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Piezo ion channels underlie many forms of mechanosensation in vertebrates, and have been found
to bend the membrane into strongly curved dome shapes. We develop here a methodology describ-
ing the self-assembly of lipids and Piezo proteins into polyhedral bilayer vesicles. We validate this
methodology for bilayer vesicles formed from bacterial mechanosensitive channels of small conduc-
tance, for which experiments found a polyhedral arrangement of proteins with snub cube symmetry
and a well-defined characteristic vesicle size. On this basis, we calculate the self-assembly diagram
for polyhedral bilayer vesicles formed from Piezo. We find that the radius of curvature of the Piezo
dome provides a critical control parameter for the self-assembly of Piezo vesicles, with high abun-
dances of Piezo vesicles with octahedral, icosahedral, and snub cube symmetry with increasing Piezo

dome radius of curvature.

I. INTRODUCTION

The ability to sense mechanical stimuli such as touch
and changes in fluid pressure is fundamental to life. Piezo
ion channels [1] have recently been found to provide the
molecular basis for a wide range of seemingly unrelated
forms of mechanosensation in vertebrates [2-9]. Struc-
tural studies [10-13] have demonstrated that Piezo is an
unusually large ion channel that locally bends the mem-
brane into the approximate shape of a spherical dome.
Only closed-state structures of Piezo, obtained in the
absence of transmembrane gradients, are currently avail-
able. The interaction of Piezo with the surrounding
lipid membrane has been investigated through electron
microscopy experiments in which Piezo proteins were
embedded in lipid bilayer vesicles [10, 14]. The highly
curved shape of the (closed-state) Piezo dome yields
pronounced shape deformations in the surrounding lipid
membrane [10, 14, 15]. These shape deformations may
play an important role in Piezo gating [10-15], with tran-
sitions from closed to open states of Piezo potentially be-
ing accompanied by an increase in the radius of curvature
of the Piezo dome.

Electron cryotomography experiments on membrane
protein polyhedral nanoparticles (MPPNs) formed from
bacterial mechanosensitive channels of small conductance
(MscS) [16-19] have shown that lipids and membrane
proteins can self-assemble into lipid bilayer vesicles with a
polyhedral protein arrangement and a well-defined char-
acteristic size, thus facilitating structural studies. Simi-
larly, MPPNs formed from Piezo may permit structural
analysis of Piezo in the presence of transmembrane gradi-
ents [17, 20-22] and aid the further investigation of the in-
teraction of Piezo with the surrounding lipid membrane.
In this article we develop a model of the self-assembly
of MPPNs from Piezo ion channels. Our theoretical ap-
proach is based on a previous mean-field model [23, 24] in
which the observed symmetry and size of MPPNs formed
from MscS were found to emerge from the interplay of
protein-induced lipid membrane deformations, topolog-
ical defects in protein packing in MPPNs, and thermal
effects. This previous model relied on the assumption

that membrane proteins in MPPNs only weakly curve
the membrane, which is a suitable assumption for MscS
[18, 19, 25] but not Piezo [10-15].

This article is organized as follows. In Sec. II we de-
velop a general methodology for predicting the symmetry
and size of MPPNs composed of proteins that may in-
duce arbitrarily large membrane shape deformations. In
Sec. III we validate this methodology for MPPNs formed
from MscS and, on this basis, calculate the self-assembly
diagram for MPPNs formed from Piezo. Section IV pro-
vides a summary and discussion of the results described
in this article. We find here that the radius of curva-
ture of the Piezo dome provides a critical control param-
eter for the self-assembly of MPPNs from Piezo proteins,
with high abundances of MPPNs with octahedral, icosa-
hedral, and snub cube symmetry as the radius of curva-
ture of the Piezo dome is increased. Our analysis suggests
that, under suitable conditions, self-assembly of MPPNs
from Piezo proteins results in highly symmetric MPPNs
with a well-defined characteristic size. In analogy to
MPPNs formed from MscS [16, 17], MPPNs formed from
Piezo may thus be suitable for structural investigations
of Piezo in different conformational states stabilized by
transmembrane gradients, and may also provide a poten-
tial vehicle for targeted drug delivery.

II. CALCULATION OF MPPN
SELF-ASSEMBLY DIAGRAMS

The self-assembly of MPPNs, and the resulting sym-
metry and size of MPPNs [16, 17], can be predicted
through a mean-field model [23, 24, 26] that considers the
interplay of thermal effects, protein-induced lipid mem-
brane deformations, and topological defects in protein
packing arising from the spherical shape of MPPNs. In
this section we extend the mean-field model of MPPN
self-assembly developed in Refs. [23, 24, 26] to allow for
the large membrane shape deformations induced by Piezo
[10, 14, 15]. In Sec. ITA we discuss thermal effects in
MPPN self-assembly. Sections II B and II C describe the
energy of protein-induced membrane bending in MPPNs



for arbitrarily large membrane shape deformations and in
the limit of small membrane shape deformations, respec-
tively. In Sec. IID we discuss the contribution of topo-
logical defects in protein packing to MPPN self-assembly.

A. Statistical thermodynamics of MPPN
self-assembly

As detailed in Refs. [23, 24, 26], the formalism describ-
ing the statistical thermodynamics of micelle and viral
capsid self-assembly [27-29] successfully predicts the ob-
served symmetry and size of MPPNs formed from MscS
[16, 17]. We adapt here this formalism to explore the self-
assembly of MPPNs formed from Piezo ion channels. In
particular, we take MPPNs to be in the thermodynamic
equilibrium state minimizing the Helmholtz free energy
F =U —TS, where U is the internal energy of the sys-
tem and T and S are the entropy and temperature of the
system, respectively. MPPNs formed from MscS were ob-
tained experimentally [16, 17] in dilute aqueous solutions
with a protein number fraction ¢ ~ 7.8 x 108 <« 1, where

CZZ%, (1)

in which N,, denotes the total number of proteins bound
in MPPNs with n proteins each and N,, denotes the total
number of solvent (water) molecules in the system. In
this dilute limit with no interactions between MPPNs, S
is given by the mixing entropy [27, 28]

S =—Nykp Y _ ®(n)[In®(n) - 1], (2)

where kp is Boltzmann’s constant and the MPPN num-
ber fraction ®(n) = N, /nN,. Similarly, we have the
MPPN internal energy [23, 24, 26-28]

U= Nw Z (I)(n)Emln(n) 5 (3)

where Euin(n) is the minimum energy of MPPNs with
n proteins each. We obtain E,;,(n) by minimizing the
MPPN energy F(n,R), at each n, with respect to the
MPPN radius at the bilayer midplane, R (see Fig. 1).
The dominant symmetry and size of MPPNs observed
in experiments on MPPNs formed from MscS are suc-
cessfully predicted by considering contributions to F due
to membrane bending deformations, Ej,, and topologi-
cal defects in protein packing in MPPNs, Ey, such that
E = Ey+E; [16, 17, 23, 24]. We show below how Epin(n)
can be calculated from Fj and Ey; for MPPNs with the
large membrane curvatures induced by the Piezo dome
[10, 14, 15] (see Secs. IIB-IID).

Minimization of F with respect to ®(n) results in [23,
24, 27-29]

(P(’n/) = e[/”‘n_Emin(n)]/kBT ; (4)
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Figure 1. Schematic of MPPNs formed from Piezo ion chan-
nels. The thick gray curve shows the Piezo dome with radius
of curvature Rp and cap angle . The blue curve shows the
membrane footprint of the Piezo dome with arclengths s = 0
and s = sp, at the inner and outer membrane footprint bound-
aries, respectively. At s = sp, the Piezo membrane footprint
is assumed to connect smoothly to the membrane footprints
associated with the neighboring Piezo proteins on the MPPN
surface, with contact angle 5. We denote the inner and outer
membrane footprint boundaries along the r-axis by ro and 7,
respectively. The MPPN radius is given by R = ry,/sin 8. For
each sp, Piezo’s membrane footprint is completely determined
by a given set of values of o, Rp, ro = Rp sin «, and 8, which
are indicated in gray. For simplicity, we only indicate here one
of the n proteins on the MPPN surface.

where the protein chemical potential p is determined by
the constraint

Z n®(n) =c (5)

imposing the fixed protein number fraction in Eq. (1). In
our previous work on MPPN self-assembly [23, 24, 26] we
restricted n to the range 10 < n < 80. As shown below,
the strongly curved shape of the Piezo dome means that
the self-assembly diagram for MPPNs formed from Piezo
can be dominated by MPPN states with n < 10. We
allow here for the n-range 3 < n < 80, with the smallest
number of proteins per MPPN permitting the formation
of a polyhedral structure corresponding to n = 4. The
MPPN equilibrium distribution is then given by

)
Y= )

where ¢(n) is the fraction of MPPNs containing n pro-
teins each and ®(n) is obtained from Eq. (4) with Egs. (1)
and (5).

: (6)



B. Nonlinear MPPN shape equations

We describe here the Piezo dome as a spherical cap
with area Scap =~ 390 nm? and radius of curvature Rp
[10-13] (Fig. 1). Assuming that MPPNs are under neg-
ligible membrane tension [24], the shape and energy of
Piezo’s membrane footprint can be estimated [15] by min-
imizing the bending energy of the lipid membrane [30-
32],

K
Gy = 76 /dA (Cl +02)2 , (7)

where K is the lipid bilayer bending rigidity, ¢; and
co are the local principal curvatures of the mid-bilayer
surface, and the integral runs over Piezo’s membrane
footprint. Previous experiments on MPPNs formed from
MscS employed lipids with K, ~ 14 kT [16, 17, 33]. We
use this value of K} throughout this article.

Membrane-mediated interactions between Piezo pro-
teins are expected to favor approximately hexagonal
protein arrangements [34-38]. The bending energy of
MPPNs can then be estimated from a mean-field ap-
proach [23, 24, 26, 34-36] in which the boundary of
the hexagonal unit cell of the protein lattice is approx-
imated by a circle. In particular, we divide the surface
of MPPNs containing n Piezo proteins into n identical,
circular membrane patches, each with a Piezo dome at
its center (Fig. 1). Using the arclength parameterization
of surfaces, Eq. (7) can be rewritten as [39-42]

5 . 2
Gy = / ds l:?TKb’I“ (1/) + 511;¢>
0

4+ (8) (7 — cos ) 4 An(s)(h — sin 1/})] (8)

for each membrane patch, where s is the arclength along
the profile of Piezo’s membrane footprint, s = 0 at the in-
ner boundary of Piezo’s membrane footprint (the bound-
ary of the Piezo dome) and s = s, at the outer bound-
ary of Piezo’s membrane footprint away from the Piezo
dome, h(s) denotes the height of Piezo’s membrane foot-
print along its symmetry axis h, 7(s) denotes the radial
coordinate of Piezo’s membrane footprint perpendicular
to the h-axis, ¥(s) denotes the angle between the tan-
gent to the profile of Piezo’s membrane footprint and the
r-axis, and the Lagrange parameter functions \.(s) and
An(s) enforce the geometric constraints 7 = cosy and
h = sin® inherent in the arclength parameterization of
surfaces (Fig. 1).

The boundary conditions on Piezo’s membrane foot-
print at the Piezo dome boundary follow from the as-
sumption that the membrane surface is smooth at s = 0
[10, 15] (Fig. 1):

r(0) =rp = Rpsina, (9)
h(0) = —Rp cosa, (10)
$(0) =a, (11)

with the membrane-Piezo dome contact angle [43]

S,
a=cos ! <1 - ) : (12)
2mR%,

Denoting the contact angle at the outer boundary of
Piezo’s membrane footprint by 8 and the solid angle as-
sociated with each unit cell on the MPPN surface by (2,
we have 2 = 27(1 — cos ). Since each unit cell on the
MPPN surface contains one protein, we must also have
) = 4x /n by symmetry so that n proteins are spread over
the MPPN surface, resulting in the boundary condition
[23, 24, 26, 35]

wion) =cos™* (1-2) (13)

n

at s = s, (Fig. 1). Equations (9)—(13) encapsulate the
effects of a particular Piezo dome shape and protein num-
ber per MPPN on Ej. With the (arbitrary) origin of the
r-h coordinate system fixed via Egs. (9) and (10) (Fig. 1),
we assume that the values of r(sp) = rp and h(sp) can
be freely varied when finding the extremal functions of
Eq. (8) [44, 45], resulting in the natural boundary condi-
tions

0, (14)
h(sb) = 0 (].5)

at s = sy, where p,(s) = OL/d7 and py,(s) = OL/dh are
the generalized momenta associated with the generalized
displacements r(s) and h(s), in which the Lagrangian
function L is given by the integrand in Eq. (8).

To determine the stationary shapes of MPPNs we solve
the Hamilton equations associated with the membrane
bending energy in Eq. (8) [15, 46-52] subject to the
boundary conditions on Piezo’s membrane footprint in
Egs. (9)—(15). Compared to the corresponding Euler-
Lagrange equations associated with Eq. (8) [39-41, 44—
46, 53, 54] these Hamilton equations are of first rather
than second order in derivatives. The Hamilton equa-
tions for Eq. (8) are given by

) Py _sing
Y= o g (16)
7 = cos, (17)
h =sin, (18)
po = (B8 =) cospp,siny,  (19)
. _ Py [Py sin Y
pr—r<4r " ) (20)
p-h:()v (21)

where py(s) = L/ is the generalized momentum as-
sociated with the generalized displacement t(s). The
boundary condition in Eq. (15) and the Hamilton equa-
tion in Eq. (21) imply that pp(s) = 0 for 0 < s < sp.
The solutions of the remaining five Hamilton equations



in Egs. (16)—(20) are specified by the five boundary con-
ditions in Egs. (9)—(14). A numerical difficulty arises here
in that some of these boundary conditions are specified at
s = 0, while others are specified at s = s,. We thus solve
Egs. (16)—(20) using a shooting method [15, 39-41, 47—
56], for which we introduce the boundary conditions

Py(0) = pyo, (22)
p’!(O) = Pr;0, (23)

where py.o and p,.o must be adjusted so as to satisfy the
boundary conditions in Egs. (13) and (14). The values of
Dy:0 and pr.o can be conveniently determined through the
FindRoot command in Mathematica [57]. We obtain Ej,
by substituting the solutions of Eq. (16)—(21) into Eq. (8)
and (numerically) integrating with respect to s.

In the above numerical calculation of Ej, the size of
Piezo’s membrane footprint enters through the value of
sp. We note that the MPPN radius R is related to the
in-plane membrane patch radius r, via R = rp/sinf3
(Fig. 1). In general, different values of s, yield differ-
ent values of r, and, hence, R for the stationary mem-
brane footprints. We therefore minimize, at each n, Fj
with respect to the MPPN size by adjusting s; so that
E} is minimal, and then determine the values of 7, and
R associated with this value of s;. We used here the
sp-range 0.01 nm < s, < 20 nm, and generally em-
ployed a resolution As, = 0.2 nm for our numerical
calculations. However, we found that, within the range
0.01 nm < s < 2 nm, E}, may vary rapidly with s;, and
therefore used a finer resolution As, = 0.05 nm within
this range of s,. We interpolated Ej between the values
of s;, considered here using third-order splines. For each
Piezo dome shape and protein number per MPPN con-
sidered, the value of s, minimizing Ej thus specifies the
MPPN size with minimal bending energy.

C. Small-gradient approximation for MPPNs

In the Monge parameterization of Eq. (7), h is regarded
as a single-valued function of r, h(r) [42]. In the small-
gradient limit of the Monge parameterization, |Vh| < 1,
the stationary membrane shapes implied by Eq. (7) can
be solved for analytically [35], yielding an exact expres-
sion for the membrane bending energy in MPPNs. In
particular, denoting the Ej, obtained for |Vh| < 1 by Ej,
we have [23, 24, 26, 35]

Ey(n, R) = 2nm Ky (1o tan'a2— Rsin Btan 3) (@)
R?sin® 8 — rd
Equation (24) was employed previously [23, 24, 26] to
construct the MPPN self-assembly diagram for MPPNs
formed from MscS proteins, which only weakly curve the
membrane. For the purposes of this article, the analytic
solution in Eq. (24) presents a useful reference point for
the fully nonlinear, numerical solutions obtained from

Eq. (8).

D. Topological defects in protein packing

The spherical shape of MPPNs necessitates topolog-
ical defects in the preferred hexagonal packing of pro-
teins, which incur an n-dependent energy penalty. At
the mean-field level, deviations from hexagonal protein
packing due to the spherical shape of MPPNs can be
quantified for a given n, in analogy to viral capsids [29],
through the fraction of the surface of a sphere enclosed
by n identical non-overlapping circles at closest packing
[23, 24, 26], p(n). We use here the values of p(n), and as-
sociated symmetries of protein packing in MPPNs, com-
piled in Refs. [58, 59]. Approximating the spring net-
work associated with the energetically preferred hexago-
nal protein arrangement by a uniform elastic sheet, the
leading-order contribution to the MPPN defect energy is
thus given by [23, 24, 26, 29]

2
Eun, 1) = A P2 )
pmax

where K is the stretching modulus of the elastic sheet,
A is the MPPN surface area, and puay = 7/2v/3 denotes
the optimal packing fraction associated with a uniform
hexagonal protein arrangement. As detailed in Refs. [23,
24, 26], the stretching modulus in Eq. (25) is given by

V3 0%E,
7 24n 87"5 min

Tb:T‘b

(26)

where rbmi“ is the value of r, that yields, for a given n,
the minimal Ej.

Most straightforwardly, the MPPN surface area A in
Eq. (25) can be approximated via A = Ag [23, 24, 26],
where Ag = 47 R? is the surface area associated with
a spherical MPPN shape. The approximation A = Ag
breaks down for large enough deviations from a spheri-
cal shape, which is expected to be the case for MPPNs
formed from Piezo. As an alternative to A = Ag, we
therefore consider here the choice A = Ap with the area
of the deformed MPPN surface, Ap, being given by

Sp
Ap = nScap + 27m/ dsr, (27)
0

where, as noted above, Scap = 390 nm? for the
Piezo dome. For MPPNs formed from MscS pro-
teins, we approximate the MPPN surface area oc-
cupied by MscS by the spherical cap area Scap, =
27 R? (1 — coslarcsin(rg/R)]) in Eq. (27), in which the
MscS in-plane radius ro ~ 3.2 nm [18, 19, 23]. Unless
indicated otherwise, we use here A = Ap when evaluat-
ing Eq. (25).

III. MPPN SELF-ASSEMBLY DIAGRAMS FOR
MSCS AND PIEZO PROTEINS

(InthissectionweemploythetheoreticalapproachdescribedinSec. I



A. Constructing MPPN self-assembly diagrams

We construct MPPN self-assembly diagrams from the
fraction of MPPNs containing n proteins each, ¢(n) in
Eq. (6). To this end, we obtain the minimal MPPN en-
ergy, Emin in Eq. (3), at each n by minimizing the sum
of Ey, calculated from the stationary Gj implied by the
arclength or Monge parameterization of Eq. (7), and the
corresponding E; in Eq. (25) with respect to the MPPN
radius R. We perform this minimization subject to steric
constraints due to the finite size of lipids and proteins.
To determine the resulting constraints on R we note that,
at closest packing, the area of a sphere of radius R en-
closed by n non-overlapping circles is given by 47 R?p(n)
[68, 59]. Thus, each circular membrane patch with a pro-
tein at its centers occupies an area 4w R%p(n)/n and, as
a result, suspends an angle 3 = cos™! [1 — 2p(n)/n] with
respect to the MPPN center. Following Refs. [23, 24, 26]
we assume that the MPPN size must be large enough
so that the Piezo dome at the center of each membrane
patch is surrounded by at least one layer of lipids, result-
ing in the steric constraint

To +f)l
sing8 ’

R> (28)

where p; denotes the lipid radius. For the lipids employed
in experiments on MPPNs formed from MscS [16, 17] we
have p; ~ 0.45 nm [60], which we use throughout this
article. Once Epin(n) is calculated, the ¢(n) are conve-
niently obtained via Eq. (5) for arbitrary protein number
fractions c. In the arclength parameterization of Eq. (7),
changes in Rp or « necessitate repeated numerical so-
lution of Egs. (16)—(20). To efficiently calculate MPPN
self-assembly diagrams, we determine ¢(n) for a discrete
set of values of Rp or « and interpolate ¢(n) between
these values, using third-order splines, to find the dom-
inant n-states of MPPNs showing the largest values of
o(n) (see below).

B. MPPN self-assembly diagram for MscS

Since MscS proteins only weakly curve the membrane
[18, 19, 25], the Monge parameterization of Eq. (7)
is expected to yield a good approximation of the self-
assembly diagram of MPPNs formed from MscS. Fig-
ures 2(a) and 2(b) show the self-assembly diagrams for
MPPNs formed from MscS obtained from the arclength
and Monge parameterizations of Eq. (7), respectively.
Both parameterizations of Eq. (7) predict, with no free
parameters, that the snub cube (O-symmetry; n = 24)
provides the dominant MPPN symmetry for the a-range
a =~ 0.46-0.54 rad associated with MscS [18, 19, 23, 25]
and the protein number fraction ¢ ~ 7.8x 1078 used in ex-
periments on MPPNs formed from MscS [16, 17] (dashed
horizontal lines in Fig. 2). Furthermore, the arclength
and Monge parameterizations of Eq. (7) predict that the
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Figure 2. MPPN self-assembly diagrams for MPPNs formed
from MscS obtained using (a) the arclength parameterization
of Eq. (7) and (b) the Monge parameterization of Eq. (7). The
horizontal axes show the bilayer-protein contact angle, o, and
the vertical axes show the protein number fraction in solution,
c. The dominant n-states of MPPNs are indicated by integers.
The white dashed curves show transitions in the dominant
MPPN n-states, with the colors indicating the maximum ¢(n)
among all MPPN n-states considered. We use the same color
bar in panels (a) and (b). The dashed horizontal lines indicate
the parameter values ¢ ~ 7.8 x 107® and o ~ 0.46-0.54 rad
corresponding to experiments on MPPNs formed from MscS
[16, 17], in which the snub cube with n = 24 MscS proteins
was found to provide the dominant MPPN symmetry (models
of the snub cube below n = 24).

dominant MPPNs with snub cube symmetry have a char-
acteristic bilayer midplane radius 9.8 nm $ R < 10 nm
and 9.8 nm T R 3 11 nm, respectively. These predic-
tions of Eq. (6) are in quantitative agreement with exper-
iments on MPPNs formed from MscS [16, 17]. A notable
discrepancy between the MPPN self-assembly diagrams
predicted by the arclength and Monge parameterizations
of Eq. (7) is that, for the Monge parameterization, a
given dominant MPPN n-state tends to appear at slightly
smaller values of a. For the a-range relevant for MscS,
this means that subdominant MPPNs tend to have larger
n in Fig. 2(a) than in Fig. 2(b). Since the Monge param-
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Figure 3. Fractional abundance of MPPN n-states, ¢(n), ver-
sus bilayer-protein contact angle, a, for selected (dominant)
MPPN n-states in Fig. 2(a) (indicated by integers) obtained
with the arclength parameterization of Eq. (7) and the pro-
tein number fraction ¢ &~ 7.8 x 1078 used for the MPPN self-
assembly experiments in Refs. [16, 17]. As in Fig. 2(a), we
calculated all curves by interpolation with respect to o of nu-
merical results at a resolution Aa = 0.01 rad [dots in panel
(a)], using third-order splines. Panel (a) compares these inter-
polations with the corresponding results obtained at a finer
resolution Ao = 0.002 rad (crosses). Panel (b) compares
the curves in panel (a) obtained using A = Ap in Eq. (27)
(solid curves) with the corresponding results obtained using
A = Ag (dashed curves).

eterization becomes less accurate as « is increased, these
shifts tend to become more pronounced as « is increased.

As described above, the self-assembly diagram in
Fig. 2(a) was obtained by interpolating ¢(n) between a
discrete set of values of a. Figure 3(a) compares the in-
terpolated ¢ at the resolution Aa = 0.01 rad used for
Fig. 2(a) for selected (dominant) MPPN n-states at the
protein number fraction ¢ ~ 7.8 x 1078 [16, 17] with
the corresponding results of calculations done at a finer
resolution Aa = 0.002 rad. Figure 3(a) suggests that
the interpolation scheme employed here provides accu-
rate estimates of the dominant ¢(n) for continuous a.
Figure 3(b) compares the results for ¢(n) in Fig. 2(a),
obtained with A = Ap in Eq. (27), with the correspond-
ing results obtained with A = Ag. As expected, A = Ag
provides a good approximation for the weak membrane
curvatures induced by MscS. But A = Ag is, in general,

not expected to give accurate results for membrane pro-
teins such as Piezo that strongly curve the membrane. In
the following we therefore focus on A = Ap in Eq. (27).

C. MPPN self-assembly diagram for Piezo

Figure 4 shows the self-assembly diagram for MPPNs
formed from Piezo ion channels as a function of the ra-
dius of curvature of the Piezo dome and the protein
number fraction in solution. We obtained the results in
Fig. 4 using the arclength parameterization of Eq. (7)
with A = Ap in Eq. (27). The MPPN self-assembly dia-
gram in Fig. 4 includes highly curved MPPN states with,
for instance, a contact angle o ~ 1.3 rad at Rp =~ 9.0 nm.
The vertical dashed line in Fig. 4 indicates the Piezo
dome radius of curvature Rp ~ 10.2 nm observed for a
closed state of Piezo [10-13] while the horizontal dashed
line indicates, for reference, the protein number fraction
¢~ 7.8 x 1078 used in experiments on MPPNs formed
from MscS [16, 17]. Figure 5 shows, for this protein num-
ber fraction, the ¢(n) associated with dominant MPPN
n-states in Fig. 4 as a function Rp. The results in Figs. 4
and 5 were obtained through (third-order spline) interpo-
lation of ¢(n) with respect to Rp, for numerical results at
a resolution ARp = 0.2 nm. Similar results are obtained
with a finer resolution in Rp.

We find in Fig. 4 that the dominant MPPN n-state
depends only weakly on the protein number fraction in
solution, but strongly on the Piezo dome radius of cur-
vature. As Rp is increased, Piezo’s membrane footprint
becomes less curved [15], yielding larger and less curved
MPPNs that incorporate more Piezo proteins. Most no-
tably, the MPPN self-assembly diagram in Fig. 4 is dom-
inated by highly symmetric MPPN n-states with octahe-
dral (Op; n = 6), icosahedral (I5; n = 12), or snub cube
(O; n = 24) symmetry [58, 59]. For the protein number
fraction ¢ ~ 7.8 x 1078 used in experiments on MPPNs
formed from MscS [16, 17], MPPN octahedra are domi-
nant in Fig. 4 for 8.0 nm $ Rp < 13 nm, MPPN icosahe-
dra are dominant for 14 nm $ Rp < 18 nm, and MPPN
snub cubes are dominant for 22 nm T Rp < 25 nm.
At ¢ =~ 7.8 x 1078, the dominant MPPN states with
n =6, 12, and 24 in Fig. 4 have the characteristic MPPN
radii 14 nm $ R $ 15 nm, 21 nm $ R 5 25 nm, and
30 nm $ R S 33 nm, with the top of the Piezo dome be-
ing located approximately 1.3-9.2 nm, 0.56-3.3 nm, and
0.54-1.1 nm above the spherical surface defined by R,
respectively (Fig. 1).

Figures 4 and 5 show that, in addition to n = 6, 12,
and 24, MPPNs with n = 20, 32, and 48 can also be
abundant at ¢ ~ 7.8 x 1078, These MPPN n-states have
Dsp,-symmetry (n = 20), Ds-symmetry (n = 32), and
O-symmetry (n = 48) [58, 59]. For ¢ ~ 7.8 x 1078,
MPPN states with n = 20, 32, and 48 are dominant
for 20 nm $ Rp < 22 nm, 27 nm T Rp < 29 nm,
and 33 nm T Rp < 36 nm, and have the characteristic
MPPN radii 28 nm $ R 5 30 nm, 35 nm 5 R 5 36 nm,
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Figure 4. MPPN self-assembly diagram for MPPNs formed from Piezo ion channels, obtained from the arclength parameteri-
zation of Eq. (7), as a function of the radius of curvature of the Piezo dome, Rp, and the protein number fraction in solution,
¢. Colors indicate the maximum ¢(n) among all MPPN n-states considered. The color bar employed here is identical to the
color bar employed in Fig. 2. As in Fig. 2, the dominant n-states of MPPNs are indicated by integers, and the white dashed
curves show transitions in the dominant MPPN n-states. The horizontal dashed line indicates the protein number fraction
¢~ 7.8 x 107% used in experiments on MPPNs formed from MscS [16, 17], while the vertical dashed line shows the Piezo dome
radius of curvature Rp =& 10.2 nm observed for a closed state of Piezo [10-13]. The polyhedra models illustrate dominant MPPN
symmetries predicted by the MPPN self-assembly diagram with, from left to right, n = 6 (octahedron), n = 12 (icosahedron),
and n = 24 (snub cube). Gray shading indicates the region of the MPPN self-assembly diagram dominated by MPPN n-states
with n = 80, which may be a spurious result of our constraint 3 < n < 80.
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Figure 5. Fractional abundance of MPPN n-states obtained
from the arclength parameterization of Eq. (7), ¢(n), versus
radius of curvature of the Piezo dome, Rp, for selected (domi-
nant) MPPN n-states in Fig. 4 at the protein number fraction
¢~ 7.8 x 1078 used in experiments on MPPNs formed from
MscS [16, 17]. As in Fig. 4, the vertical dashed line shows
the Piezo dome radius of curvature Rp ~ 10.2 nm observed
for a closed state of Piezo [10-13]. All curves were obtained
through interpolation of ¢(n) with respect to Rp for numeri-
cal results at a resolution ARp = 0.2 nm (dots), using third-
order splines.

and 43 nm T R T 44 nm, with the top of the Piezo
dome being located approximately 0.73-1.35 nm, 0.53—
0.69 nm, and 0.37-0.58 nm above the spherical surface
defined by R, respectively (Fig. 1). Overall, Figs. 4 and 5
thus predict that self-assembly of MPPNs from Piezo can
yield highly symmetric and highly curved MPPN states,
with the radius of curvature of the Piezo dome providing
a critical control parameter for the symmetry and size of
MPPNSs formed from Piezo.

IV. CONCLUSION

We have developed here a methodology for predict-
ing the symmetry and size of MPPNs with arbitrarily
large (nonlinear) membrane curvature deformations. For
MPPNs formed from MscS [18, 19] this methodology pre-
dicts, with no adjustable parameters, the observed sym-
metry and size of MPPNs [16, 17]. Since MscS proteins
only weakly curve the membrane [18, 19, 25], similar con-
clusions were reached previously using a small-gradient
approximation [23, 24]. In contrast, (closed-state) Piezo
proteins can have a highly curved structure [10-13], with
the resulting membrane shape deformations being highly
nonlinear [15]. We find here that the self-assembly dia-
gram for MPPNs formed from Piezo critically depends on



the Piezo dome radius of curvature. In particular, for the
Piezo dome radius of curvature Rp ~ 10.2 nm observed
for a closed state of Piezo [10-13], we generally find
MPPNs with six Piezo proteins and octahedral symmetry
to be dominant. As the value of Rp is increased, we find
dominant MPPN states with icosahedral and snub cube
symmetry, composed of 12 and 24 Piezo proteins, respec-
tively. Such highly symmetric MPPN states may allow
structural studies of MPPNs formed from Piezo [20-22]
in the presence of transmembrane gradients similar to
those found in cellular environments [16, 17]. Intrigu-
ingly, if gating of Piezo is accompanied by an increase
in Rp [10-15], the distinct MPPN symmetries predicted

here may be associated with distinct, biologically rele-
vant conformational states of Piezo.
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