace transform of
Eq. (20) is:

L−1{C0}(ωr) =
2(kBT )2`

πκ2

∫ ∞
0

dq

q4
δ
(
ωr − 2a2κq

6
)

+
2(kBT )2`

πκ2

∫ ∞
qc

dq

q4
δ
(
ωr − 2M0κq

4
)

=
(2a2)1/2(kBT )2`

3πκ3/2
ω−3/2
r

+
(2M0)3/4(kBT )2`

2πκ5/4
ω−7/4
r Θ

(
ωr − 2M0κq

4
c

)
, (21)

where Θ(x) is the heaviside function. Substituting
Eq. (21) into Eq. (18) and integrating from q to infin-
ity, with the boundary condition ωr(q →∞) =∞ gives:

(2a2κ)1/2ω−1/2
r + (2M0κ)3/4ω−3/4

r Θ
(
ωr − 2M0κq

4
c

)
= q−3 − q−3

c Θ
(
−ωr + 2M0κq

4
c

)
. (22)
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Figure 4. (a) A plot of K′ as function of the external stress σ
for different frequencies using experimental data of reconsti-
tuted actin networks (taken from Ref. [36]). In (b) we plot the
rescaled K′, vs the rescaled prestress for the various frequen-
cies. The purple curve is the theoretical prediction of Eq. (27).
The best fit values are γ1 = 1.71Pa s1/3, γ2 = 35.9Pa s1/2. (fit
was done using only the K′ data.)

Because we assume a2 � (2M0κq
4
c ), the solution of

Eq. (22) is

ωr(q) =


2a2κq

6

[
1−

(
q

qc

)3
]−2

(q ≤ qc −∆q)

2M0κq
4 (q > qc −∆q),

(23)

where ∆q = a2
1/2q2

c/(3M
1/2
0 ). The mobility Mqq can

then be found using Eq. (13),

Mqq =


a2q

2

[
1−

(
q

qc

)3
]−2

(q ≤ qc −∆q)

M0 (q > qc −∆q).

(24)

In Fig. 3 we plot the mobility Mqq as a function of q.
For q � qc, Mqq shows a quadratic dependence on q,
in agreement with our previous analysis for the small q
limit. When q approaches qc, Mqq increases dramatically
until it reaches M0. Although this cusp in Mqq near
q = qc appears unphysical, it is essential within our model
with a single lengthscale `c for the appearance of the
plateau in the linear modulus [18] (see Appendix B for a
mathematical proof).

V. DYNAMIC MODULUS

In this section we derive the dynamic modulus of the
transient network using the mode-dependent mobility
calculated above. We focus on the transient nature of
the network and neglect the detailed network structure
by assuming all the polymers are aligned in the same di-
rection, i.e., an effective 1D network. A more complete
discussion of the 3D case is deferred to future publica-
tion [49]. When an external prestress σ is applied on
an aligned network, all the polymers feel the same ten-
sion, F = σ/ρ, where ρ is the polymer length per unit
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volume [29]. When σ is perturbed by dσ, the tension
is also perturbed, dF = dσ/ρ, leading to an extension,
d` = `χdF . Therefore, the perturbation in stress causes
a perturbation in strain, dγ = d`/` = dσχ/ρ, and the
differential modulus is:

K(ω;σ) ≡ dσ

dγ
=

ρ

χ(ω;F = σ
ρ )
. (25)

We start by calculating K in the low-frequency regime,
which is governed by the transient crosslinkers,
ω � ωc(σ), where ωc(σ) is the characteristic fre-
quency separating the transient regime and the perma-
nent regime (see Fig. 2). The mathematical definition of
ωc(σ) will be given later in this section. In this regime
the contribution from long-wavelength modes dominates,
allowing us to only use the long-wavelength part of Mqq,
i.e., Mqq = a2q

2. Substituting this into Eq. (9), we have:

χ(ω;F ) =
2kBT (2a2)1/2

πκ3/2ω1/2

×
∫ ∞

0

r4 dr

(r2 + F
Fc(ω) )

[
r6 + F

Fc(ω)r
4 − i

] , (26)

where r = (2κa2/ω)1/6q and Fc(ω) = (κ2ω/2a2)1/3 is
a frequency-dependent characteristic tension. Using the
expression in Eq. (26), the differential modulus is calcu-
lated using Eq. (25). We separate the dynamic modulus
into the storage modulus, K ′, and the loss modulus K ′′,
using K = K ′ + iK ′′. The dynamic modulus can be
expressed in a simple form:

K ′(ω;σ) = Kc(ω)Re
[
g
(
σ/σc(ω)

)]
K ′′(ω;σ) = Kc(ω)Im

[
g
(
σ/σc(ω)

)]
, (27)

where

[g(x)]
−1

=

∫
(q6 + xq4) dq

(q2 + x)2[(q6 + xq4)− i]
, (28)

is a function describing the stress-stiffening behavior of
semiflexible polymers, and

σc(ω) = γ1ω
1
3 ; Kc(ω) = γ2ω

1
2 , (29)

are the characteristic stress and modulus, with γ1 =

ρ(κ2/2a2)1/3 and γ2 = πρκ3/2/(23/2a
1/2
2 kBT ). These

characteristic stress and modulus agree with what has
been observed in reconstituted actin networks crosslinked
by α-actinin-4, and was explained using a phenomenolog-
ical theory [36]. By rescaling the experimental data using
Kc and σc, we collapse the data of the storage modulus
onto a single curve, which is fitted with our theoreti-
cal prediction of Eq. (27), see Fig. 4. Here we fit the

data using only two fitting parameters, γ1 and γ2, for
all curves (i.e. after fitting one line we predict all the
rest) [50].

We continue with calculating the differential modulus
in the entire frequency regime. To do so, we substitute
Eq. (24) into Eq. (9) and Eq. (25), leading to the differ-
ential modulus, which is the central result of this paper:

K(ω;σ) = [χ̃t(ω;σ) + χ̃p(ω;σ)]−1, (30)

where χ̃t and χ̃p are contributions from the transient and
permanent modes, respectively. The two terms are

χ̃t(ω, σ) = Dt

∫ 1−∆r

0

dr

[
r4[1− r3]−2

ωtr2 + ωtσ

× 1

r4[1− r3]−2(ωtr2 + ωtσ)− iω

]

χ̃p(ω, σ) = Dp

∫ ∞
1−∆r

dr

[
r2

ωpr2 + ωpσ

× 1

ωpr2 + ωpσ − iω

]
, (31)

where r = q/qc, ∆r = ∆q/qc, Dt = 0.11γ−1
2 τ

−3/2
off , ωt =

0.23/τoff , ωtσ = 0.38γ−1
1 τ

−2/3
off σ, Dp = 2.09γ−1

2 τ
1/2
off τ−2

per,
ωp = 1/τper and ωpσ = 1.63γ−1

1 τ−1
perτ

1/3
off σ. Here ∆q =

a2
1/2q2

c/(3M
1/2
0 ) as defined after Eq. (23). The nonlinear

modulus for any given ω and σ is then determined by four
parameters: γ1, γ2, τoff and τper.

The transient and permanent regimes are determined
by the dominant term in Eq. (30) (when χ̃t dominates
the network is in the transient regime and when χ̃p dom-
inates it is in the permanent regime). We then define
the characteristic frequency ωc to be the one satisfy-
ing |χ̃t(ωc, σ)| = |χ̃p(ωc, σ)|. For small stress, numerical
analysis suggests ωc(σ = 0) = 1.26ωt = 0.29/τoff , indi-
cating that the unbinding time is the timescale separat-
ing the transient regime from the permanent regime. For
larger stress ωc is decreasing and it vanishes as the stress
exceeds a threshold (see Fig. 2). This suggests that for
very large stress the transient behavior vanishes, and the
permanent-regime plateau expands and covers the entire
low-frequency regime. However, such a shift is only ob-
vious when σ > σp, where σp is the characteristic stress
for the permanent regime, and ωc can be regarded as a
constant in the linear regime (see Fig. 2).

In the transient regime, i.e. ω � ωc(σ), χ̃t dominates
Eq. (30), and the dynamic moduli are well described by
Eq. (27). For small prestress we have K ∼ ω1/2, same
as the linear modulus. When the prestress increases the
term r4(ωtr

2 + ωtσ) is comparable to ω, and the net-
work stiffens nonlinearly. The characteristic stress for
this stiffening is σc, see Eq. (29). Since σc ∼ ω1/3, the
characteristic stress is larger for higher frequency, and the
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frequency dependence of K is also weakened by the pre-
stress. In fact, the apparent scaling exponent of K can
be written as a function of σ/σc, see Sec. VI for further
discussion.

When ω � ωc(σ), χ̃p dominates Eq. (31) and the net-
work is in its permanent regime. In this case the network
behaves as the well-studied permanent network [25, 26].
There is a noteworthy frequency in Eq. (30) associated
with the permanent regime, ωp + ωpσ, which is the
relaxation rate for the bending modes with q slightly
larger than qc. As we assume τoff � τper, we have
ωc(σ) � ωp + ωpσ, and we expect a plateau in K ′ be-
tween the two frequencies (see Ref. [25] and Appendix
B). In fact, when ωc(σ) � ω � ωp + ωpσ in Eq. (30),
we have K ≈ C1 + (C2/ω)i, where C1 and C2 do not
depend on ω. The different scaling for K ′ and K ′′ in this
plateau regime results in different behavior in the tran-
sition between the transient and permanent regimes, see
discussion on Fig. 5 below. For ω � ωp + ωpσ, we have
K ∼ ω3/4, in agreement with analytical results for per-
manent networks [25, 26]. The network in the permanent
regime nonlinearly stiffens when the prestress reaches the
characteristic stress, σp, which is defined as the prestress
satisfying ωp = ωpσ.

We then determine the four parameters
(γ1, γ2, τoff , τper) by fitting the experiment data of
Ref. [36]. We find γ1 and γ2 by fitting the K ′ data
with Eq. (27) (Fig. 4 (b)), then fix these values and fit
the K ′′ data to find τoff and τper (Fig. 5 (b)), where
we minimize the sum of the squared deviation of the
theoretical prediction (Eq. 30) from the experimental
data for all curves simultaneously (each curve with
different σ). The same values of γ1, γ2, τoff and τper are
used for the entire family of curves. Using the best-fit
values of the parameters, we find that τoff = 0.0085 s, in
agreement with previous result [36]. The value of τper

may be inaccurate, since the experimental data is only
in the transient and intermediate regimes. Changing the
value of τper only slightly affects the predicted moduli,
as long as τper � τoff .

As shown in Fig. 5(a), the fitting for the K ′ data is ex-
cellent. Our theory predicts that increasing the prestress
results in an increase of K ′ together with a weakening of
its frequency dependence, as is also observed experimen-
tally. For K ′′ the theory does not agree well with the
experimental data. Although our theory shows the same
qualitative features as the experiments, including the
strengthened loss modulus and decreased scaling expo-
nent for K ′′(ω), our predicted K ′′ is always smaller than
experimentally observed in the low-frequency regime (see
Fig. 5(b)). We believe that one reason for this is the
faster increase of K ′ with prestress (compared to K ′′).
Then, for high prestress, the ratio K ′′/K ′ can be close to
0.1, making it experimentally hard to get accurate mea-
surement of K ′′ (see inset of Fig. 5(b)). This is a known
issue that was discussed in Ref. [51]. The other reason for
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Figure 5. Differential storage modulus K′ (a) and differen-
tial loss modulus K′′ (b) as measured in the experiments
of Ref. [36] (x symbols), together with the theoretical fit-
ted curves of Eq. (30). The best-fit values of the parameters
are: γ1 = 1.71Pa s 1/3, γ2 = 35.9Pa s1/2, τoff = 0.0085 s and
τper = 2.0 × 10−14 s . In the inset of (b) we plot the ratio
K′′/K′ measured experimentally as function of σ.

the disagreement is that the mobility we used for q ∼ qc
can be inaccurate: the mobility for q � qc and q � qc
is well understood, but the transition between the two
parts was not explored in this work. The prediction for
K ′′ is more affected by this transition because the two
regimes are well separated for K ′′: K ′′ increases with
frequency in the transient regime but decreases ∼ ω−1 in
the permanent regime. On the contrary, K ′ undergoes
an insignificant change because after increasing with fre-
quency in the transient regime it reaches a plateau in
the permanent regime, and is thus less affected by the
transition itself.
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Figure 6. Apparent scaling exponent β as function of stress
measured in experiment, together with our theoretical predic-
tion of Eq. (32). Experimental data is taken from Ref. [36],
with ω = 0.31Hz.

VI. DISCUSSION AND CONCLUSION

We have proposed a general theory for the nonlinear
modulus of biopolymer networks, which describes the dy-
namics of the networks using a mode-dependent mobil-
ity, Mqq. In transient-crosslinked networks, we find that
Mqq ∼ q2 for the long-wavelength modes, indicating that
the relaxation of these modes is slowed down by transient
crosslinkers. This explains both the 1/2 scaling exponent
of the frequency-dependent linear modulus reported in
Ref. [18], and the glassy-like relaxation in the presence of
prestress [36]. Our theory suggests that the transient na-
ture of crosslinkers in biopolymer networks is the cause of
the apparent weak exponent of the frequency-dependent
modulus found in living cells [6].

To further analyse how the prestress affects the fre-
quency dependence of the nonlinear modulus, we calcu-
late the apparent scaling exponent β(ω, σ) around a given
frequency ω when the network is subjected to a prestress
σ:

β(ω;σ) =
∂ lnK ′(ω;σ)

∂ lnω
. (32)

In the transient regime where Eq. (27) is valid, β is only
a function of σ/σc(ω). In Fig. 6 we plot β for varying
σ/σc(ω) and fixed ω = 0.31 Hz, and find that the ap-
parent scaling exponent β decreases with increasing pre-
stress. Further, β can be tuned to any value between
0 and 1/2, depending on the prestress strength. This
might explain the weak scaling exponent found in living
cells. The cytoskeleton, which gives the cell its rigidity,
is formed by many transient crosslinking proteins, and
is effectively a prestressed transient biopolymer network,
where molecular motors are responsible for the prestress
[14]. Moreover, if the crosslinkers binding/unbinding pro-
cess is out of equilibrium, an internal stress can be cre-
ated even in the absence of molecular motors [47]. Exper-

iments on living cells have also observed reduced scaling
exponent for increasing internal motor stress [7, 52].

The weak scaling exponent of the frequency-dependent
shear modulus in living cells has been discussed repeat-
edly during the past two decades [6–10]. Most of the
previous works try to explain this weak exponent using
the soft glassy rheology (SGR) model, which describes
the dynamics of soft materials that have structural dis-
order and metastability [6, 9]. These materials are out
of equilibrium, as thermal energy is insufficient to drive
the systems across the energy barrier to reach equilib-
rium [5, 12, 53]. Although living cells are also out of
equilibrium, there is no direct evidence that the origin of
the reported weak exponent in living cells is the same as
that of soft glassy materials. Also, the scaling exponent
in the SGR model does not change with prestress, which
does not agree with most experiments on living cells as
well as the more recent experiments on reconstituted net-
works [7, 36, 52].

In this paper, we describe the dynamics of transient-
crosslinked biopolymer networks and provide the micro-
scopic understanding of the nonlinear transient regime.
Although our work treats a system close to thermal equi-
librium, we find that it exhibits the same weak-scaling
phenomena. Here the weak exponent is a result of the
coupling between multiple relaxation times, which comes
from the relaxation of infinite bending modes that are
slowed down by the transient crosslinkers. Our theory
suggests that a distribution of long relaxation times can
exist in an equilibrium system with only short obvious
timescales, where the long relaxation times come from the
collective behavior of multiple crosslinks. Unlike glassy
systems with metastability, our system does have a sin-
gle longest relaxation time. This relaxation time is not
the system intrinsic time-scale τoff , which is related to
the binding/unbinding process, rather it is the relaxation
time for the longest-wavelength mode, q = π/` (Eq. 6):
τr ∼ τoff`

6/`6c . When the polymers have sufficiently long
contour length `, τr can become very long such that the
system is in a nearly glassy state.

In this work we assumed that the mode-dependent mo-
bility and a2 for transient networks are independent of
the external stress. This simple assumption is sufficient
to explain the experimental data of Ref. [36], although
in general, a2 may be a function of the polymer ten-
sion. For example, the lifetimes of the bound states may
depend on the mechanical force exerted on the crosslink-
ers, which can lead to a change in a2. For most protein
complexes this unbinding time decreases under external
force, as they are effectively dragged off. Such an effect
is called slip bond. The opposite behavior, catch bond,
also exists in some crosslinking proteins [14], including
α-actinin-4 that is used in Ref. [36]. To account for this
change in the unbinding time, we can replace the constant
a2 with a2(σ), where the rest of the derivation remains
unaffected. For slip bond, we expect a2 to increase with
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σ and the exponent to be smaller than in Fig. 6, while
for catch bond we expect the opposite.

Our results are focused on transient networks, but the
mode-dependent mobility theory we present is applica-
ble for other biopolymer networks, such as entangled
networks or networks with multiple types of crosslink-
ers. Different networks correspond to different mode-
dependent mobility, Mqq. Our theory suggests a one-
to-one relation betweenMqq and the correlation function
of a single filament. Since the linear modulus of the net-
work is usually related to the single-filament correlation
function [25], our theory also implies an underlying re-
lation between the linear and the nonlinear modulus in
biopolymer networks.
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Appendix A: Mean-field Theory of the
Coursed-Grained Dynamics (CGD) Model

In this appendix we present the complete derivation of
the mean-field theory proposed in Ref. [18], with the goal
of understanding the dynamics of the end-to-end distance
of a single polymer, and deriving the end-to-end response
function χ(ω), in a transient-crosslinked network.

To analytically solve the end-to-end dynamics, we treat
a single polymer in a transient network using a coarse-
grained dynamics model (CGD) [18]. Within this model,
a crosslinked polymer of length ` with average crosslink-
ing distance `c, is treated as N = `/`c polymer segments
of length `c separated by crosslinkers on a 2D plain, see
Fig. 7. Each segment is modeled as an entropic spring
with stretching rigidity µth = 180κ2/(kBT`

3
c) [29] and

the bending interactions between adjacent segments is
considered via the bending rigidity κ. Overall, the Hamil-
tonian of the entire chain can be written as:

HCG =
1

`c

N∑
n=1

[µth

2
(|∆rn| − `c)2 +

κ

2
|θn|2

]
, (A1)

where ∆rn = rn − rn−1, rn being the position of the nth

crosslinker and θn is the angle between the nth segment
and the n + 1 segment (see Fig. 7). In the semiflexible
limit (κ/kBT � `c) where θn is small, we have θn =
|̂tn − t̂n−1| with t̂n = ∆rn/|∆rn|.

We use 2D Cartesian coordinate to describe the posi-
tion of each crosslinker in the polymer, where x̂ is the di-
rection of the polymer backbone and ŷ denotes the trans-
verse direction (see Fig. 7), such that rn = xn x̂ + yn ŷ.
Since the transverse fluctuations of semiflexible polymers
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Figure 7. Illustration of the CGD model. A semiflexible
polyer is moving on a 2D plain, where x̂ is the longitudinal
direction and ŷ is the transverse direction. Each blue node
represents a crosslinker and each solid line represents a poly-
mer segment. The green node is the mechanical equilibrium
position of node n.

are small, we have |yn − yn−1| � `c. Because the semi-
flexible polymers are hard to stretch, the length scale of
the end-to-end fluctuation is also much smaller than `c,∣∣∣|∆rn| − `c

∣∣∣� `c, hence, t̂n ' [1, (yn − yn−1)/`c]. Using
the above conditions, we can approximate ∆rn and θn
as:

|∆rn| =
√

(xn − xn−1)2 + (yn − yn−1)2

' (xn − xn−1) +
(yn − yn−1)2

2`c
,

|θn| '
1

` c
|yn+1 − 2yn + yn−1| .

(A2)

Having presented the Hamiltonian of the CGD model,
let us consider the polymer stress relaxation process. The
polymer is connected to the rest of the network via the
transient crosslinkers, i.e. the nodes in our model. We as-
sume these crosslinkers have strong binding affinity such
that τon � τoff , where τon and τoff are the average life-
times in the unbound and bound states, respectively.
Then, it is unlikely that two nodes will be unbound at
the same time. Furthermore, since the CGD model treats
networks of semiflexible polymers, it is appropriate to as-
sume that a crosslinker in the bound state cannot change
its position (i.e. it is connected to a rigid network). In
the unbound state the crosslinker is free to move and re-
lax the stress. Assuming that τeq � τon, where τeq is the
relaxation time of the node, after a node unbinds, it re-
laxes completely according to HCG before it binds again,
while all other nodes positions remain unchanged. The
entire chain can then deform through successive unbind-
ing/rebinding events.

We continue by considering a single unbind-
ing/rebinding event of the nth crosslinker, which changes
its position from rn (before unbinding) to r∗n (after re-
binding), while the positions of all other nodes, {rm 6=n},
remain fixed. We expect r∗n to fluctuate around its me-
chanical equilibrium position, rmeq

n , which is determined
from the force balance equation:

∂HCG

∂rn

∣∣∣∣∣
rn=rmeq

n

= 0 . (A3)
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We first consider the x̂ component of Eq. (A3):

∂HCG

∂xn

∣∣∣∣∣
rn=rmeq

n

=
µth
`c

[
|rmeq
n − rn−1|2

− |rmeq
n − rn+1|2

]
= 0 . (A4)

Equation (A4) suggests that rmeq
n has the same distance

to rn−1 and rn+1, and is therefore located at the angular
bisector of rn−1 and rn+1. This means we can write rmeq

n

as rmeq
n = rmid

n + δr, where rmid
n is the midpoint of rn−1

and rn+1 and δr = δx x̂ + δyŷ = |δr|êb is perpendicular
to (rn+1 − rn−1). We next consider the ŷ component of
Eq. (A3):

∂HCG

∂yn

∣∣∣∣∣
rn=rmeq

n

=
µth
`2c

[
δy

(
dn − 2`c +

|δr|2

`c

)]
+
κ

`3c
[yn−2 − yn−1 + 6δy − yn+1 + yn+2] = 0 , (A5)

where dn = xn+1− xn−1 + (yn+1− yn−1)2/8`c is the dis-
tance between rn−1 and rn+1. Equation (A5) is com-
posed of a stretching term proportional to µth and a
bending term proportional to κ. For a semiflexible poly-
mer, µth = 180κ2/kBT`

3
c � κ/`2c , hence, the stretching

term dominates, and the bending term can be neglected
such that

|δr| =
√

2`c

√
1− dn

2`c
Θ

(
1− dn

2`c

)
, (A6)

where Θ(x) is the heaviside function.
In the presence of thermal fluctuations the position of

the nth crosslinker r∗n will fluctuate around its mechanical
equilibrium position rmeq

n . We define this deviation to be
ξ = r∗n − rmeq

n . Because µth is large, the deviation is ap-
proximately parallel to êb, namely, ξ×(rn+1−rn−1) ' 0,
and ξ = ξb êb. Assuming the deviation from mechani-
cal equilibrium is small, we expand the Hamiltonian of
Eq. (A1) to second order in ξb:

HCG(r∗n, {rm 6=n})−HCG(rmeq
n , {rm 6=n}) =

µth

`3c
|δr|2ξ2

b

+O(ξ3
b ) . (A7)

Since node n completely relaxes before rebinding to
the substrate, r∗n follows a Boltzmann distribution
governed by HCG(r∗n, {rm 6=n}), while the positions of
other nodes remain fixed. We denote this distri-
bution as Pn(r∗n|{rm6=n}), and the average with re-
spect to Pn(r∗n|{rm 6=n}) is denoted by 〈...〉n. Accord-
ing to Eq. (A7), we have 〈ξb〉n = 0 and 〈ξ2

b 〉n =
kBT`

3
c/(2µth|δr|2), such that ξb can be considered as a

thermal noise.
Our goal is to calculate the polymer’s end-to-end re-

sponse function. To that aim, it is sufficient to calculate

the parallel component of a node displacement in one un-
binding/rebinding event. The parallel displacement of a
node follows

x∗n =
1

2
(xn−1 + xn+1) + x̂ · (δr + ξbêb) , (A8)

where r∗n = x∗n x̂ + y∗n ŷ. As both δr and ξb depend
explicitly on both the x̂ and ŷ components, Eq. (A8)
cannot be solved without considering the perpendicu-
lar component of the node displacement. To simplify
the equation, we use a mean-field approach which re-
places the terms containing êx · δr and ξbêx · êb with
their long-time average values, namely an average over
many unbinding/rebinding events. Since the polymer is
in thermal equilibrium, this long-time average is equiv-
alent to the average with respect to a Boltzmann dis-
tribution of all node positions governed by Eq. (A1),
Peq({ri}). We denode this average by 〈...〉MF. Note
that since Pn(r∗n|{rm6=n}) is also a Boltzmann distri-
bution of r∗n with fixed {rm 6=n}, we have Peq({ri}) =
Pn(r∗n|{rm6=n})Pm 6=n({rm6=n}), where Pm 6=n({rm 6=n}) =∫

drnPeq({ri}) is the marginal Boltzmann distribution of
{rm 6=n}. Therefore, we have

〈...〉MF = 〈〈...〉n〉m6=n , (A9)

where 〈...〉m6=n is the average with respect to Pm 6=n. Since
Pm6=n is the marginal distribution of Peq, for any variable
A that is not a function of r∗n, we have 〈A〉m 6=n = 〈A〉MF.

Let us start with averaging the êx · δr term. Since êb
is perpendicular to (rn+1 − rn−1), êb can point in only
two directions. Due to the polymer symmetry in these
two directions, we have 〈êx · δr〉MF = 0.

Next, we calculate the mean-field average
〈(ξbêx · êb)2〉MF using Eq. (A9),
〈(ξbêx · êb)2〉MF = 〈〈(ξbêx · êb)2〉n〉m6=n. Because
|êx · êb| = |(yn+1 − yn−1)/(2`c)| does not depend on r∗n,
we have

〈ξ2
MF〉 ≡ 〈〈ξ2

b 〉n|êx · êb|2〉m 6=n = 〈〈ξ2
b 〉n|êx · êb|2〉MF ,

(A10)
where 〈ξ2

b 〉n is determined by dn (see Eq. (A6)). For a
semiflexible polymer, dn ' |∆rn|+ |∆rn+1| and |êx · êb|2
is determined by |yn+1 − yn−1|, which can be calcu-
lated from |θn| using Eq. (A2). Since the Hamiltonian
of Eq. (A1) is quadratic, {|∆rn|} and {|θn|} are uncorre-
lated, and therefore 〈ξ2

b 〉n and |êx · êb|2 are uncorrelated.
We can then write

〈ξ2
MF〉 = 〈〈ξ2

b 〉n〉MF〈|êx · êb|2〉MF . (A11)

The quadratic form of the Hamiltonian (Eq. (A1)) also
suggests that (|∆rn| − `c) is a Gaussian variable with
〈|∆rn| − `c〉MF = 0 and 〈(|∆rn| − `c)2〉MF = kBT`c/µth,
such that 〈dn − 2`c〉MF = 0 and
〈(dn− `c)2〉MF = 2kBT`c/µth. According to Eq. (A7) we
have

〈〈ξ2
b 〉n〉MF =

kBT`
3
c

2µth〈|δr|2〉MF
, (A12)
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where the mean-field value of |δr|2 is found using
Eq. (A6), 〈|δr|2〉MF = 0.5

√
kBT`3c/µth, leading to

〈〈ξ2
b 〉n〉MF =

√
kBT`3c
µth

. (A13)

The mean-field value |êx · êb| = |(yn+1 − yn−1)/2`c| is
most easily calculated in the continuum limit in which the
transverse and parallel displacements are the continuum
functions r⊥(s) and r‖(s), respectively. Here s is the
original parallel position of the node, i.e, s = n`c for
node n, while r⊥(s = n`c) = yn and r‖(s = n`c) = xn.
In this continuum limit |êx · êb| = |∂sr⊥(s = n`c)|, and
the bending part of the Hamiltonian of Eq. (A1) can be
written as:

Hbend =
κ

2

∫
ds

(
∂2r⊥
∂s2

)2

. (A14)

Equation (A14) is diagonalized using the Fourier series
of r⊥(s) [18, 25, 26] (assuming periodic boundary condi-
tions):

r⊥(s) =
∑
q

[uq sin(qs) + vq cos(qs)]

(
q =

2nπ

`

)
,

(A15)
where n = 1, 2, 3.... All uq’s and vq’s are Gaussian vari-
ables satisfying 〈uq〉MF = 〈vq〉MF = 0 and
〈u2
q〉MF = 〈v2

q 〉MF = 2kBT/(`κq
4). We then have:

〈(êx · êb)2〉MF = 〈(∂sr⊥)2〉MF =
`kBT

12κ
. (A16)

Substituting Eq. (A13) and (A16) into Eq. (A10) gives

〈ξ2
MF〉 =

`(kBT )3/2`
3/2
c

12κµ
1/2
th

. (A17)

The mean-field average of Eq. (A8) is then written as:

∆x̄n =
1

2
(x̄n−1 − 2x̄n + x̄n+1) + ξMF , (A18)

where x̄n = 〈xn〉MF and ∆x̄n = x̄∗n − x̄n is the parallel
displacement in one unbinding/rebinding event.

The continuum limit (in both time and space) of
Eq. (A18) is then written as

τoff∂tr̄‖ =
`2c
2
∂2
s r̄‖ + ηMF , (A19)

where the time interval of the unbinding/rebinding event
is τoff and the space interval is `c. Here r̄‖ = 〈r‖〉MF

and 〈ηMF(s, t)ηMF(s′, t′)〉 = 〈ξ2
MF〉τoff`cδ(s− s′)δ(t− t′).

To solve Eq. (A19), we use the Fourier series: r̄‖(s, t) =
(π/`)

∑
q w(q, t) exp(iqs), where q = nπ/`. Following the

same reasoning of the main text (see paragraph before
Eq. (14)), in the long chain limit we can replace the

summation with an integral. The Fourier series is then
replaced with r̄‖(s, t) =

∫
dq w(q, t) exp(iqs), leading to:

τoff∂tw(q, t) = −`
2
c

2
q2w(q, t) + η(q, t) , (A20)

where 〈η(q, t)η(q′, t′)〉 = π〈ξ2
MF〉τoff`cδ(q+q′)δ(t−t′) and

the correlation function is:

〈w(q′, t)w(q, 0)〉 =
π〈ξ2

MF〉
q2`c

exp

(
− q

2`2c
2τoff

t

)
δ(q + q′) .

(A21)
We are interested in the end-to-end extension,

δ` = r‖(s = `/2)− r‖(s = −`/2)− `, which can be found
from w:

δ`(t) =
1

2π

∫
dq w(q, t)(e−iq`/2 − eiq`/2)− ` . (A22)

The end-to-end correlation function is then:

〈δ`(t)δ`(0)〉 =
1

π

∫
dq
〈ξ2

MF〉 sin
2(q`/2)

q2`c
exp (− q

2`2c
2τoff

t) .

(A23)
We now use the Fourier Transform of Eq. (A23) for the
variable t to get the end-to-end power spectrum:

〈|δ`(ω)|2〉 =
1

π

∫
dq
〈ξ2

MF〉 sin
2(q`/2)

q2`c

q2`2c/τoff

ω2 + (q2`2c/2τoff)2

' 2`cτoff〈ξ2
MF〉

π

dq

q4`4c + 4τ2
offω

2
. (A24)

In the second step we replaced sin2 (q`/2) with its av-
erage value, 1/2. This approximation is valid when
` � `c/

√
τoffω, for which sin2 (q`/2) changes with

q much faster than the rest of the integrand. The
linear response function, χ(ω), can then be obtained
using the fluctuation-dissipation theorem, `χ′′(ω) =
ω〈|δ`(ω)|2〉/2kBT , together with the Kramers-Kronig re-
lation:

χ(ω) =
`c〈ξ2

MF〉
2πkBT`

∫
dq

q2`2c − 2iτoffω

= 0.0036
kBT`

3
c

πκ2

∫
`c dq

q2`2c − 2iτoffω
. (A25)

Equation (A25) is the central result of Ref. [18], which
we use in Eq. (20) of the main text.

Appendix B: Discontinuous mode-dependent
mobility lead to a plateau

In the main text we derived the mode-dependent mo-
bility for the transient networks, Eq. (24), in which a
dramatic increase in Mqq occurs at q ∼ qc. This jump,
although seemingly unphysical, is in fact essential for
a plateau to appear in the modulus K ′(ω;σ), which
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is observed in experiments of transient networks [18].
In this section we provide a mathematical proof that
a plateau in K ′(ω;σ) exists if and only if there is a
jump (dramatic increase) in the mode-dependent mobil-
ity. For simplicity we only discuss the linear modulus,
G′(ω) = K ′(ω;σ = 0).

A plateau is defined as a region in which G′(ω) varies
slowly with ω. Since G(ω) ∼ 1/χ(ω), a plateau in G′(ω)
also corresponds to a plateau in the real part of the re-
sponse function χ′(ω). Here we calculate χ′(ω) using
Eq. (9),

χ′ = C

∫ ∞
0

ωr(q)
2

ωr(q)2 + ω2

dq

q4
, (B1)

where C is a prefactor and ωr(q) = 2κMqqq
4 is the re-

laxation rate of mode q. To quantify the variation of χ′
for changing ω, we introduce the function,

f(ω) =
d log(χ′)

d log(ω)
=
ω

χ′
dχ′

dω
, (B2)

as the local scaling exponent in χ′. The plateau is then
identified as a region in which |f(ω)| � 1.

To show the relation between a jump in the mode-
dependent mobility and the plateau, in Fig. (B1) we plot
a discrete version of Eq. (B1), i.e., instead of a continu-
ous q, we have discrete bending modes q = nπ/`. When
plotting contributions from all bending modes together,
we find that there will be a plateau only when there is
a large difference between ωr for two adjacent modes,
e.g., ωr(q3)� ωr(q2), and the plateau exists for frequen-
cies ωr(q2) < ω < ωr(q3). A physical understanding for
the appearance of this plateau is that, at the time scale
1/ωr(q3)� t� 1/ωr(q2), all bending modes with q > q3

are completely relaxed, thus contributing a constant pure
elastic term to χ, while bending modes with q < q2 are
not at all relaxed, and their contribution to χ can there-
fore be neglected. This large difference in ωr corresponds
to a jump in Mqq, since ωr = 2κMqqq

4.

log	(𝜔)

log	(𝜒′)

𝜔!(𝑞") 𝜔!(𝑞#) 𝜔!(𝑞$)𝜔!(𝑞%)

(a)

log	(𝜔)

log	(𝜒′)

𝜔!(𝑞") 𝜔!(𝑞#) 𝜔!(𝑞$)

jump

plateau

(b)

Figure B1. Schematic plot of how a jump in ωr results in
a plateau in χ′. Dashed blue curves indicates contributions
from each mode, q1, q2, q3... Solid blue curve denotes χ′,
which is the sum of all modes contribution. (a) If ωr for
adjacent modes are close to each other, there is no plateau.
(b) A big jump between ωr(q2) and ωr(q3) results in a plateau.

Now that we have an intuitive understanding of the
plateau origin, let us provide a rigorous proof that a dis-
continuous Mqq (or discontinuous ωr(q)) is necessary for
its appearance. For continuous q, we define a jump in
the mode-dependent mobility for q ∈ [q1, q2] through the
mode-dependent relaxation rate:

log[ωr(q2)/ωr(q1)]

log(q2/q1)
� 1. (B3)

To prove that a plateau in χ′ appears if and only if the
mode-dependent mobility is discontinuous we prove two
propositions: (i) if there is a big jump in ωr(q) within
a narrow region of q, there must be a plateau in χ′(ω)
and (ii) if there is no jump in ωr(q), there cannot be a
plateau in χ′(ω).

Proof for proposition (i): if there is a big jump in ωr(q)
within a narrow region of q, there must be a plateau in
χ′(ω).
Let the jump take place in q ∈ [q0/(1 + a), (1 + a)q0]
such that ωr[q0/(1 + a)] = ω0/b, ωr[(1 + a)q0] = bω0.
Here a � 1, corresponding to a narrow region of q, and
b� 1, corresponding to a big jump in ωr(q). Physically,
Mqq must increase monotonically with q, leading to the
following inequalities:

ωr(q) <
1
b ( q
q0/(1+a) )4ω0 q < q0/(1 + a)

1
bω0 ≤ ωr(q) ≤ bω0 q0/(1 + a) ≤ q ≤ (1 + a)q0

ωr(q) > b( q
(1+a)q0

)4ω0 q > (1 + a)q0.

(B4)
Let us provide a (non-strict) bound for the value of f(ω)
at ω = ω0. From Eq. (B1), we have

χ′(ω0) = C

∫ ∞
0

ω2
r

ω2
r + ω2

0

dq

q4

≥ C
∫ ∞

(1+a)q0

1

2

dq

q4
≈ C

6q3
0

. (B5)

Taking the derivative of Eq. (B1) with respect to ω gives∣∣∣ωdχ′
dω

∣∣∣
ω=ω0

= 2C

∫
ω2

0ω
2
r

(ω2
r + ω2

0)2

dq

q4

≤ 2C

∫ q0/(1+a)

0

(ω0

b )2( (1+a)q
q0

)8

ω2
0

dq

q4
+ 2C

∫ (1+a)q0

q0/(1+a)

1

4

dq

q4

+ 2C

∫ ∞
(1+a)q0

ω2
0

(bω0)2( q
(1+a)q0

)8

dq

q4

≈ 32C

55b2q3
0

. (B6)

We then have from Eqs. (B5-B6)

|f(ω0)| ≤ 192

55b2
. (B7)

Since b � 1, Eq. (B7) proves the existence of a plateau
in χ(ω).
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Proof for proposition (ii): if there is no jump in ωr(q),
there cannot be a plateau in χ′(ω).
To quantify the no-jump condition, we introduce a func-
tion,

g(q) =
d log(ωr)

d log(q)
, (B8)

which is the local scaling exponent of ωr(q) (assuming it
is differentiable). Since there is no jump for any interval
[q1, q2], the value of g(q) must be bounded by some finite
number α, i.e. |g(q)| ≤ α for any q.

If χ′(ω) has no plateau, |f(ω)| is not small for any
ω. Let qr(ω) be the mode with relaxation rate ω,
i.e., ωr(qr(ω)) = ω. Since Mqq must increase mono-
tonically with q, and because |g(q)| ≤ α, we have the
following inequalities:{

ω( q
qr(ω) )4 ≤ ωr(q) ≤ ω( q

qr(ω) )α (q > qr(ω))

ω( q
qr(ω) )4 ≥ ωr(q) ≥ ω( q

qr(ω) )α (q ≤ qr(ω)) .
(B9)

Then, from Eq. (B1) we have

χ′ = C

∫ qr(ω)

0

ω2
r

ω2
r + ω2

dq

q4
+ C

∫ ∞
qr(ω)

ω2
r

ω2
r + ω2

dq

q4

≤ C
∫ qr(ω)

0

ω2
(

q
qr(ω)

)8

ω2

dq

q4
+ C

∫ ∞
qr(ω)

dq

q4

=
8C

15qr(ω)3
, (B10)

and∣∣∣ωdχ′
dω

∣∣∣=2C

[∫ qr(ω)

0

ω2ω2
r

(ω2
r + ω2)2

dq

q4
+

∫ ∞
qr(ω)

ω2ω2
r

(ω2
r + ω2)2

dq

q4

]

≥ 2C

∫ qr(ω)

0

ω2( q
qr(ω) )2α

4ω2

dq

q4
+ 2C

∫ ∞
qr(ω)

ω2

4ω2( q
qr(ω) )2α

dq

q4

=
C

2(2α− 3)q3
r(ω)

+
C

2(2α+ 3)q3
r(ω)

. (B11)

Finally using Eqs. (B10-B11), we find the bound for f(ω)
to be: ∣∣∣f(ω)

∣∣∣ =
1

χ′

∣∣∣ωdχ′
dω

∣∣∣ ≥ 1

(2α+ 3)
. (B12)

For finite α, Eq. (B12) shows that for any value of ω,
|f(ω)| is not small, which means there is no plateau in
χ′(ω), and the proposition is proved. Although in the
proof we assume ωr(q) is differentiable, the proof applies
to undifferentiable ωr(q), as long as Eq. (B9) is satisfied.

In this appendix we have proved that a discontinuous
Mqq is necessary in order for a plateau inG′(ω) to appear.
Above we have proved two propositions to demonstrate
the importance of a jump in ωr(q) or Mqq when there is
a plateau in χ′(ω) or G′(ω).
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