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When will complex ecosystems behave like random systems?

Wenping Cui∗

Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02139 and
Department of Physics, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467

Robert Marsland III† and Pankaj Mehta‡

Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02139
(Dated: August 5, 2021)

In 1972, Robert May triggered a worldwide research program studying ecological communities
using random matrix theory. Yet, it remains unclear if and when we can treat real communities
as random ecosystems. Here, we draw on recent progress in random matrix theory and statistical
physics to extend May’s approach to generalized consumer-resource models. We show that in diverse
ecosystems adding even modest amounts of noise to consumer preferences results in a transition to
“typicality” where macroscopic ecological properties of communities are indistinguishable from those
of random ecosystems, even when resource preferences have prominent designed structures. We test
these ideas using numerical simulations on a wide variety of ecological models. Our work offers
an explanation for the success of random consumer resource models in reproducing experimentally
observed ecological patterns in microbial communities and highlights the difficulty of scaling up
bottom-up approaches in synthetic ecology to diverse communities.

I. INTRODUCTION

One of the most stunning aspects of the natural world
is the immense diversity of ecological communities rang-
ing from rainforests to human microbiomes. Ecological
communities are critical for numerous processes ranging
from global water cycling processes[1] to animal develop-
ment and host health[2]. For this reason, understanding
the principles governing community assembly and func-
tion in diverse communities has wide ranging applications
from conservation efforts to pharmaceutical engineering
and bioremediation[3].

Many traditional ecological models focus on ecosys-
tems consisting of a few species and resources. In such
low dimensional models, it is often possible to character-
ize the ecological traits of all the species and resources
and then use this information to make predictions about
community-level properties [4–6]. However, many natu-
ral communities are extremely diverse and the models
and parameters are naturally high dimensional. This
problem is especially pronounced in in the context of mi-
crobial ecology where hundreds of species can coexist in a
single location. In this case, a comprehensive parameter-
ization of species and resource traits is no longer feasible,
suggesting that new ideas and concepts are required to
understand diverse communities.

A similar problem is encountered in statistical physics.
For example, an ideal gas is characterized by the unit
mole, which has the order of 1023 particles, making it im-
possible to simultaneously specify the microscopic state
of the system (e.g. the positions and velocities of all
particles). Despite this uncertainty, it is still possible to
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make predictions about macroscopic properties like pres-
sure and the average energy by treating the positions and
velocities of particles as independent random variables[7].
The fact that such universal statistical behaviors emerge
naturally in large disorder systems composed on many
particles suggests that a similar approach maybe possi-
ble in ecological systems.

In 1972, Robert May suggested that large complex
ecosystems can also be modeled as random systems
[8]. May considered a diverse ecosystem composed of
S species whose interspecific interactions were sampled
randomly and independently from a normal distribution
with zero mean and variance σ2. In particular, May asked
when such a diverse random ecosystem would be stable
to small perturbations. To answer this question, he ex-
amined the largest, i.e., the rightmost eigenvalue λmax of
the S × S community interaction matrix J, whose diag-
onal entries – chosen to be Jii = −1 by May– describe
intraspecific competition and off-diagonal entries Jij de-
scribe how much the growth rate of species i is affected
by a small change in the population Nj of other species
j from its equilibrium value. Using a mathematical for-
mula for the distribution of eigenvalues of large random
matrices derived by Ginibre [9], May showed that λmax

increases with S, and derived a stability criterion gov-
erning the maximum diversity of an ecosystem: a diverse
ecosystem becomes unstable to small perturbations when√
Sσ > 1[8]. May’s stability criteria has proven to be ro-

bust against a wide array of changes in the assumptions,
including adding biologically realistic correlation struc-
tures to the matrix, or incorporating the dependence of
the community matrix on population sizes in the Lotka-
Volterra model [10, 11].

In May’s model, all ecosystem properties are encoded
in the species-species interaction matrix. A major limi-
tation of these models is that they neglect resource dy-
namics, making it difficult to understand how ecosystem
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In a seminal paper in 1972, Robert May

studied complex ecosystems using Random
Matrix Theory. Nearly fifty years later it re-
mains unclear when and if real communi-
ties can be described as random dynamical
systems. Here, we show that adding even
a small out of noise to structured communi-
ties makes them indistinguishable from com-
pletely random ecosystems and provide ana-
lytic proof of a phase transition from special-
ized to typical ecosystems . Our results ex-
plain the success of statistical mechanics ap-
proaches at describing large-scale patterns in
ecological data.
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After the phase transition σc = 1 , structured and random ecosystems become indistinguish-
able.
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There is a natural mapping between linear response functions of Cavity solutions and spec-
trums of Random matrix theory. The phase transition happens when the minimum eigenvalue
of A ij reaches 0.
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FIG. 1. Random interactions destabilize an ecosystem of specialist consumers. (A) Left: an ecosystem with system
size M = 5 starts with specialists consuming only one type of resource, resulting in a consumer preference matrix B = 1.
Right: off-target consumption coefficients C ∼ N ( µ

M
, σc√

M
) are sampled from a Gaussian distribution, resulting in an overall

consumer preference matrix C̄ = B+C. (B) Fraction of surviving species S∗/M vs. σc, numerically computed using M = 100
for an ecosystem described by Eq. 2, along with the corresponding results for a completely random ecosystem with B = 0.
The error bar shows ±1 standard deviation from 10000 independent realizations. Also shown are examples of the matrices C̄
employed in the simulations. (C) Heatmap for the identity matrix plus a gaussian random matrix with σc = 1 for two system
sizes: M = 100 and M = 500.

properties depend on both the external environment and
species consumer preferences. For this reason, commu-
nity assembly is often analyzed using generalized Con-
sumer Resource Models (CRMs)[12, 13]. In these mod-
els, species are modeled as consumer that can consume
resources, and sometimes also produce resources [14–18].
Recently, we have shown that such models, initialized
with random parameters, can predict lab experiments on
complex microbial communities [14, 16] and reproduce
large-scale ecological patterns observed in field surveys,
including the Earth and Human Microbiome Projects
[16]. This suggests that the large-scale, reproducible pat-
terns we see across Microbiomes are emergent features of
random ecosystems.

Yet, it remains unclear why random ecosystems can
accurately describe real ecological communities. To an-
swer these question, in this paper we exploit ideas from
random matrix theory and statistical physics to analyze
generalized consumer-resource models in spirit of May’s
original analysis. We show that the macroscopic ecologi-
cal properties of diverse ecosystems can be described us-
ing random ecosystems, much like thermodynamic quan-
tities like pressure and average energy of the ideal gas
can be described by considering particles to be random
and independent.

A. Models

To explore these ideas, we devised a more concrete ver-
sion of May’s original thought experiment describing an
ecosystem consisting of S non-interacting species where
interactions are gradually turned on. May’s original ar-
gument only considered the local dynamics near a pre-
specified equilibrium point that eventually becomes un-
stable. Since we are interested in exploring what happens

in consumer resource models, we must make additional
modeling assumptions to arrive at a complete set of non-
linear dynamics. We focus on numerous variants of the
Consumer Resource Model (CRM)[12], including differ-
ent choices of resource dynamics, consumer preferences,
as well as more dramatic variants such as the Microbial
Consumer Resource Model introduced in [14–16].

The original MacArthur Consumer Resource Model
[12] consists of S species or consumers with abundances
Ni (i = 1...S) that can consume one of M substitutable
resources with abundances Rα (α = 1...M), whose dy-
namics are described by the equations{

dNi
dt = Ni(

∑
β C̄iβRβ −mi)

dRα
dt = Rα(Kα −Rα −

∑
j NjC̄jα).

(1)

The consumption rate of species i for resource α is en-
coded by the entry C̄iα in the S×M consumer preference
matrix C̄, Kα is the carrying capacity of resource α, and
mi is a maintenance energy that encodes the minimum
amount of energy that a species i must harvest from the
environment in order to survive. When the system is in
the steady state, some species and resources can vanish.
We denote the numbers of surviving species and resources
by S∗ andM∗, respectively, and in general at steady state
we will have S∗ ≤ S and M∗ ≤ M . For this reason, we
refer to this model as the CRM with resource extinction
and consider its effects analytically and numerically in
Section II C and Appendix C 1.

In the beginning, we focus primarily on a popular
variant of the original CRM introduced by Tilman with
slightly different resource dynamics[13]:{

dNi
dt = Ni(

∑
β C̄iβRβ −mi)

dRα
dt = Kα −Rα −

∑
j NjC̄jα.

(2)

From an ecological perspective, there are significant dif-
ferences between this model variant and the original
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CRM. First, the resource supply rate Kα is constant
instead of following logistic growth rate. Second, the
species consume resources at a rate that is independent
of the resource concentrations in the environment. This
can lead to unphysical, negative resource concentrations.
Despite these differences, mathematically the equilibrium
solutions of the two models have similar forms. One ma-
jor difference that does arise is that in the dynamics de-
scribed by Eq. 2 consumers can no longer cause a resource
to go extinct (i.e. M∗ = M). This makes this models sig-
nificantly easier to analyze (especially within the context
of Random Matrix Theory) and leads to much simpler
analytic expressions. For this reason, we largely focus
on this latter model without resource extinction (see Fig.
A9, Fig. A10, Fig. A8 for dynamics described by Eq 2
and Appendix J for numerics and Appendix C for ana-
lytics on original CRM described by Eq. 1). Despite the
unphysical, negative resource concentrations, the CRM
without resource extinction captures almost all the qual-
itative behaviors present in more complicated and phys-
ically realistic CRMs (though there are some subtle but
important differences discussed below).

Both the models in Eq. 1 and Eq. 2 make very specific
assumptions about resource dynamics. To check the gen-
erality of our results, we also numerically analyzed gener-
alizations of the CRM including linear resource dynamics
where resources are supplied externally, and a model of
microbial ecology with trophic feedbacks where organ-
isms can feed each other via metabolic byproducts[14–
16, 19]. This analysis can be found in Appendix A. Fur-
thermore, for simplicity, in most of this work we assume
that S = M . However, we have numerically checked that
our results are robust to breaking on this assumption (see
Fig. A6).

In CRMs, the identity of each species is specified by
its consumption preferences. In real ecosystems, it is
well established that organisms can exhibit strong con-
sumer preferences for particular resources. However, re-
cent work has shown that consumer resource models with
random consumer preferences can reproduce experimen-
tal observations in field surveys and laboratory exper-
iments [14, 16]. To understand this phenomena, we
asked how adding noise to consumer preferences changes
macroscopic ecosystem level properties like diversity and
average productivity. To do so, we considered a thought
experiment where we started with predesigned consumer
resource preference, and then added “noise” to the con-
sumer resource preferences. Mathematically, we can de-
compose the consumer matrix C̄ in Eqs 1 and 2 into two
parts:

C̄ = B + C,

where B encodes pre-designed structures, and C is a ran-
dom matrix representing ”noise”.

For simplicity, we started with non- interacting species
where each species consumes its own resource. A set of
non-interacting species can be constructed by engineer-
ing each species to consume a different resource type,

Gaussian Noise

Binary Noise

(B)

(C)

(D)

Uniform Noise

(A)

FIG. 2. Community properties for structured and ran-
dom ecosystems. (A): Examples of designed interactions
Top: the identity matrix; Middle: a Gaussian-type circulant
matrix; Bottom: a block matrix (see Appendix A for details).
Simulations of designed and random ecosystems where the
random component of the the consumer preferences C are
sampled from a (B) Gaussian distribution N (0, σc√

M
), (C)

Uniform Distribution: U(0, b) or a (D): Binomial distribu-
tion: Bernoulli(pc). The plots show the fraction of surviving
species S∗/M , mean species abundance 〈N〉, and second mo-
ment of the species abundances

〈
N2
〉

for designed and purely
random ecosystems (B = 0) the number of non-specific con-
sumer preferences is increased.

with no overlap between consumption preferences. For
example, one can imagine designing strains of E. coli
where each strain expresses transporters only for a sin-
gle carbon source with all other transporters edited out
of the genome: i.e a strain that can only transport lac-
tose, another strain that can only transport sucrose, etc.
An ecosystem with such consumer preference structure
is shown in Figure 1(A). In such an experiment, hori-
zontal gene transfer would eventually begin distributing
transporter genes from one strain to another, so a re-
alistic model would have to allow for some amount of
unintended, “off-target” resource consumption. In line
with May, we can model the consumer preferences C̄iα
of species i for resource α in such an ecosystem as the
sum of the identity matrix B = 1 and a random com-
ponent Ciα with variance σ2 that encodes non-specific
preferences (see Figure 1A right). In other words, the
full consumer matrix can be written as C̄ = I + C.

II. RESULTS

A. Phase transition to random ecosystems

Figure 1(B) shows how the number of surviving species
at steady-state changes as one adds more and more non-
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specific resource preferences to an ecosystem initially
composed of non-interacting species. Just as in May’s
analysis, the appropriate measure of the importance of
the random component is the root-mean-squared off-
target consumption σc =

√
Mσ2 (recall M = S). This

scaling reflects the fact that two consumer matrices C̄
with the same σc but different system sizes M can have
very different amounts of absolute noise as shown Figure
1(C), but exhibit almost identical community-level prop-
erties (with all differences coming from finite size effects,
see Fig. A4 for the universal behavior at different M).
Figure 1(B) shows the fraction of surviving species S∗/M
in the ecosystem as a function of σc. At small values of σc,
all the species survive and S∗ = S. As high as σc = 0.7,
almost all of the original species are still present in the
community. But between σc = 0.7 and σc = 1, there is
a sharp transition in community structure, which results
in about half of the original species becoming extinct.

Remarkably, the fraction of surviving species converges
to the same value as for a completely random consumer
preference matrix and remains finite as σc → ∞ [20].
This means that ecosystems with an arbitrarily large
number of species can be stably formed by considering
a sufficiently large initial species pool. We also examined
two other community-level properties: the mean species
abundance 〈N〉 (i.e. the average productivity), and the
second moment of the population size 〈N2〉, which in-
cludes information about the distribution of population
sizes of various species. Figure 2 shows that both of these
quantities are also well-approximated by the random con-
sumer preference matrix for σc > 1. These numerical
predictions are in excellent agreement with analytic pre-
dictions derived in the S →∞ limit derived in Appendix
C using the cavity method [21, 22].

This convergence to random ecosystem behavior is
quite robust, and holds for other choices of designed con-
sumer preferences beyond the identity matrix considered
above. Figure 2 shows numerical simulations of the di-
versity S∗/M , average productivity 〈N〉, and second mo-
ment of the species abundances 〈N2〉 as a function of
the noise σc for two other choices of designed consumer
preference matrices: a block structure with pre-defined
groups of species exhibiting strong intra-group compe-
tition and a unimodal structure where each species is
more likely to consume resources similar to its preferred
resource. Once again, we see that the ecosystem quickly
transitions to a behavior where these macroscopic proper-
ties are indistinguishable from those of a random ecosys-
tem. Borrowing terminology from physics, we call sys-
tems whose macroscopic properties are well described by
random ecosystems as typical. The primary effect of the
choice of consumer preference matrix is to adjust the
threshold value of σc where the transition to typicality
occurs. In all cases, we find that the random behavior
takes over when the average total off-target consumption
capacity over all M resource types becomes greater than
the consumption of the primary resource in the original
designed ecosystem in the absence of noise.

(B)

(A) Consumer-Resource Model Lotka–Volterra  Model

(D)

(C)

FIG. 3. Effect of random interactions on ecosys-
tem sensitivity. (A): The bipartite interactions C̄iα in
MacArthur’s consumer-resource model can be mapped to
pairwise competition coefficients Aij in generalized Lotka-
Volterra equations through Aij =

∑
α∈M C̄iαC̄

T
αj . (B) Spec-

tra of Aij at different σc for C̄ = 1+C, where C is a random
matrix with i.i.d entries drawn from a normal distribution
with mean zero and standard deviation σc. The red solid
line is the Marchenko-Pastur distribution. (C): Comparison
between numerical simulations and analytic results for the
minimum eigenvalue of A at different σc. (D): Comparison
between numerical simulations and analytic solutions for the
mean sensitivity ν of steady-state population sizes to changes
in species growth rates. See Appendix G for details.

The character of the self-organized state is also robust
to changes in the sampling scheme for the random com-
ponent of the consumer preferences. Gaussian noise in
consumer preferences simplifies the analytic calculations
but also sometimes results in non-physical negative val-
ues for consumer preferences. We therefore tested two
sampling schemes that always produce positive values
for consumer preferences: uniformly sampling the ran-
dom component of preferences Ciα in an interval from 0
to b, and binary sampling where Ciα = 1 with probability
pc and zero otherwise. Changing b or pc affects both the
mean and the variance of the random components of the
consumer preferences simultaneously making it difficult
to directly compare to the Gaussian case. Nonetheless,
as can be seen in the Figure 2, the qualitative behaviors is
identical to the Gaussian case, with macroscopic ecolog-
ical properties becoming indistinguishable from those of
a fully random ecosystem when the average off-target re-
source consumption comparable to the the consumption
of the designed resources.
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B. Sensitivity to perturbations and the transition
to typicality

To better understand why mass extinctions happen at
σ∗c ∼ 1 and allow for comparison with May’s original
analysis, we calculated an effective species-species com-
petition matrix Aij between species for an ecosystem
whose dynamics are governed by Eq. 2. We exploited
the observation by MacArthur and others that if resource
abundances always remain close to their steady state val-
ues, the steady-states of the CRM coincide with those of
an effective generalized Lotka-Volterra model of the form

dNi
dt

= Ni

∑
α∈M

CiαKα −mi −
∑
j

AijNj

 , (3)

with the species-species interaction matrix given by

Aij =
∑
α∈M

C̄iαC̄
T
αj (4)

(see Figure 3(A) and Appendix D for details). This ma-
trix is related to May’s community matrix governing sta-
bility J discussed in the introduction through the relation
Jij = −N̄iAij , where N̄i is the steady-state abundance of
species i. For symmetric interaction matrices of the form
in Eq. 4, it is possible to prove that the largest eigen-
value λmax of J reaches zero from below only when the
smallest eigenvalue λmin of A reaches zero from above
(see Appendix E).

As shown in Figure 1(B), the behavior broadly falls
into one of three different regimes depending on the
amount of noise introduced in the consumer preferences:
a low-noise regime when σc � 1, a cross-over regime
when 0 � σc ≤ 1, and a high-noise regime when
σc > 1. Figure 3(B) shows how the eigenvalue spectrum
of the corresponding Lotka-Volterra interaction matrix
A change as σc increases.

Low-noise regime (σc � 1): In the low-noise
regime, the engineered structure in the consumer pref-
erence controls large scale ecological properties. Further-
more, the eigenvalue spectrum of the LV-interaction ma-
trix A is centered around 1 reflecting the fact there is
very little competition between species (i.e. species still
occupy largely independent niches). For this reason, in
this regime all the initial species in the ecosystem survive
to steady-state so that S∗/M = 1.

Crossover regime (0� σc ≤ 1): With increasing σc,
the eigenvalues due the noise component in A repel each
other like in the Coulomb gas and the spectrum spreads
out [23]. λmin decreases until it reaches the threshold of
stability λmin

∼= 0 at σ∗c ≈ 1. Note that λmin is close
to 0 but not exactly at 0 because the steady-state of the
CRM is always stable [24]. In this regime even a small
environmental perturbations or small amounts of demo-
graphic noise can result in species extinctions [25]. This
is closely related to the divergence of structural stability
when λmin ∼ 0[26]. In Appendix C we show analyti-
cally using the Cavity method [21, 22] that in the limit

M →∞, λmin is approaches 0 from above when σ∗c = 1.
At σc ∼ 1 the engineered structure and noise have com-
parable amplitudes. For the case where the consumer
preferences are chose to be binary noise, this threshold
corresponds to a critical noise level pc ∼ 1

M , meaning on
average there is one random nonzero element in the row
besides the diagonal one. More generally, our numerics
suggest that the threshold to typicality occurs in a wide
variety of models when the expected off-target resource
consumption rates become comparable to the consump-
tion rate for the designed resources.

Noise-dominated regime (σc > 1) In this regime,
we observe two new phenomena that were not accessi-
ble in May’s original framework. First, the spectrum of
the species-species interaction matrix Aij approaches the
Marchenko-Pastur law [27],

ρ(x)= 1
2πσ2

ccx

√
(b− x)(x− a)+Θ(c− 1)(1− c−1)δ(x) (5)

where a = σ2
c (1−√c)2, b = σ2

c (1 +
√
c)2, c = S∗/M and

Θ(x) represents the Heaviside step function. This differs
from May’s analysis where the spectrum of the interac-
tion network follows Girko’s Circular law [28–30]. The
reason for this difference is that species-species interac-
tion matrix obtained from the CRM is the outer product
of a random matrix C̄ with itself (i.e., a Wishart ma-
trix, see Eq. 4), reflecting the fact that the CRM has
two different kinds of degrees of freedom: resources and
species. The Marchenko-Pastur law is the distribution
we would expect for an ecosystem with completely ran-
dom consumer preferences [27]. This helps explain our
earlier observations that community-level observables of
ecosystems are indistinguishable from the purely random
ecosystems when σc is sufficiently large (see Figure 3(B)).

Secondly, as σc increases past 1 and ecosystem proper-
ties become typical, the resulting ecosystems once again
become insensitive to external perturbation [25]. To see
this, we note that we can measure sensitivity to pertur-
bations by examining the minimum eigenvalue of the in-
teraction matrix Aij , with larger λmin meaning decreased
sensitivity to perturabations (see Appendix E). The min-
imum eigenvalue in the Marchenko-Pastur Distribution is
located at

λmin = σ2
c (1−

√
S∗/M)2. (6)

As one increases σc, S
∗/M → 1/2 from above since there

is increases competition between species for shared re-
sources. Consequently, λmin is always much larger than
zero once ecosystems crossover to their typical behavior.

The above analysis suggests that λmin is an impor-
tant property that can be used to characterize the
three regimes seen in Figure 3(C). In the low-noise
regime, species-species interactions are weak and λmin ≈
1, whereas in the high-noise regime λmin = σ2

c (1 −√
S∗/M)2. The calculation of λmin in Regime B is chal-

lenging because of the mixture between the engineered
structure and noise. However, we can use techniques
from RMT for wireless communication (i.e information-
plus-noise models) to analytically estimate λmin [31, 32].
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The results are shown in the red scatter points in Fig-
ure 3(D) (see Appendix F 3). As discussed above, λmin

approaches zero as σc approaches one.
The spectrum of A also contains quantitative informa-

tion about the sensitivity of the ecosystem in the Cavity
method. Specifically, as shown in Appendix C, we can
define a susceptibility ν that measures the average re-
sponse of the steady-state population size N̄i to perturb-
ing of the species maintenance cost mi (see Eq. 2). We
further show that ν is directly related to the the sum of
the inverse eigenvalues of Aij through the expression

ν =
1

M

∑
i

(1/λi) =
1

M
tr(A−1). (7)

Figure 3(D) shows that this quantity is initially constant
as σc is increased from 0, then reaches the maximum
value at σc = 1, and finally rapidly decreases to near
zero. In Appendix C we provide analytical calculations
based on the cavity method confirming these numerical
results.

Note that our results are not restricted to Gaussian
noise but also apply to the other cases where the noise in
consumer preferences is binary or uniform (See Figure A7
and A9). This is because the central limit theorem guar-
antees that the statistics of eigenvalues of large random
matrices converge to the statistics in Gaussian random
matrices for many biologically plausible choices of con-
sumer preferences.

C. Effect of resource extinction

Thus far we have focused on a CRM without resource
extinctions specified by Eqs. 2. As discussed extensively
in Appendix C, if we allow for resource extinction (Eqs.
1) and write

Aij =
∑
α∈M∗

C̄iαC̄
T
αj (8)

instead of eq. 4, somewhat surprisingly, our cavity
method predicts a second-order phase transition to typi-
cality rather than a cross-over as is the case without re-
source extinction. The signature of such a second order
transition is the divergence of the susceptibility matrix
ν discussed above. Figure 4 shows ν with and without
resource extinction, numerically confirming the existence
of this second order transition. This second order tran-
sition is also reflected in the spectrum of the interaction
matrix A through the the appearance of zero eigenvalue
modes for CRMs when resources can go extinct.

The existence of zero modes can be understood by not-
ing that resource extinction and species extinction corre-
spond to the column and row deletion in the consump-
tion matrix (shown in Figure 4(A)). Such deletions can
change the engineered component of the effective con-
sumer preferences for surviving species and resources, re-
sulting in large fluctuations in the interaction matrix A.

In the presence of these large fluctuations, the interac-
tion matrix no longer self-averages, giving rise to the ob-
served second-order phase transition. This same mech-
anism also leads to a second-order phase transition to
typical behavior when the engineered portion of the con-
sumer resources is block diagonal, even in the absence of
resource extinctions (see Figure A10).

III. DISCUSSION

It is common practice in theoretical ecology to model
ecosystems using random matrices. Yet it remains un-
clear if and when we can treat real communities as ran-
dom ecosystems. Here, we investigated this question by
generalizing May’s analysis to consumer resource models
and asking when the macroscopic, community level prop-
erties can be accurately predicted using random param-
eters. We found that introducing even modest amount
of stochasticity into consumer preferences ensures that
the macroscopic properties of diverse ecosystems will
be indistinguishable from those of a completely random
ecosystem. Our calculations and numerics suggest that
transition to typicality occurs when the total amount of
off-target resource consumption becomes comparable to
the consumption rate of targeted resources.

We confirmed our analytic calculations using numerical
simulations on CRMs with different types of resource dy-
namics and different classes of non-specific interactions.
We emphasize that despite the fact that random ecosys-
tems can make accurate predictions about macroscopic
properties like the average diversity or productivity, they
will in general fail to capture species level details. This
phenomena is well understood in the context of statisti-
cal physics where it is possible to predict thermodynamic
quantities such as pressure and temperature even though
one cannot accurately predict microstates.

These observations may help explain the surprising
success of consumer resource models with random pa-
rameters in predicting the behavior of microbial ecosys-
tems in the lab and natural environments [14, 16]. They
also suggest that maybe possible to predict macroscopic
ecosystem level properties like diversity or total biomass
even when ecosystems are poorly characterized or have
lots of missing data.

The foregoing analysis has several other interesting im-
plications. First, it suggests that bottom-up engineering
of complex ecosystems may prove to be very difficult.
As the number of components increases, small uncertain-
ties in each of the interaction parameters may eventually
overwhelm the designed interactions, and destabilize the
intended steady state. Instead, such system are much
more likely end up in a typical state which our theory
suggests is much more stable than the intended designed
state as ecosystems become more diverse.

Our work also suggests that in ecosystems well de-
scribed by consumer resource models, crossing a May-like
transition generically gives rise to typical random ecosys-
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FIG. 4. Effect of resource extinction on an ecosystem. A schematic for the consumer preference matrix with ((A)) and
((B))without resource extinction for specialist consumers that each eat independent resources. The left schematic corresponds
to the initial consumer matrix, and the right schematic to the consumer matrix after species and resource extinctions. Notice
that resource extinctions can result in singular consumer matrices (C) Spectra of Aij at σc = 0.3 with consumer matrices
chosen as in Figure 3 with (left) and without resource extinction (right). The zero modes are marked with a red ellipse. (D)
the mean sensitivity ν of steady-state at different σc. The dashed lines in (D) are cavity solutions. The scatter points are
results from numerical simulations. See Appendix C for detailed calculations.

tems rather than a marginal stable phase as was found in
a recent analysis of the Generalized Lotka-Volterra model
[33–35] (an important caveat to this statement is that
adding non-resource based interactions to consumer re-
source models can restore complicated behavior reminis-
cent of the marginally stable phase [25]). This suggests
that even when cumulative parameter uncertainties pre-
clude a detailed characterization of an ecosystem, meth-
ods from statistical physics and Random Matrix The-
ory can be employed to predict system-level properties
[20, 36]. It will be interesting to explore if and how
these insights can be exploited to design top-down con-
trol strategies for ecosystems and identify assembly rules
for microbial communities with many species [4].

In this paper, we only consider white noise, which is
independently and identically added to all interaction
components. In the future, it will be interesting to ask
how other specialized noises, resulting from demographic
stochasticity, phenotypic variation, can affect our results.
Based on our experience, we expect that, even in these

more complicated ecosystems, our conclusion will hold
quite generally in the thermodynamics limit. But much
more work needs to be done to confirm if this intuition
is really correct.
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Appendix A: Model setup

We primarily analyze CRMs of the form given by Eqs 1 and 2. To do so, we decompose the consumer matrix C̄
into two parts:

C̄ = B + C, (A1)

with B encoding a pre-designed set of resource-mediated interactions, and C a random matrix encoding “off-target”
consumption. We consider three types of B (see Figure 2): the identity matrix, a square Gaussian-type circulant

matrix Biα = e−min(i,|M−i|)2/r2 with r = 7[37] and a block matrix with identical 10 × 10 blocks(all elements are 1
inside the 10 × 10 block). We also consider three types of random matrices C. In all cases, each element in the
matrix is sampled independently from an underlying probability distribution. The three distributions we consider are
a normal distribution with mean zero and standard deviation σc/

√
M , a uniform distribution where each element is

sampled uniformly from [0, b], and a Bernoulli distribution where each element can be +1 with probability pc and 0
with probability 1− pc (i.e Binary Noise).

For all simulations, unless otherwise specified the default choices for parameters are: M = 100, µ = 0, K = 1,
σK = 0.1 , m = 0.1 and σm = 0.01 and each data point is averaged from 5000 independent realizations. The
simulation detail for each figure can be found at Appendix G. All simulations are available on GitHub at https:
//github.com/Emergent-Behaviors-in-Biology/typical-random-ecosystems.

1. Alternative Models used in Appendix

To test the generality of our results, we also simulated more complicated variants of the consumer resource model
(see Figure A5 and Appendix I). First, we simulated a consumer resource model with linear resource dynamics [38]:{

dNi
dt = Ni(

∑
β C̄iβRβ −mi)

dRα
dt = κα −Rα −

∑
j NjC̄jαRα.

(A2)

In this model resources are supplied externally at a rate rather than described by a logistic growth. This small
change in resource dynamics can significantly change the ecosystem properties because it prevents resources from
going extinct in the steady state. In the simulations, we set M = 100, µ = 1, κ = 1, σκ = 0.1 , m = 0.1 and σm = 0.01
and each data point is averaged from 1000 independent realizations.

Second, we simulated a generalization of the MacArthur’s Consumer Resource model to a model we call the
Microbial Consumer Resource Model (MicroCRM). The MicroCRM was introduced in [14] and refined in [19] to
simulate microbial communities. In this model, in addition to consuming resources species can produce new resources
through cross-feeding. This dramatically changes the resource dynamics through the introduction of trophic feedbacks.
Unlike the original CRM and the CRM with linear resource dynamics, the MicroCRM possesses no Lyapunov function.
Full details of the model are available in the appendix of [15, 19]. In particular, the dynamics we use are described in
equation (17) of [19] with the leakage rate l = 0.4. The fraction of secretion flux secreted to the same resource type
is fs = 0.45, the fraction of secretion flux to ’waste’ resource is fw = 0.45 and variability in secretion fluxes among
resources is d0 = 0.2. We set M = 100, µ = 1, K = 1, σK = 0.1 , m = 0.1 and σm = 0.01 and each data point is
averaged from 1000 independent realizations.

Appendix B: Sensitivity to Parameter Perturbations

We begin by defining four susceptibility matrices that measure how the steady-state resource and species abundances
respond to changes in the resource supply and species death(growth) rates:

χRαβ =
∂R̄α
∂Kβ

, χNiα =
∂N̄i
∂Kα

, νRαi =
∂R̄α
∂mi

, νNij =
∂N̄i
∂mj

(B1)

where the bar X̄ over the variable X denotes the steady-state (equilibrium) solution.
For the extinct species and resources, by definition the susceptibilities are zero. For this reason, we focus only on

the surviving resources and species. At steady-state, equation (1) gives:

0 =
∑
α∈M∗

C̄iαR̄α −mi (B2)

0 = Kα − R̄α −
∑
j∈S∗

N̄jC̄jα (B3)

https://github.com/Emergent-Behaviors-in-Biology/typical-random-ecosystems
https://github.com/Emergent-Behaviors-in-Biology/typical-random-ecosystems
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where M∗ and S∗ denote the sets of resources and species, respectively, that survive in the ecosystem at steady-state.
Differentiating these equations yields the relations

0=
∑
α∈M∗

C̄iα
∂R̄α
∂Kβ

, δαβ=
∂R̄α
∂Kβ

+
∑
j∈S∗

∂N̄j
∂Kβ

C̄jα

δij=
∑
α∈M∗

C̄iα
∂R̄α
∂mj

, 0=
∂R̄α
∂mi

+
∑
j∈S∗

∂N̄j
∂mi

C̄jα. (B4)

Substituting in for the partial derivatives using the susceptibility matrices defined above, we have:

0 =
∑
α∈M∗

C̄iαχ
R
αβ , δαβ = χRαβ +

∑
j∈S∗

χNjβC̄jα

δij =
∑
α∈M∗

C̄iαν
R
αj , 0 = νRαi +

∑
j∈S∗

νNji C̄jα. (B5)

These two equations can be written as single matrix equation for block matrices:(
C̄ 0
1 C̄T

)(
νR χR

νN χN

)
= 1 (B6)

To solve this equation, we define a S∗ × S∗ matrix: Aij =
∑
α∈M∗ C̄iαC̄

T
αj . A straightforward calculation yields

χRαβ = δαβ −
∑
i∈S∗

∑
j∈S∗

C̄TαiA
−1
ij C̄jβ (B7)

χNiα =
∑
j∈S∗

A−1
ij C̄jβ , νRαi =

∑
j∈S∗

C̄TαjA
−1
ji (B8)

νNij = −A−1
ij , i, j ∈ S∗ and α, β ∈M∗ (B9)

Appendix C: Cavity Solution

When the designed component of the consumer preferences is the identity (i.e B = 1 in Eq. A1), the effect of
random off-target consumption on system-scale properties can be computed analytically in the M,S →∞ limit using
the cavity method [21, 22]. The cavity calculation is straightforward but tedious. For this reason, it is helpful to
introduce the notation:

• M∗

M = φR, 〈R〉 = 1
M

∑
β Rβ and qR = 1

M

∑
β R

2
β =

〈
R2
〉

, where M∗ is the number of surviving resources.

• S∗

S = φN , 〈N〉 = 1
S

∑
j Nj and qN = 1

S

∑
j N

2
j =

〈
N2
〉
, where S∗ is the number of surviving species.

• Ciα ≡ µ
M + σcdiα assuming 〈diα〉 = 0, 〈diαdjβ〉 =

δijδαβ
M . with 〈ciα〉 = µ

M , 〈ciαcjβ〉 =
σ2
c

M δijδαβ + µ2

M2 ≈ σ2
c

M δijδαβ .

• Kα = K + δKα with 〈Kα〉 = 1
M

∑
βKβ = K, 〈δKαδKβ〉 = δαβσ

2
K .

• mi = m+ δmi with 〈mi〉 = m, 〈δmiδmj〉 = δijσ
2
m.

• γ = M
S and for the identity matrix γ = 1.

Following similar steps as in [22], we perturb the ecosystem with a new species and resource N0 and R0. Ignoring
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O(1/M) terms yields the following equations:

dNi
dt

=Ni

Ri−m+
∑
β

(
µ

M
+ σcdiβ)Rβ + (

µ

M
+σcdi0)R0−δmi

 (C1)

dRα
dt

= Rα

K+δKα−Rα −Nα−
∑
j

(
µ

M
+σcdjα)Nj − (

µ

M
+σcd0α)N0

 (C2)

dN0

dt
=N0

R0 −m+
∑
β

(
µ

M
+σcdjα)Rβ−δm0

 (C3)

dR0

dt
=R0

K + δK0 −R0 −N0 −
∑
j

(
µ

S
+ σcdj0)Nj

 (C4)

Denote by N̄α/0, R̄α/0 and N̄i, R̄α the equilibrium values of the species and resources before and after adding the
newcomers, respectively. These can be related to each other using the susceptibilities defined above:

N̄i = N̄i/0 − σc
∑
j

νNij dj0R0 − σc
∑
β

χNiβd0βN0 (C5)

R̄α = R̄α/0 − σc
∑
i

νRαidi0R0 − σc
∑
β

χRαβd0βN0 (C6)

In what follows we assume Replica Symmetry. In this case, the sums in the equations above can be approximated
as Gaussian random variables. For this reason, it is helpful to introduce new auxiliary random variables:

zN =
∑
β

σcR̄β/0d0β − δm0 (C7)

zR =
∑
j

σcN̄j/0dj0 − δK0 (C8)

where 〈zN 〉 = 0, σzN =
√
σ2
cqR + σ2

m and 〈zR〉 = 0, σzR =
√
σ2
cqN + σ2

K .

Case 1: both R0 and N0 are positive. Following calculations analogous to [22] and noting that γ = M
S = 1 yields:

R̄0 = max

[
0,
σ2
cχ(K − µ 〈N〉+ zR)− µ 〈R〉+m− zN

(1− σ2
cν)σ2

cχ+ 1

]
(C9)

N̄0 = max

[
0,

(1− σ2
cν)(µ 〈R〉 −m+ zN ) +K − µ 〈N〉+ zR

(1− σ2
cν)σ2

cχ+ 1

]
(C10)

Case 2: either R0 or N0 is zero. We get exactly the same expression as the random ecosystem we derived in [22].

R̄0 = 0, N̄0 =
µ 〈R〉 −m+ zN

σ2
cχ

or, N̄0 = 0, R̄0 =
K − µ 〈N〉+ zR

1− σ2
cν

(C11)

Case 3: both R0 and N0 are zero, namely,

R̄0 = 0 and N̄0 = 0. (C12)

Combining the cases above, the steady state solution is a Gaussian mixture depending on the positivity of R0 and
N0.

R̄0 = Θ(R0)

[
Θ(N0)

σ2
cχ(K − µ 〈N〉+ zR)− µ 〈R〉+m− zN

(1− σ2
cν)σ2

cχ+ 1
+ (1−Θ(N0))

K − µ 〈N〉+ zR
1− σ2

cν

]
(C13)

N̄0 = Θ(N0)

[
Θ(R0)

(1− σ2
cν)(µ 〈R〉 −m+ zN ) +K − µ 〈N〉+ zR

(1− σ2
cν)σ2

cχ+ 1
+ (1−Θ(R0))

µ 〈R〉 −m+ zN
σ2
cχ

]
(C14)
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Cavity equations for the susceptibilities can be obtained directly by differentiating these equations:

ν =
1

M

∑
i

νNii =

〈
∂N̄0

∂m

〉
= − φNφR(1− σ2

cν)

(1− σ2
cν)σ2

cχ+ 1
− φN (1− φR)

σ2
cχ

(C15)

χ =
1

M

∑
α

χRαα =

〈
∂R̄0

∂K

〉
=

φNφRσ
2
cχ

(1− σ2
cν)σ2

cχ+ 1
+

(1− φN )φR
1− σ2

cν
(C16)

1. With resource extinction

Two solutions are found by solving eq. (C15) and eq. (C16):

φR − φN = 0, χ = 0, ν =
1

σ2
c − 1

(C17)

φR − φN > 0, χ = φR − φN , ν =
1− 2φNσ

2
c + φRσ

2
c −

√
1 + 2(1− 2φN )φRσ2

c + φ2
Rσ

4
c

2σ4
c (φR − φN )

. (C18)

2. Without resource extinction

In this case, the resource never vanishes so that we can fix φR = 1 and solve eq. (C15) and eq. (C16). Two solutions
are found:

1− φN = 0, χ = 0, ν =
1

σ2
c − 1

(C19)

1− φN > 0, χ = 1− φN , ν =
1− 2φNσ

2
c + σ2

c −
√

1 + 2σ2
c − 4φNσ2

c + σ4
c

2σ4
c (−1 + φN )

. (C20)

Above two solutions are continuous at the transition point: χ = 0 i.e. φN = 1. Assume there is a small perturbation
near the transition: φN = 1− ε and ε� 1 and ν in eq. (C20) can be expanded around ε. It is easy to check the ν in
eq. (C20) has the same expression as eq. (C19) at the first order of ε. Therefore, only one solution exists:

χ = 1− φN , ν =
1− 2φNσ

2
c + σ2

c −
√

1 + 2σ2
c − 4φNσ2

c + σ4
c

2σ4
c (−1 + φN )

(C21)

The comparison between cavity solutions and numerical simulations for χ and ν are given in Figure A8 and Figure 4
respectively.

3. Without resource extinction and species extinction

In this case, both the resource and the speices never vanish so that we can fix φR = 1 and φN = 1. Solving eq.
(C15) and eq. (C16), only one solution is found:

χ = 0, ν =
1

σ2
c − 1

. (C22)

4. Behavior in Three Regimes

To understand these solutions and behaviors better, it is helpful to consider three regimes: Regime A where
χ = φR − φN = 0, Regime B where χ becomes nonzero and species start to extinct, and Regime C where σc � 1 and
it becomes a random ecosystem.

In Regime B, resource extinction has a significant effect on the system’s feasibility, shown in Figure 4. With resource
extinction, equation (C18) shows there is a sudden change for the linear response function ν from Regime A: χ = 0
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to Regime B χ 6= 0. As ν ∼ 1
φR−φN , even a slightly decrease of the number of surviving species will induce a huge

perturbation to the ecosystem, corresponding to a phase transition between Regime A and Regime B at σ∗c ∼ 0.2.
Without resource extinction, equation (C21) shows the linear response function ν is continuous from Regime A to

Regime B. There is a crossover instead of a phase transition there. The peak for the crossover is a finite value and
can be calculated by taking the derivative of equation (C21) over σc, ignoring the correlation between σc and φN . It
happens approximately at σ∗c =

√
4φN − 2 ∼ 1.04, where φN = 0.77 can be obtained from numerical simulation. The

explanation for the difference from random matrix theory are provided in the main text and also the spectrums in
Figure 3 and Figure 4.

Without resource and species extinction, as shown in equation (C22), ν diverges at σ∗c = 1, corresponding to λmin

reaching exactly zero. This result is also consistent with equation (F9), predicted by random matrix theory, which
ignores the effect of row or column deletions in the interaction matrix. This tells there do not exists any feasible
solutions for the coexistence of M species and M resources. Therefore species must go extinct before σ∗c = 1.

In Regime C, further increasing of σc after σc > 1, the σ4
c term in the square root becomes dominating and the the

susceptibility ν behaves like a random ecosystem quickly, which explains the dramatic drop of the species packing
shown in Figure 1. It indicates the ecosystem tends to a self-organized random state.

5. Solutions in Regime A and C

In Regime A(σc � 1), for eqs. (1) with resource extinction, the solutions for the steady-states become,

R0 = max [0,m− zN ] , N0 = max [0,K + zR] . (C23)

For eqs. (2) without resource extinction, the solutions for the steady-states become,

R0 = m− zN , N0 = max [0,K + zR] . (C24)

For ecosystems without resource and species extinction, the solutions for the steady-states become,

R0 = m− zN , N0 = K + zR. (C25)

For Regime C (σc � 1), for eqs. (1) with resource extinction, the solutions for the steady-states become,

R0 = max

[
0,
K − µ 〈N〉+ zR

1− σ2
cν

]
, N0 = max

[
0,
µ 〈R〉 −m+ zN

σ2
cχ

]
, (C26)

in agreement with the equations obtained in [22] for purely random interactions. For equations. (2) without resource
extinction, the solutions for the steady-states become,

R0 =
K − µ 〈N〉+ zR

1− σ2
cν

, N0 = max

[
0,
µ 〈R〉 −m+ zN

σ2
cχ

]
. (C27)

For ecosystems without resource and species extinction, the solutions for the steady-states become,

R0 =
K − µ 〈N〉+ zR

1− σ2
cν

, N0 =
µ 〈R〉 −m+ zN

σ2
cχ

. (C28)

Appendix D: Lotka-Volterra Model, Wishart Matrix and Marchenko-Pastur Law

In this section, we show how the generalized Lotka-Volterra model can be related to the CRM, and in particular,
the how the steady states of the two models can be made to coincide. Solving for the steady-state values of the
non-extinct resources by setting the bottom equation in (1) equal to zero gives:

R̄α = Kα −
∑
i

NiC̄iα

Substituting this into the top equation in (1) gives:

dNi
dt

= Ni

 ∑
α∈M∗

CiαKα −mi −
∑
j

AijNj


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where we have defined an interaction matrix Aij =
∑
α∈M∗ C̄iαC̄

T
αj and M∗ is the set of surviving resources. We

can use this equation to solve for the steady-state (equilibrium) abundances of non-extinct species, and arrive at the
expression:

N̄i =
∑
j∈S∗

A−1
ij (

∑
α∈M∗

CjαKα −mj)

where S∗ is the set of surviving species. In terms of N̄i, the Lotka-Volterra equations become:

dNi
dt

= −N̄i
∑
j

Aij(Nj − N̄j) (D1)

with community matrix

Jij =

(
∂

∂Nj

dNi
dt

)
{N̄j}

= −N̄iAij . (D2)

In May’s work, Jij is assumed to be an i.i.d. random matrix and an extension of Wigner’s arguments about Gaussian
random matrices is used to compute the leading eigenvalue [8]. Since the N̄i are not known a priori, the stability of
Lotka-Volterra type dynamics are more easily studied in terms of the eigenvalues of Aij , using the connection between
the leading eigenvalues of J and A derived below.

Appendix E: Relating the eigenvalues of A and J

In this section, we prove that the largest eigenvalue λmax of the community matrix J (which controls the Lyapunov
stability of the fixed point) is negative if and only if the smallest eigenvalue λmin of the Lotka-Volterra competition
matrix A is positive. For this stability analysis, we remove the rows and columns corresponding to species that go
extinct in the steady state, since allowing Ni = 0 trivially generates zero eigenvalues. J and A will always refer to
the resulting matrices of dimension S∗ × S∗.

We start by defining the diagonal matrix N̄, whose nonzero elements are the equilibrium population sizes N̄i. This
lets us write

J = −N̄1/2(N̄1/2AN̄1/2)N̄−1/2 (E1)

where N̄1/2 is the diagonal matrix whose entries are the square roots of the population sizes. This equation says that
J is similar to −W ≡ −N̄1/2AN̄1/2, which implies that they share the same eigenvalues.

Since W and A are both symmetric matrices, their eigenvalues are all real, and the positivity of all the eigenvalues
is equivalent to the positive-definiteness of the matrix.

Now we note that W is positive definite if and only if A is positive definite. For if A is positive definite, then
xTAx > 0 for all column vectors x 6= 0, including the column vector x = N̄1/2y for any column vector y 6= 0. But this
implies that yT N̄1/2AN̄1/2y > 0 for all y 6= 0, i.e., that W is positive definite. Conversely, if W is positive definite,
then yT N̄1/2AN̄1/2y > 0 for all y 6= 0, including y = N̄−1/2x for any x 6= 0. But this implies that xTAx > 0 for all
x 6= 0, i.e., that A is positive definite.

We conclude that the eigenvalues of W are all positive if and only if the eigenvalues of A are all positive. Therefore
the largest eigenvalue of J = −N̄1/2WN̄−1/2 is negative if and only if the smallest eigenvalue of A is positive, as
claimed in the main text.

An alternative but much simpler proof can be provided with the properties of the D-stable matrix[39]. A real square
matrix A is said to be D-stable if the matrix DA is positive definite for every choice of a positive diagnoal matrix
D. A sufficient condition for D-stablility is that A + AT is positive definite. The Lotka-Volterra competition matrix
A is symmetric and positive definite, i.e., D-stable. N̄ is all positive. It is obvious that J = N̄A is positive definite.
Further discussions about its application in ecology can be found in [20, 40]

Appendix F: Correspondence between RMT and cavity solution

Our numerical simulations show that after the transition, our ecosystems are well described by purely random
interactions. This suggests that we should be able to derive our cavity results using Random Matrix Theory (RMT).
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We now show that this is indeed the case. Our starting point are the average susceptibilities which are defined as:

χ =
1

M

∑
α∈M

χRαα =
1

M

∑
α∈M∗

χRαα (F1)

ν =
1

S

∑
i∈S

νNii =
1

S

∑
i∈S∗

νNii . (F2)

From the cavity calculations, we only care about χRαβ and νNij , because the other susceptibilities are lower order in

1/M .
We can combine these equations with (I10) and (B9) to obtain

χ =
1

M

∑
α∈M∗

χRαα =
1

M
Tr(χRαβ) (F3)

=
1

M
Tr(δαβ)− 1

M
Tr

∑
i∈S∗

∑
j∈S∗

C̄TαiA
−1
ij C̄jβ


=
M∗

M
− 1

M
Tr

∑
i∈S∗

∑
j∈S∗

A−1
ij C̄jβC̄

T
βh


=
M∗

M
− S∗

M
= φR − γ−1φN (F4)

We now show that the cavity solutions are consistent with results from RMT using equations (I10) and(B9) in
Regime A and Regime C described in the main text.

1. Regime A: C̄ = 1

This regime happens when σc � 1. Substituting, C̄ = 1 into equations (I10) and (B9) yields

χ = 0, ν = −1. (F5)

This is consistent with the cavity solution equation (C17) with σc = 0 since in this case S∗ = S = M .

2. Regime C: C̄iα i.i.d. N (0, σc/
√
M)

In this regime, σc � 1. In this case, Aij =
∑
α∈S∗ C̄iαC̄

T
αj takes the form of a Wishart Matrix. We will exploit this

to calculate χ and ν. Notice,

ν =
1

S

∑
i∈S∗

νNii = − 1

S
Tr(A−1

ij ) = − 1

S

S∗∑
i=1

λ−1
i (F6)

where λi is the eigenvalue of Aij . From the Marchenko-Pastur law [27], we know that the eigenvalues of a random
Wishart matrix obey the Marchenko-Pastur distribution. Substituting equation (6) into the expression for ν and
replacing the sum with an integral yields:

ν = −S
∗

S

∫ b

a

1

x
ρ(x)dx (F7)

= −S
∗

S

a+ b− 2
√
ab

4σ2
cy
√
ab

= − 1

σ2
c

φN
φR − γ−1φN

The second line of equation (F7) is obtained by transferring the integral function to a complex analytic function and
applying the residue theorem. This result is the same as the cavity solution equation (C18) when σc � 1.
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FIG. A1. The asymptotic spectrum of Aij for different values of σc by solving equation (F10) numerically.

3. Regime B using the Stieltjes transformation

In Regime B, it hard to estimate the minimum eigenvalue. We can use Stieltjes transformation of information-plus-
noise-type matrices which are well studied in wireless communications[31, 32, 41], where B represents the information
encoded in the signal and C is the noise in wireless communications. In this case, we have

C̄iα = 1+ Ciα, Ciα i.i.d. N (0, σc/
√
M).

Aij =
∑
α∈M∗

C̄iαC̄
T
αj =

∑
α∈M∗

CiαC
T
αj + Ciα + CTαi + 1 (F8)

Using Theorem 1.1 in Dozier and Silverstein[41], the Stieltjes transform m(z) of Aij satisfies

σ4
czm

3 − 2σ2
czm+ (σ2

c + z − 1)m− 1 = 0 (F9)

The asymptotic spectrum of Aij can be obtained by m(z), the solution of equation (F9) with

ρ(x) = lim
ε→0+

m(x− iε)−m(x+ iε)

2iπ
(F10)

The result is shown in Figure A1. The minimum eigenvalue reaches 0 nearly at σ∗c = 1, as predicted by the cavity
solution.

We emphasize that the phase transition point, derived from eq. (F9), does not change at different µ. In the
original paper by Marchenko and Pastur, eq. (5) requires the elements are i.i.d variables with mean 0 and variance
σ2. Recently, it has been shown a nonzero µ contributes only one eigenvalue λ. It is either in the domain of MP Law,
λ ∈ [a, b] or off the domain λ > b[42, 43] and thus it does not affect the minimum eigenvalue. We can understand it
intuitively with a simple example: 1+µJ, where 1 is the identity matrix, J is a n×n all-ones matrix. The eigenvalues
can be calculated by

Det((1− λ)1+ µJ) = [1− λ+ (n− 1)µ](1− λ)n−1.

It shows when n� 1, it only contributes a very large eigenvalue 1 + (n− 1)µ and the others stay at 1.

Appendix G: Parameters in simulations

All simulations are done with the CVXPY package[44]. The code is available on GitHub at https://github.com/
Emergent-Behaviors-in-Biology/typical-random-ecosystems.

https://github.com/Emergent-Behaviors-in-Biology/typical-random-ecosystems
https://github.com/Emergent-Behaviors-in-Biology/typical-random-ecosystems
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• Figure 1(B), 2(B), 3(C, D): the consumer matrix C is sampled from the Gaussian distribution N ( µM , σc√
M

).

S = 100, M = 100, µ = 0, K = 1, σK = 0.1 , m = 0.1, σm = 0.01, and each data point is averaged from 5000
independent realizations. The model is simulated with eqs. (2).

• Figure 2(C): the consumer matrix C is sampled from the uniform distribution U(0, b). S = 100, M = 100, µ = 0,
K = 1, σK = 0.1 , m = 0.1, σm = 0.01, and each data point is averaged from 5000 independent realizations.
The model is described by eqs. (2).

• Figure 2(D): the consumer matrix C is sampled from the Bernoulli distribution Bernoulli(pc). S = 100,
M = 100, µ = 0, K = 1, σK = 0.1 , m = 0.1, σm = 0.01, and each data point is averaged from 5000 independent
realizations. The model is described by eqs. (2).

• Figure 3(B), A7: the simulation is the same as Fig. 2(B). Each spectrum is drawn from 10000 independent
realizations.

• Figure 4: the consumer matrix C is sampled from the Gaussian distribution N ( µM , σc√
M

). S = 100, M = 100,

µ = 0, K = 1, σK = 0.1 , m = 0.1, σm = 0.01. The model without resource extinction simulated with eqs.
(2), and each data point is averaged from 5000 independent realizations.. The model with resource extinction
is simulated with eqs. (1), and each data point is averaged from 4000 independent realizations. Each spectrum
is drawn from 1 independent realizations for S = 500.

• Figure A2 : the simulation is the same as Fig. 2(B). Each histogram is drawn from 10000 independent realiza-
tions.

• Figure A5: the consumer matrix C is sampled from the Gaussian distribution N ( µM , σc√
M

). S = 100, M = 100,

µ = 1, K = 1, σK = 0.1 , m = 0.1, σm = 0.01. For (C): ω = 1, σω = 0, model details can be found in [38]; For
(D), the dynamics is described in equation (17) in Supplementary Information of [19]. The noise is only applied
on the consumption matrix and D is kept the same at different σc. Each data point is averaged from 4000
independent realizations for (A), from 5000 independent realizations for (B) and 1000 independent realizations
for (C, D).

• Figure A6: the simulation is the same as Figure 1(B) except S = 200, M = 100. For the identity case, the
consumer matrix is obtained by concatenating the M × M identity plus noise matrix and a (S − M) × M
gaussian random matrix. The model without resource extinction simulated with eqs. (2), and each data point
is averaged from 5000 independent realizations.

• Figure A9, A10, and A8: the simulation is the same as Figure 4(A, B). The model without resource extinction
simulated with eqs. (2), and each data point is averaged from 5000 independent realizations.. The model
with resource extinction is simulated with eqs. (1), and each data point is averaged from 4000 independent
realizations.

Appendix H: Distinction between extinct and surviving species

In the main text, we show that the value of species packing S∗

M in Fig. 1 and Fig. 2. However, in numerical
simulations, even for the extinct species, the abundance is never exactly equal 0 due to numerical errors. As a result,
we must choose a threshold to distinguish extinct and surviving species in order to calculate S∗. Since we are using
the equivalence with convex optimization to solve the generalized consumer-resource models[45, 46], we can easily
choose a reasonable threshold (e.g. 10−10 for both species since the surviving species are well separated in two peaks
(see Fig. A2).

Appendix I: Susceptibility matrix for linear resource dynamics

In the quasi-static limit , eqs. A2 becomes

dNi
dt

= Ni

(
Ni
∑
α CiαKα

1 +
∑
j CjαNj

−mi

)
,
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FIG. A2. Species abundance N in equilibrium at different σc. The simulation details can be found at Appendix G.

which can not be reduced to the LotkaVolterra model.Therefore, we have to rederive the susceptibility matrix for eqs.
A2.

In order to have a well defined susceptibilities, we introduce an auxiliary variable wα and eqs. A2 become{
dNi
dt = Ni(

∑
β C̄iβRβ −mi)

dRα
dt = κα − wαRα −

∑
j NjC̄jαRα.

(I1)

At the end we can set wα to 1 to recover eqs. A2. Employing the results from [38] and [47], the new susceptibility
matrix is

χRαβ = −∂R̄α
∂ωβ

, χNiα = −∂N̄i
∂ωα

, νRαi =
∂R̄α
∂mi

, νNij =
∂N̄i
∂mj

(I2)

where the bar X̄ over the variable X denotes the steady-state (equilibrium) solution.
For the extinct species and resources, by definition the susceptibilities are zero. For this reason, we focus only on

the surviving resources and species. At steady-state, eqs. I1 gives:

0 =
∑
α∈M

CiαR̄α −mi (I3)

0 = Kα − ωαR̄α − R̄α
∑
j∈S∗

N̄jCjα (I4)

where S∗ denote the sets of species, respectively, that survive in the ecosystem at steady-state and M denotes the full
sets of resources as they all are nonzero for the linear resource dynamics. Differentiating these equations yields the
relations

0=
∑
α∈M

Ciα
∂R̄α
∂ωβ

, −R̄αδαβ=(ωα+
∑
j∈S∗

N̄jCjα)
∂R̄α
∂ωβ

+
∑
j∈S∗

∂N̄j
∂ωβ

CjαR̄α

δij=
∑
α∈M

Ciα
∂R̄α
∂mj

, 0=(ωα+
∑
j∈S∗

N̄jCjα)
∂R̄α
∂mi

+
∑
j∈S∗

∂N̄j
∂mi

CjαR̄α. (I5)

Substituting in for the partial derivatives using the susceptibility matrices defined above, we have:

0 =
∑
α∈M

Ciαχ
R
αβ , R̄αδαβ = (ωα+

∑
j∈S∗

N̄jCjα)χRαβ +
∑
j∈S∗

χNjβCjαR̄α

δij =
∑
α∈M

Ciαν
R
αj , 0 = (ωα+

∑
j∈S∗

N̄jCjα)νRαi +
∑
j∈S∗

νNjiCjαR̄α. (I6)
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(A)

(C)(B)

FIG. A3. Reproduce Fig. 3 in the main text with model eqs. 2. The parameters are the same as Fig. A5.

These two equations can be written as a single matrix equation for block matrices:[
C 0

diag(Wα) GT

] [
νR χR

νN χN

]
=

[
1 0
0 diag(R̄α)

]
(I7)

where Wα = ωα+
∑
j∈S∗ N̄jCjα, Giα = CiαR̄α and diag is the operator transforming a vector to a diagonal matrix.

To solve this equation, we define two S∗ × S∗ matrices: Aij =
∑
α∈M∗ CiαC

T
jα and Hij = (

∑
α∈M∗

R̄α
Wα

CiαC
T
jα)−1.

Employing eq. (3.2) for the square off-diagonal partition, a straightforward calculation yields

 C 0

diag(Wα) GT


−1

=

∑i∈S∗
R̄α
Wα

CTiαHij
δαβ
Wα
−∑i,j∈S∗

R̄αC
T
iα

Wα
Hij

Cjβ
Wβ

−H
∑
j∈S∗ HijCjα/Wα

 (I8)

χRαβ =
R̄α
Wα

δαβ −
∑
i,j∈S∗

R̄αC
T
iα

Wα
Hij

CjβR̄β
Wβ

(I9)

χNiα =
∑
j∈S∗

Hij
CjαR̄α
Wα

, νRαi =
∑
j∈S∗

R̄αC
T
jα

Wα
Hji (I10)

νNij = −Hij , i, j ∈ S∗ and α, β ∈M∗ (I11)

We can see that the new susceptibilitie: Hij = (
∑
α∈M∗

R̄α
Wα

CiαC
T
jα)−1 is different with Aij =

∑
α∈M∗ CiαC

T
jα in

eq. 4. Therefore, it can not behave exactly like Marchenko Pastur distribution, shown in Fig. A3 (B). However, since
it is very similar to the Wishart matrix, most of our results are still preserved with eqs. (2).
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Appendix J: Additional figures
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FIG. A4. Reproduce Fig 1 (B): the fraction of surviving species S∗/M vs. σc for M = 25 and M = 100. It shows M = 25
is enough to reproduce our result in the main text. Theoretically, numeric converges to our analytical result at the rate of 1

M
.

And it is true that a smaller value of M can result in a larger fluctuation, corresponding to a larger error bar. But the average
converges to the same value which is the thermodynamic limit we care about.

Cross-Feeding

Linear Resource Dynamics(B)

(C)

(A) MacArthur's consumer-resource model with resource depletion

FIG. A5. Community properties for generalized consumer-resource models under Gaussian noise. (A) MacArthur’s consumer
resource model with resource extinction. (B) Linear resource dynamics: the resource dynamics is changed to dRα

dt
= Kα −

Rα −
∑
iNiCiαRα. (C) With cross-feeding: the dynamics is described in equation (17) in Supplementary Information of [19].

The noise is only applied on the consumption matrix and D is kept the same at different σc. In both models, B = 1. See
Appendix G for details.
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(A)

(C)(B)

FIG. A6. Effects when S 6= M . (A) Community properties (B) the minimum eigenvalue λmin. (C) the mean sensitivity ν.
All simulations are the same as figures in the main text except S = 200,M = 100. See Appendix G for details.

(A)

Binary Noise(B)

Circulant Matrix

Block Matrix

Uniform Noise

(D)

(C)

FIG. A7. Spectra of Aij in different cases. (A) Uniform Noise: U(0, b) and (B) Binary Noise: Bernoulli(pc); the engineered
matrix B is an identity matrix. (C) Gaussian noise and the engineered matrix B is a circulant matrix. (D) Gaussian noise
and the engineered matrix B is a block matrix. Note that Aij are obtained from numerical simulations. See Appendix G for
details.
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MacArthur's consumer-resource model 
with resource depletion

MacArthur's consumer-resource model 
without resource depletion

(A) (B)

FIG. A8. Comparison between numerical simulations(scatter points) and cavity solutions(solid lines) for χ at different σc for
different cases. (A) CRM without resource extinction, eqs. (2). (B) CRM with resource extinction, eqs. (1). Note S∗ and
M∗ are obtained from the numerical simulations, although in principle they could be obtained by solving the cavity equations
directly.

(A) MacArthur's consumer-resource model without resource depletion

(B) MacArthur's consumer-resource model with resource depletion

FIG. A9. Comparison the minimum eigenvalue λmin and the mean sensitivity ν between different distributions for the identity
case at different σc. (A) CRM without resource extinction, eqs. (2). (B) CRM with resource extinction, eqs. (1). Note that

the Bernoulli and uniform distribution to are mapped the corresponding Gaussian distribution µ = pcM , σc =
√
Mpc(1− pc)

and µ = bM/2, σc = b
√
M/12, respectively.
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(A)

(B)

MacArthur's consumer-resource model without resource depletion

MacArthur's consumer-resource model with resource depletion

FIG. A10. Comparison the minimum eigenvalue λmin and the mean sensitivity ν between different engineered matrices B at
different σc. (A) CRM without resource extinction, eqs. (2). (B) CRM with resource extinction, eqs. (1).
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