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Understanding the low-temperature pure state structure of spin glasses remains an open problem
in the field of statistical mechanics of disordered systems. Here we study Monte Carlo dynamics,
performing simulations of the growth of correlations following a quench from infinite temperature
to a temperature well below the spin-glass transition temperature Tc for a one-dimensional Ising
spin glass model with diluted long-range interactions. In this model, the probability Pij that an
edge {i, j} has nonvanishing interaction falls as a power-law with chord distance, Pij ∝ 1/R2σ

ij , and
we study a range of values of σ with 1/2 < σ < 1. We consider a correlation function C4(r, t). A

dynamic correlation length that shows power-law growth with time ξ(t) ∝ t1/z can be identified in
the data and, for large time t, C4(r, t) decays as a power law r−αd with distance r when r � ξ(t).
The calculation can be interpreted in terms of the maturation metastate averaged Gibbs state, or
MMAS, and the decay exponent αd differentiates between a trivial MMAS (αd = 0), as expected in
the droplet picture of spin glasses, and a nontrivial MMAS (αd 6= 0), as in the replica-symmetry-
breaking (RSB) or chaotic pairs pictures. We find nonzero αd even in the regime σ > 2/3 which
corresponds to short-range systems below six dimensions. For σ < 2/3, the decay exponent αd
follows the RSB prediction for the decay exponent αs = 3−4σ of the static metastate, consistent with
a conjectured statics-dynamics relation, while it approaches αd = 1− σ in the regime 2/3 < σ < 1;
however, it deviates from both lines in the vicinity of σ = 2/3.

I. INTRODUCTION

The low-temperature equilibrium pure-state structure
of classical Ising spin glasses has been debated for many
years, and is still not well understood. The Ising spin
glass models [1] are defined with discrete two-state spin
variables interacting on a d-dimensional hypercubic lat-
tice (si = ±1 for a spin at lattice site ri with lattice
spacing 1) with the Hamiltonian

H(S) = −
∑
{i,j}

Jijsisj , (1)

where the bonds Jij = Jji for each undirected edge (un-
ordered pair) {i, j} are independent random variables
which form a collection J ≡ (Jij){ij}. A spin configura-

tion is denoted S ≡ (si)i. The edges connect all distinct
sites i 6= j, ri ∈ Zd where d is the dimension of space
(for a finite lattice Λ, ri ∈ Λ with Λ ⊂ Zd with some
chosen boundary conditions) of the graph with vertices
i and edges {i, j}. The probability distribution over the
bonds J is denoted ν(J ) and the disorder average over
the bonds distribution is then denoted [· · ·]ν(J ).

For an infinite system there can be a phase transi-
tion which necessarily presents ergodicity breaking, in
which the configuration space can be divided into dis-
joint regions, such that under time evolution the system
remains forever in one region, but explores all of it (the
dynamics restricted to one region is ergodic). An exam-
ple of this is the ferromagnetic Ising model defined as
for Eq. (1) but with constant couplings Jij = J > 0 for

edges connecting nearest neighbors (|ri−rj | = 1 with the
Euclidean metric). In thermal equilibrium, below some
nonzero critical temperature Tc (for spatial dimension
d ≥ 2) there is spontaneous symmetry breaking with at
least two “pure” (or ordered) states, denoted Γ↑ (Γ↓) for
the “up” (“down”) state. Under time evolution of the
system, there is zero probability that an initial configu-
ration S drawn from the up pure state will be found in
the down pure state, or in any pure state other than the
up state (and similarly for initial S in the down state).
[Here we restrict the discussion to boundary conditions
imposed as si = +1 for si ∈ ∂Λ for the up state and
si = −1 for si ∈ ∂Λ for the down state (with Λ → ∞).]
These two states are the only translationally-invariant
pure Gibbs states for the ferromagnetic Ising model be-
low the phase transition temperature Tc in any dimension
d ≥ 2. Generally, ergodic states for the dynamics are the
same as equilibrium pure states.

Unlike for the ferromagnetic Ising model, for the gen-
eral spin glass model of Eq. (1), the number and na-
ture of pure states in the low-temperature phase is not
clear. This has been debated extensively for short-
range spin glasses including the Edwards-Anderson (EA)
model [1] in low dimension d, following the early works
of Refs. [2–4] which developed the theory of so-called
replica-symmetry breaking (RSB) as a mean-field the-
ory in infinite-range models, and of Refs. [5–9] where the
scaling-droplet (SD) theory of finite-range models was
developed. In the EA model, only the nearest-neighbor
bonds are nonzero, and they are identically-distributed
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Gaussians with vanishing mean and variance unity,

[Jij ]ν(J ) = 0,
[
J2
ij

]
ν(J )

= 1 . (2)

Determining the pure state structure for this model with
analytical work is challenging as there is no controlled
approach known for low dimension d.

We will consider a dynamical correlation function; in a
moment we will further explain its relation to equilibrium
properties. The function is defined by

C4(ri − rj , t) ≡
[[
〈si(t)sj(t)〉S|S0

]2
η(S0)

]
ν(J )

, (3)

where (i) 〈· · ·〉S|S0
denotes an average over trajectories

{S(t′) : 0 < t′ ≤ t, S(0) = S0} of S in time t, with
initial value S0 at t = 0, under some stochastic dynam-
ics that has the Gibbs distribution at temperature T as
its stationary state (which is unique in a finite size sys-
tem; in practice, we will use Monte Carlo evolution), and
(ii) [· · · ]η(S0) is expectation over a distribution η(S0) of
initial configurations S0, which is an infinite tempera-
ture state (i.e. the uniform distribution on spin configu-
rations). This corresponds to dynamic evolution of the
correlation function following an instantaneous quench
from T =∞ to a final temperature T , and we will choose
T to be well below the equilibrium transition temperature
Tc. Such a correlation function has been studied previ-
ously, in Refs. [10–14] for the EA model, in Ref. [15] for
a one-dimensional diluted long-range interacting model
(which we will describe later), and for other models in
Ref. [16]. In each case it was expected that C4(ri− rj , t)
would follow a scaling ansatz

C4(ri − rj , t) =
1

rαdij
f

(
rij
ξ(t)

)
, (4)

where rij ≡ |ri−rj |, f(x) is a scaling function [f(x) tends
to a constant as x → 0], ξ(t) is a dynamical correlation
length, and αd is the dynamic spatial decay exponent.
The correlation length was expected to behave as a power
law with time ξ(t) ∝ t1/z for large time, where z <∞ is a
dynamical exponent. For rij � ξ(t) this gives power-law
decay C4(ri − rj , t) ∝ 1/rαdij . One would expect that αd
is independent of T for 0 < T < Tc, while z = z(T ) has
been found to depend on T [15]. The ansatz was found to
hold numerically (for the times and system sizes studied)
with varying degrees of accuracy in Refs. [10–15].

If the power-law form indeed holds asymptotically in
an infinite size system, with αd > 0, it implies that as t→
∞ the system reaches a statistical state described by ex-
pectations of the form limt→∞[〈· · · 〉S|S0

]ν(S0) that are in-
dependent of t in the limit, with decay of equal-time cor-
relations limt→∞[〈si(t)sj(t)〉S|S0

]η(S0) to zero with dis-
tance, at least in the sense of the disorder average of the
square. This differs dramatically from what should occur
if the state in the long-time limit (which we assume is sta-
tionary, though it is not obvious this must hold; we return
to this later) is what we will call a trivial Gibbs state, that

is one that (here again for T < Tc) is the equal-weight
mixture of two pure states that are related by spin-flip
symmetry, as the SD picture [5–9] assumes is the case in
equilibrium at zero magnetic field. In the latter case the
correlation function limt→∞ C4(ri − rj , t) would go to
a positive constant as rij → ∞, which means αd = 0.
Thus αd > 0 should imply that there are (infinitely)
many pure states, which are accessed by the protocol
that defines C4. We will view the state obtained at long
times, averages in which are limt→∞[〈· · · 〉S|S0

]η(S0), as
the maturation-metastate–average state or MMAS (see
Ref. [16]; the term metastate is used by analogy with the
metastate in statics [17–20]). We further explain some of
this in the following Section; the value of αd is quanti-
tative information about the MMAS, and αd > 0 means
the MMAS contains many pure states.

In Ref. [15], a one-dimensional diluted long-range in-
teracting model was considered, which makes possible
the use of very large (i.e. long) systems in which to con-
sider the correlations. This model is a diluted, non-
Gaussian variant (described below) of a well-known one-
dimensional model [21] that has independent Gaussian
distributions for the bonds J ; in both models, the bonds
Jij for each pair {i, j} have mean zero and variance

[
J2
ij

]
ν(J )

∝ 1

r2σ
ij

(5)

as rij →∞. These models have a transition with Tc > 0
for 1/2 < σ < 1, and are sometimes considered as a
proxy for a short-range interacting model with σ playing
the role of d. Ref. [15] considered a single value σ =
0.625 for which a suggested value of αd was available
(we discuss this in the following Section), and obtained
excellent agreement with that value.

In this paper we extend the study of Ref. [15] for the
diluted long-range one-dimensional model to a wide range
of σ < 1. We find a nontrivial metastate (αd > 0) for all
such interactions σ. We also find support, in agreement
with Ref. [15], for a conjectured statics-dynamics relation
involving αd in the region σ < 2/3, and some support
for an empirical interpolating form in the complementary
regime 2/3 ≤ σ < 1.

Some additional background material is presented in
Section II, while the details and results of simulations are
given in Section III. Appendix A discusses the methods
used to obtain the best fits in the scaling collapse plots.

II. BACKGROUND

Here we will briefly review and explain a number
of concepts to which we will refer, including states,
Gibbs states, pure states, and metastates and metastate-
average states, both static and dynamic, along with some
of their properties. In general, in this Section, systems
are assumed to be of infinite size unless stated to be fi-
nite.
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A. Equilibrium (Gibbs) states and pure states

First, by a state of an Ising spin system we always
mean a probability distribution on spin configurations S.
In finite-range spin systems, a state of thermal equilib-
rium is usually assumed to be a Gibbs state. We fix a
choice of J throughout the discussion of Gibbs and pure
states. In a finite-size system, a Gibbs state ΓJ for a
given Hamiltonian H as in Eq. (1) and temperature T is
defined by

ΓJ (S) = e−H(S)/T /
∑
S

e−H(S)/T . (6)

In an infinite system, this formula cannot be used di-
rectly. Instead, a Gibbs state ΓJ is defined by the
Dobrushin-Lanford-Ruelle (DLR) conditions [22] which
say that, for any finite subset Λ, the conditional proba-
bility distribution for the spins S|Λ = (si)i∈Λ at sites in
Λ, conditioned on the remaining spins S|Λc in the com-
plement Λc of Λ, is

ΓJ (S|Λ | S|Λc) = e−H
′
Λ(S)/T /

∑
S|Λ

e−H
′
Λ(S)/T , (7)

where H ′Λ(S) is the sum of only the terms −Jijsisj in
which at least one of i, j is in Λ. As these conditions
never specify what happens at infinity, there may be
many distinct Gibbs states that satisfy the same con-
ditions, and the appearance of such non-uniqueness at
low temperature describes one possible way in which a
phase transition can occur.

From the definition, a convex combination (or “mix-
ture”) of Gibbs states is again a Gibbs state. A pure (or
extremal) Gibbs state is one that cannot be expressed
as a convex combination of other Gibbs states; the pure
states form a subset of the set of all Gibbs states. Any
Gibbs state ΓJ , say, can be expressed (or decomposed)
uniquely as a convex combination of pure Gibbs states in
the form [22]

ΓJ =

∫
dεwJΓJ (ε)ΓJ ε, (8)

where wJΓJ (ε) is a probability distribution on pure
states ΓJ ε labeled by ε. wJΓJ (ε), which depends on
both J and the chosen Gibbs state ΓJ , is called the
weight of the decomposition; we have written it as an in-
tegral for generality, but the decomposition might reduce
to a sum of a countable number of terms.

B. Equilibrium (static) metastate

A static, or equilibrium, metastate, denoted κJ , is a
probability distribution on Gibbs states ΓJ in infinite
size that is obtained by taking a limit of finite-size sys-
tems. There are a couple of different constructions of an
equilibrium metastate. For a system of finite size L, we

will write 〈· · · 〉 for an expectation in the unique equilib-
rium state, which depends on the disorder (the bonds) J .
In the Aizenman-Wehr (AW) metastate [17], the metas-
tate average of a quantity is defined by first taking the
expectation with respect to ν but only for the bonds Jij
with both i, j a distance greater than M < L from the
origin (i.e. in the outer region); denote that by [· · · ]>,
and the average over the remaining bonds (“in the in-
ner region”) by [· · · ]<. On taking the limits L → ∞,
then M → ∞, these are denoted by the metastate av-
erage [· · ·]κJ

(for given J in the inner region), and by

[· · · ]ν(J ), respectively; the inner region is now infinite in
size, so we can use the same notation J for the disor-
der there, and ν for its distribution. As the equilibrium
state depends on the disorder in the outer region, in the
L→∞, M →∞ limit it becomes a Gibbs state ΓJ that,
even in a finite region near the origin, may retain some
dependence on the disorder in the outer region far away
(as well as on J ), and if it does then the metastate is
nontrivial (i.e. it is supported on more than one Gibbs
state). We write 〈· · · 〉ΓJ for the thermal expectation in
ΓJ . The Newman-Stein (NS) metastate [18–20] is sim-
ilar, except that the average over disorder at distance
> M from the origin is replaced by an average over a
range of system sizes between M and L at given disor-
der; we will use the same notation for either construc-
tion. Both constructions require some further discussion
of the limits (for example, the possible need to take the
limit along a subsequence of sizes L and M), for which
see [17–20]. Finally, it is useful to define the average of
the Gibbs state ΓJ over the metastate κJ , which pro-
duces another Gibbs state, the metastate-averaged state
(MAS), denoted ρJ . That is, a MAS thermal correlation
function is calculated as

〈· · ·〉ρJ ≡ [〈· · ·〉ΓJ ]κJ
. (9)

C. Long-range models

As we are concerned in this paper with long-range spin-
glass models, rather than the short-range ones that were
implicit in the discussion so far, it needs to be said be-
fore going further that the definition of a Gibbs state as
in Eq. (7) breaks down in that case. That is because
for typical J the sum in H ′Λ(S) does not converge ab-
solutely, and diverges for some S, when σ < 1 [see the
definition in Eq. (5)]. Consequently, pathological states
exist in the model, and the definition of a Gibbs state
should be modified so that only converging sums occur
[23]. Within a metastate construction, such pathologies
do not occur, and only Gibbs states in the modified sense
arise [24]. The same issues should also be addressed for
the maturation metastate, but this has not been carried
out so far. For that we will proceed on the assumption
that these technical issues do not obstruct what we will
discuss. (Of course, simulations are performed in finite
systems, for which the issue does not arise.)
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D. Correlations in the equilibrium MAS

Ref. [25] introduced a correlation function in the MAS,

C(ri − rj) ≡
[
〈sisj〉2ρJ

]
ν(J )

(10)

=
[
[〈sisj〉ΓJ ]

2
κJ

]
ν(J )

. (11)

Note that, by eq. (9), both the thermal expectation and
the metastate average are performed before the square is
taken, which, for example for the AW metastate, differs
from the traditional average over all disorder at once (for
which, see below). The large-distance behavior of this
correlation function in the low-temperature phase was
predicted to be

C(ri − rj) ∼
1

rαsij
, (12)

as rij →∞, up to a constant factor, with a decay expo-
nent αs ≥ 0. αs > 0 implies that there are many pure
states in the decomposition of the MAS ρJ , and (pre-
sumably) that the metastate is non-trivial, as we will
explain; as for αd, one expects the value to be the same
for all 0 < T < Tc. (This form also holds in some of the
models in Ref. [16].) It was further shown in Ref. [25]
that the Landau-Ginzburg field theory of RSB in a finite-
range spin glass leads to a description with a non-trivial
metastate for T < Tc, and that

αs = d− 4 (13)

for d > 6 where the calculation can be done. For the
one-dimensional power-law models mentioned at the end
of the preceding section, this formula becomes

αs = 3− 4σ (14)

for 1/2 < σ ≤ 2/3 [15]. The latter region, to which we
may refer as σ below the upper critical range, is also
that in which the critical exponents at T = Tc take their
mean-field values (as in a short-range system for d above
the upper critical dimension, which is d = 6 for spin
glasses), while the region σ > 2/3 is above the critical
range, and some of the critical exponents for 2/3 < σ < 1
differ from their mean-field values. It is natural to expect
similar phenomena for αs and αd, even though they are
defined for T < Tc, because the perturbative field theory
approach for correlations runs into (so far unresolved)
difficulties for T < Tc when d < 6 or σ > 2/3 that are
more severe than those for T = Tc (where the renormal-
ization group allows calculation of the exponents).

In the SD picture of spin glasses, the metastate is tac-
itly assumed to be trivial, and

lim
rij→∞

C(ri − rj) = q2 , (15)

where q is the order parameter, so αs is then defined to
be zero. The order parameter would be defined in general
as the limit of the spin-glass correlation function

lim
rij→∞

[[
〈sisj〉2ΓJ

]
κJ

]
ν(J )

= q(2) . (16)

Note the crucial difference from the MAS correlation
function C in Eq. (10); the square in Eq. (16) is taken
before the metastate average, and for the AW metastate
[[· · · ]κJ ]ν(J ) corresponds simply to the traditional aver-

age over all disorder. If the metastate is non-trivial then
the left-hand side of Eq. (16) (without the rij →∞ limit)

is different from C. In terms of RSB, q(2) =
∫ 1

0
q(x)2 dx

[4], while in the SD picture q(x)2 = q2 is constant. In
RSB, C tends to q(0)2 [25], which is zero in zero mag-
netic field, and q(0)2 ≤ q(2) because q(x)2 is an increas-
ing function of x. In general, we can define q(0)2 by
q(0)2 = limr→∞ C(r), and then q(0)2 ≤ q(2) always, but
q(0)2 is not necessarily zero (see below for further discus-
sion of this point). Then

q(0)2 < q(2) (17)

always implies a nontrivial metastate. The SD picture of
spin glasses is the only scenario with a trivial metastate
and trivial Gibbs state. The chaotic pairs picture [18–
20] has a nontrivial metastate supported on trivial Gibbs
states; in that case q(x)2 is a constant, larger than q(0)2,
for all x > 0 [25], and the power-law form with C tending
to zero is valid in some cases [16] there also, though pos-
sibly not always. An accurate and reliable calculation of
the static MAS correlation function would then partially
resolve the debate about the low-temperature structure
for a spin glass model. Calculating the exponent αs for
low dimension d however remains difficult but there has
been recent numerical progress with a Monte Carlo study
of the EA model in Ref. [26].

E. Maturation MAS (MMAS)

There is an evident similarity or analogy be-
tween the dynamical MMAS defined by expectations
limt→∞[〈· · · 〉S|S0

]η(S0) and the static MAS defined by
〈· · · 〉ρJ , and between their corresponding correlation
functions C4 and C, respectively. First, if the MMAS ex-
ists as a limit, it is plausible that it must be a stationary
state, and stationary states are believed to be necessar-
ily Gibbs states (this has been proved in the translation-
invariant case; see e.g. Ref. [27]). For example, consider
one picture of the evolution of the state from a given ran-
dom initial condition S0, and assume the validity of the
SD picture. At long times there will be domains, within
each of which the state locally can be approximated by
one of the two pure states, and the domains will be sep-
arated by domain walls where the state changes to the
other pure state; the scale of the domains increases with
time as ξ(t). (In the SD theory, ξ(t) is expected to di-
verge as a power of ln t, not as a power of t [28].) The
domain walls should be sparse [9], so the probability that
one separates a given ri from a given rj at time t for given
S0 eventually goes to zero as t → ∞. Hence within this
picture we expect that the t → ∞ limit of the η(S0)-
average state is a stationary state, which is the trivial
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Gibbs state. Note however that the state for given S0,
for example in any fixed finite region, does not tend to a
limit, but keeps switching.

Second, the static MAS is an average of the state (cor-
relations) of the spins near the origin with respect to
either the disorder far away, or the finite system size,
and we will show that this average may reveal that there
are many pure states of the infinite system, even when a
single Gibbs state drawn from κJ only involves a smaller
number (as in the RSB and chaotic pairs pictures). Sim-
ilarly, the dynamic MMAS is the long-time limit of the
average of the equal-time correlations with respect to the
initial conditions, and this average too may show that
there are many pure states; the initial configuration can
affect the state far from the region of interest at long
times, somewhat like the distant disorder. The MAS and
the MMAS may thus be very closely related, or possi-
bly identical (a similar remark appears in Ref. [29]). To
sharpen the analogy, we denote the MMAS by ρM

J , and
so 〈· · · 〉ρM

J
= limt→∞[〈· · · 〉S|S0

]η(S0).

It is tempting to go further and try to define a matu-
ration metastate [16] κM

J , a distribution on Gibbs states
ΓJ , such that 〈· · · 〉ρM

J
= [〈· · · 〉ΓJ ]κM

J
. We are not aware

of a formal treatment of such a construction, but the ini-
tial steps (similarly to the equilibrium metastate [17, 19]),
might be to consider (in infinite size) the joint distribu-
tion of the state (not the spins), the bonds, and the ini-
tial configuration, take the t→∞ limit (possibly using a
subsequence), sum over initial conditions, and then con-
dition on the bonds to obtain κM

J . One would then want

to know that the states drawn from κM
J are Gibbs states.

If so, the analogs of the general statements above for the
static metastate, such as Eq. (17), would also hold for
the maturation metastate. Variations of this construc-
tion can also be considered; for example, the random
variables involved in the dynamics up to a time t∗ > 0
with t∗ < t (in other words, S(t′) for 0 ≤ t′ ≤ t∗) can
be treated as part of the initial conditions along with S0,
with only the subsequent evolution producing the state.
In these constructions, the maturation metastate average
[· · · ]κM

J
of a quantity is the average over the initial seg-

ment S(t′) for 0 ≤ t′ ≤ t∗ (including S0), with suitable
limits taken, analogously to the AW static metastate, and
exactly as stated informally in the preceding paragraph.

Instead of the long-time limit, the literature generally
focuses on the state in a finite region at a finite time
after the quench, and attempts to describe how the limit
t→∞ is approached. In particular, we can ask whether,
conditioned on S0 and on the dynamical randomness up
to time t∗ < t, the subsequent time evolution to t → ∞
(with t∗ → ∞ as some function of t) produces a pure
state (for a more precise discussion, see Ref. [29]); in that
case, the behavior described above, in which any fixed
finite region switches infinitely often from one pure state
to another (the phenomenon of “local non-equilibration”
[29]), is excluded. If that holds, then a theorem of NS
(Theorem 2 in Ref. [29]) shows that the number of pure

states in the decomposition of ρM
J (for which see below

also) must be uncountable, and it also follows from their
result that limt→∞ C4(r, t) → 0 as r → ∞, ruling out
αd = 0. [Stated differently, NS’s result shows that for
the SD picture, the state that evolves from a given S0

and given dynamical randomness up to t∗ must exhibit
local non-equilibration, no matter how t∗ diverges as t
does.] When the hypothesis holds, the corresponding κM

J
becomes a distribution on pure Gibbs states, but again
the general statements remain valid.

F. Correlations in the MMAS

In the remainder of this paper, we will consider only
the MMAS, which is simpler to define and study numeri-
cally, and which has a close relation with the static MAS.
We will use the terms trivial or nontrivial for the MMAS
at T < Tc in the following way: αd = 0 is considered the
trivial case, and occurs if there is a finite or countably
infinite number of pure states in the MMAS that each
have nonzero weight, while αd > 0 is considered non-
trivial, and implies that (i.e. occurs only if) there is an
uncountably infinite number of pure states involved and
no one pure state has nonzero weight. To explain this,
first, the term “weight” refers to the decomposition of
the MMAS, which we assume is a Gibbs state, into pure
states:

ρM
J =

∫
dε µM

J (ε) ΓJ ε, (18)

where again ΓJ ε is a pure state for the given J , and
the probability measure µM

J (ε) on the pure states ε could
be continuous, or could consist solely of δ-functions so
that the integral reduces to a simple sum of weights
on a countable collection of pure states, or could be
a combination of both. (There is a completely paral-
lel analysis for the static MAS ρJ , with corresponding
weight µJ .) Next, as limt→∞ C4 is supposed to tend
to a limit as r → ∞, it will make no difference to the
value of that limit if we average both ri and rj over
a hypercubic box ΛW of W d sites, and take W → ∞.
Due to the factorization (or clustering) property of pure
states [22], the position-averaged product of correlations
〈sisj〉ΓJε〈sisj〉ΓJε′ for two pure states ε, ε′ tends to the
square of the overlap,

qεε′ = lim
W→∞

1

W d

∑
ri∈ΛW

〈si〉ΓJε〈si〉ΓJε′ , (19)

of the pure states, and by translation invariance of the
joint distribution of (J , ε, ε′) and the ergodic theorem for
translation averages, the limit exists and is translation
invariant. Then

lim
r→∞

lim
t→∞

C4(r, t) =

[∫
dε

∫
dε′ µM

J (ε)µM
J (ε′) q2

εε′

]
ν(J )

,

(20)
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and if there is at least one δ-function in µM
J , putting

nonzero weight on one pure state, say ε0, (and another
for its global spin flip), the non-vanishing of the self-
overlap qε0ε0 of that pure state when T < Tc implies that
limt→∞ C4(r, t) tends to a nonzero constant as r → ∞,
which is all we needed to show. If there are no such
δ-functions, then the limit will be zero if the overlaps of
distinct pure states drawn independently from µM

J are al-
most always zero. That is what occurs under the hypoth-
esis in Theorem 2 of NS [29], and in that case κM

J = µM
J .

(It is also what occurs for C in the equilibrium case in
the RSB theory [25] where, as we mentioned already,
C(r)→ q(0)2 = 0, while it is believed that the spin-glass
correlation function in eq. (16) tends to q(2) > 0 in RSB
because the pure-state decomposition of each Gibbs state
ΓJ is countable.) It might appear that the statements
about the pure-state structure of the MMAS could de-
pend on J , however, because of translation ergodicity of
ν(J ), the total weight of the δ-functions is the same for
almost every J , and so the character of the pure-state
structure is the same for ν(J )-almost every J . What
we term trivial pure-state structure of the MMAS is of
course not necessarily a completely trivial pure-state de-
composition of the MMAS, but our use of the term is the
most natural one for the behavior of the MMAS correla-
tion function, and includes the SD case.

G. Statics-dynamics relation

It was proposed in Refs. [13, 15] that the trivial or non-
trivial nature of the pure state structure can be probed
with Monte Carlo dynamics using the dynamically gener-
ated MMAS correlation function in Eq. (3). The system
is evolved in time with Monte Carlo dynamics: for a given
timestep t → t + 1, each lattice site of the total N sites
is visited, and a Metropolis accept/reject move is made
for a single spin flip proposal according to the finite-size
Gibbs distribution Eq. (6). Based on the relations be-
tween static and maturation metastate averages already
discussed, Ref. [15] conjectured a statics-dynamics rela-
tion (see also Ref. [16])

αs = αd, (21)

and found empirically that, in the one-dimensional model
with σ = 0.625 (note this is less than 2/3), αd is in quan-
titative agreement with the value αs = 1/2 that would
be expected on the basis of the preceding statements and
conjecture. While it is unknown whether this conjectured
equality always holds, αs (and αd) will be zero for trivial
pure state structure of the (M)MAS, and is expected to
be nonzero for nontrivial.

H. Other recent work

In a recent paper [30], it was suggested that the results
for C4 may be affected by a crossover from RSB-like to

TABLE I. Exponents αd and dynamic exponents z for the
best fit collapse results of Fig. 4. We also list the lattice size
N used in the collapse analysis and the maximum time tmax
reached in the simulations. rmin values are listed as used for
the best fit analysis. The fitting procedure is discussed in
detail in Appendix A.

σ αd δαd z δz T N rmin tmax ξ(tmax)

0.610 0.571 0.026 1.095 0.145 0.740 226 28 214 3210

0.625 0.501 0.009 1.439 0.052 0.740 226 27 214 1415

0.667 0.418 0.009 2.489 0.055 0.500 224 26 217 335

0.685 0.367 0.009 2.529 0.047 0.544 224 26 216 290

0.720 0.327 0.011 2.739 0.057 0.544 222 26 217 210

0.784 0.202 0.013 3.464 0.102 0.544 218 25 220 150

0.840 0.157 0.011 4.413 0.082 0.450 218 24 220 65

0.896 0.127 0.017 5.316 0.120 0.400 218 24 220 35

SD behavior as r and t increase. It was further sug-
gested [30], with reference also to [31], that when the
SD picture is correct for equilibrium, and so applies at
r � ξ(t), the value of the exponent is given by αd = 2θ,
where θ is the stiffness exponent of SD theory (in the
notation of Ref. [9]). This value was obtained [30] from
a calculation within SD theory of the decay exponent
of a connected (or truncated) correlation function that
describes the non-linear susceptibility and which in SD
theory decays to zero as r →∞ [9]. However, the equilib-
rium correlation function [〈sisj〉2]ν(J ) (for trivial metas-

tate) should tend to q(2) as rij → ∞ (with power-law

correction at finite r), where q(2) is not small when T is
well below Tc, and it is not clear in Ref. [30] why this
constant has been dropped; hence we do not believe that
this argument establishes a relation between αd (or αs)
and θ.

III. SIMULATION RESULTS

Our simulations are performed with a one-dimensional
model introduced in Ref. [32] where, on average, a site
i only has zb neighbors. The basic idea is to use di-
luted bonds such that, for an edge {i, j}, the bond Jij
is nonzero (or the edge is occupied) with probability
Pi,j ∝ 1/R2σ

ij where Rij = (N/π) sin(π|i − j|/N) is the
chord distance between sites i and j (whereas the lat-
tice distance is rij = |i − j| for |i − j| < N/2 and
rij = N − |i − j| otherwise), and the occupation num-
bers, which are 0 or 1 for each edge, are independent.
The coefficient in Pi,j ∝ 1/R2σ

ij is chosen so that the ex-
pected number of occupied edges is Nzb/2 (Pij > 1 can
be avoided by softening the dependence on Rij at short
distance, but keeping the asymptotic form at large Rij).
Given the set of occupied edges, those edges are then
assigned values Jij independently from a Gaussian dis-
tribution with mean zero and variance unity (thus they
are indeed nonzero with probability one), while unoccu-
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pied edges have Jij = 0. Note that the bonds Jij then
satisfy eq. (5) for all i, j, and are independent random
variables, as in the model of Ref. [21]. In practice, as in
Refs. [32] and [15], we will use a modified definition that
is much less costly to implement at large lattice sizes.
The interactions J = (Jij){ij} for a given disorder real-

ization, lattice size N , and coordination number zb are
determined with the following procedure: (i) A site i is
chosen uniformly at random from the N lattice sites. (ii)

A site j is then selected with probability P̃i,j ∝ 1/R2σ
ij ,

where now
∑
j P̃i,j = 1 for the given lattice size N . (iii)

If the edge {i, j} does not already have a nonzero bond
then we select one for this edge independently with a
Gaussian distribution with mean zero and variance unity.
If the edge already has a nonzero bond then we return
to step (i) without modifying that bond. (iv) This pro-
cess is repeated until there are Nzb/2 nonzero bonds. In
the resulting model, the bonds again have mean zero and
variance as in eq. (5) asymptotically, as stated there, and
are uncorrelated but not strictly independent, because
the occupation probabilities are no longer independent;
in particular, the number of occupied edges is fixed, not
random. We made comparisons of the results from the
two models for some parameter values, and found that
the differences were very small.

The simulations were performed with coordination
number zb = 6 for eight power-law interaction exponents
ranging from σ = 0.61 to σ = 0.896. These simulations
reach times of at least t = 214 in all cases and t = 220 for
some interactions and lattice sizes. For each lattice size
and coupling constant, we used between Ns = 80 and
Ns = 2000 disorder realization samples with Nr = 2 real
replicas for each realization initialized for t = 0 with spin
configurations drawn independently and randomly.

The temperatures used in the simulations were well be-
low Tc. For the largest interaction exponent, σ = 0.896,
simulations were performed for T = 0.400 given the crit-
ical temperature Tc ' 0.795 of Ref. [33] where finite-size
scaling of the static spin-glass susceptibility was used to
determine Tc. For σ = 0.784 we used T = 0.544 given
Tc ' 1.36 of the same work, Ref. [33]. For σ = 0.625,
Tc = 1.85(2) from Ref. [15] and, following this work,
we performed simulations for T = 0.740. The expected
monotonic increase in critical temperature with decreas-
ing interaction exponent guided our choices for the re-
maining couplings simulated (see Table I for each tem-
perature simulated and a summary of the simulation pa-
rameters and findings).

For an unbiased estimate of C4(r, t) of Eq. (3) (r ≡ rij
by translation invariance) two replicas (an Ising spin is
now denoted as sγi where γ ∈ {a, b} labels the replica a
or b) of each disorder realization are independently sim-
ulated. Each replica has the same quenched couplings J
but independent random initial spin configurations which
are then independently evolved in time. For each of the
Ns disorder realization samples, we calculate the estima-
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FIG. 1. C4(r, t) as a function of distance along the lattice r for
multiple lattice sizes N for the largest times reached in the
simulations for a few representative interaction parameters
(a) σ = 0.625, (b) σ = 0.720, and (c) σ = 0.896. We see that
finite-size effects are well controlled already at N = 214 for
the largest σ values but we require lattice sizes N = 226 for
σ = 0.625.

tor

C4(r, t) =

[
1

N

N∑
i=1

sai (t)sai+r(t)s
b
i (t)s

b
i+r(t)

]
ν(J )

. (22)

In Fig. 1 we show C4(r, t), calculated as in Eq. (22), as
a function of lattice size for three representative interac-
tions σ ∈ {0.625, 0.720, 0.896}. For each coupling mul-
tiple lattice sizes N ∈

{
210, 214, 218, 222, 224, 226

}
were

simulated to investigate finite-size effects. We see from
panel (c) of Fig. 1 that finite-size effects are controlled for
σ = 0.896 already with lattice size N = 214 for the time
shown t = 220 (results only up to lattice size N = 222

were obtained for this time). For the smallest interac-
tion exponent shown, σ = 0.625, the finite-size effects
are much more substantial even for t = 214 requiring a
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FIG. 2. C4(r, t) as a function of distance along the lattice r for a given lattice size (with controlled finite-size effects) for varying
times. Panel (a) shows interaction σ = 0.625 for lattice size N = 226 up to time t = 214. Panel (b) shows results at σ = 2/3
for lattice size N = 224 up to time t = 217. Panels (c)-(f) are for interactions in the regime σ > 2/3, which is above the upper
critical range. We also show the short-distance power-law behavior for each interaction σ (dashed lines) and the large-distance
power-law behavior (dashed-dotted lines) for the largest available value of t.
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FIG. 3. Data collapse results for multiple interaction parameters from (a) σ = 0.625, below the upper critical range, to (f)

σ = 0.840, well above the upper critical range. The collapse is performed with the ansatz C4(r, t) = 1
rαd

f
(

r
ξ(t)

)
for the listed

lattice sizes where ξ(t) ∝ t1/z. The best fit values used in the collapse are determined as discussed in App. A.

lattice size N = 226 as previously found in Ref. [15]. The
reduction of finite-size effects with increasing σ (for a
given simulation time t), due to the faster power-law de-
cay of the probability of the presence of a bond for {i, j}
with increasing r, has allowed for multiple C4(r, t) results
with σ > 2/3. However, the larger σ values require much
larger times to achieve appreciable correlation lengths

ξ(t) and so similar computational effort was required for
each interaction exponent σ.

With the finite-size effects controlled for each inter-
action exponent, the time dependence of C4(r, t) is an-
alyzed. The results are plotted in Fig. 2. The large-
time and short-distance behavior for each interaction is
fit with a power law (dashed line) in each panel for (a)
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FIG. 4. Exponent αd (dark blue squares) describing the decay of C4(r, t) as a function of interaction power-law exponent σ.
αd > 0 for all interactions studied, suggesting a nontrivial metastate at low T for σ < 1. We clearly see the predicted behavior
αd = 3− 4σ (light blue dashed line) for σ < 2/3. The dependence of αd on σ approaches αd = 1− σ (light green dotted line)
for σ > 2/3. We also show the bound αd ≤ 2− 2σ [24] (purple dashed dotted line) which is satisfied by the simulation results.

σ = 0.625 with lattice size N = 226 through (f) σ = 0.84
with lattice size N = 218. The large-time and large-
distance behavior is also fit by a power law (dashed-
dotted line) showing the expected C4(r, t) ∝ 1/r2σ de-
pendence for the long-range model for r � ξ(t) [15].
We observe a crossover from short-range to long-range
power-law dependence. The crossing of the two power-
law curves for the maximum simulated time is used to
give a rough estimate of the dynamic correlation length
ξ(t) reached (see Table I for these estimates). From the
raw data of Fig. 2 we perform a data collapse based on the
scaling ansatz of Eq. (4) with the product of C4(r, t) and
rαd on the y-axis and r/t1/z on the x-axis and present the
best fit collapse results in Fig. 3. The collapse for each
value of σ supports the scaling ansatz. We discuss our
method for extracting the best fit collapse parameters
and the associated errors in detail in Appendix A.

The final results of the analysis are listed in Table I.
In Fig. 4 we show the best fit collapse values for αd as a
function of interaction power-law exponent σ. We show
the prediction obtained using RSB theory together with
the conjectured statics-dynamics relation, αd = 3 − 4σ
[15, 25] for σ ≤ 2/3 (blue dashed line). We also show an
upper bound αd = 2 − 2σ (purple dashed-dotted line);
strictly speaking, this bound is obtained [24] from an

upper bound α′s ≤ 2−2σ on the scaling, lnN (W ) ∼Wα′
s ,

of the logarithm of the number N of pure states that
could be seen in a window of size W in any Gibbs state,

and α′s was conjectured to equal αs [25], as it does also
in some of the models in Ref. [16]. The same bound can
also be obtained in another way: α = 2− 2σ is the decay
exponent for the spin-glass correlation function at T = Tc
in this model in equilibrium [21], and one would expect
a slower decay for the (M)MAS correlations below Tc.
Finally, we show the line αd = 1− σ (green dotted line),
which interpolates between the expected value 1/3 at σ =
2/3 and 0, which might be expected as σ → 1 and which
agrees with the upper bound. We see strong agreement of
the best fit collapse results with αd = 3−4σ from the two
values (σ = 0.625 and σ = 0.61) in the expected regime
below the upper critical range 2/3. This is in agreement
with the previous study of Ref. [15] and supports both
the statics-dynamics conjecture and the result from RSB
for σ < 2/3. As σ is increased beyond σ = 2/3 we find
that the best fit values for αd remain nonvanishing and
the line αd = 1 − σ is a good fit to the three highest
values of σ. This supports the theories with nontrivial
MASs in the regime beyond the upper critical range 2/3
also, and is in contrast to the expected result αd = 0
of the SD picture. The data are not as close to either
line where they intersect at 2/3, and instead suggest a
smooth curve. By analogy with critical phenomena, this
might be due to logarithmic corrections at the boundary
value σ = 2/3.

The small statistical errors notwithstanding, our confi-
dence in the results decreases as σ approaches 1, where we
were only able to reach rather short correlation lengths,
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and C4 does not decrease much as r increases before ξ(t)
is reached, due to the small αd. This means that system-
atic errors could be much more significant as σ → 1 (e.g.
because of corrections to scaling), and the results could
change for larger t. It is difficult to say with confidence
that we rule out the SD picture for σ close to 1 unless we
can see that limt→∞ C4(r, t) � q(2) at sufficiently large
r; this is not the case for r < ξ(t) at our largest σ.

IV. CONCLUSION

In this work we have extended the study of Ref. [15] for
a 1D diluted long-range model to interaction exponents
σ other than σ = 0.625, considered in that work. We
have performed dynamics simulations following a quench
to temperatures below the critical temperature for inter-
actions with range exponent σ both below (σ < 2/3) and
above (σ > 2/3) the upper critical range. For all in-
teractions considered we determined the best fit scaling
exponents z and αd. The best fit collapse value of αd is
found to be nonzero for all interactions considered indi-
cating that the pure state structure is nontrivial (i.e. not
the scaling-droplet picture) even above the upper criti-
cal range. We found evidence with multiple interaction
exponents for the statics-dynamics equality conjecture
αd = αs (αd = 3−4σ) for σ < 2/3, which previously was
quantitatively addressed only for σ = 0.625 in Ref. [15].
Further, we found empirically that the correlation expo-
nent approaches an interpolation curve αd = 1 − σ as
σ → 1.

It remains to determine in future studies if the statics-
dynamics equivalence conjecture which is supported in
this study can be strengthened or ruled out, including
for the region 2/3 < σ < 1. Both analytic and numerical
approaches will be useful to address this. However, we
emphasize again that both αs and αd are expected to be
nonzero for nontrivial pure state structure and vanish for
trivial. It will also be interesting to perform a similar nu-
merical study in the presence of a magnetic field, where
the phase diagram and the existence of an Almeida-
Thouless (AT) line [34] remains uncertain [33, 35–37].
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FIG. 5. Collapse quality S heatmap for σ = 0.685. The qual-
ity is considered good for S ≈ 1 though, as discussed in the
main text, it can be much smaller due to the highly corre-
lated nature of the data. The quality shown was evaluated
with data for tmin = 213 to tmax = 216 for N = 224 and
lattice distances rmin = 26.

Appendix A: Best fit collapse

We do not know the scaling function f(x) of Eq. 4 for
the data collapse of Fig. 3 of the main text but determine
the best fit by introducing the quality S quantitatively
following the methods of Refs. [38, 39]. For a fitting
window of times t ∈ (tmin, tmax) and lattice distances
r > rmin, and for given collapse parameters αd and z, we
have an estimate for the collapsed correlation function,
C4(r, t)rαd denoted yr,t for each distance r and time t
and a statistical error for this value dyr,t. An estimate of

the master curve function at r/t1/z, denoted Yr,t, can be
made from the data yr,t. For each point yr,t this is done
by fitting a cubic polynomial to the three nearest scaled
distances above, i.e. r′/t′1/z > r/t1/z, and the three near-
est scaled distances below, r′/t′1/z < r/t1/z. The statis-
tical error on the interpolated estimate is denoted dYr,t.
We define the collapse quality S with

S =
1

NL

∑
r,t

(yr,t − Yr,t)2

dy2
r,t + dY 2

r,t

, (A1)

where NL is the number of terms in the sum fixed by the
size of the fitting window. Larger values of the quality
indicate poor fits while the fit is considered good for S ≈
1. We show the quality S as a function of αd and z for
σ = 0.685 in Fig. 5 with tmin = 213 and tmax = 216 with
rmin = 26.

The data considered here is highly correlated so the
quality S can be much smaller, e.g., the best fit Smin ≈
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FIG. 6. Histograms for the best fit collapse exponent αd with Nb = 1000 bootstrap samples with interaction exponents (a)
σ = 0.625, (b) σ = 0.667, (c) σ = 0.685, (d) σ = 0.720, (e) σ = 0.784, and (f) σ = 0.840. Each panel shows the bootstrap
histogram for varying rmin. We see that the best estimate value for αd varies significantly for small rmin, e.g., for σ = 0.625
we observe variation up to rmin ≈ 24. The best fit collapse value of αd = 0.501 (used in Fig. 3) and the error δαd = 0.009 are
determined with rmin = 27. The values for each interaction exponent are given in Table I.

0.1 for σ = 0.896. The best fit quality Smin can also be
significantly larger if the interpolation is not sufficiently
accurate as the statistical errors are relatively small on
the correlation function C4(r, t) (this is why we use the
cubic polynomial instead of the straight-line fit interpo-
lation in Ref. [39]). To determine a final estimate and
error on the estimates for both z and αd with a given
fitting window, specified by the parameters (rmin, tmin,
tmax), we perform a bootstrap analysis with Nb = 1000
bootstrap samples [40]. For each bootstrap sample drawn
from the underlying Ns disorder realizations data, we de-
termine the parameters z and αd which give the smallest
fit value Smin of Eq. (A1).

We show the bootstrap sample distributions in Fig. 6
which gave the best fit values and error bars for the
parameters used in the collapse of Fig. 3 of the main
text. This was done for each interaction exponent σ

with tmax as the largest time reached for the lattice
size N and multiple values for rmin. tmin was chosen
to be tmax/2

3 for each interaction exponent. We found
the estimates to vary substantially for small rmin. As
an example consider σ = 0.685 (top middle panel).
The best estimate value for α for this value of σ varies
for small rmin up to rmin ≈ 24. The value of rmin
used for the final collapse parameters was selected by
the requirement that Smin saturates as a function of
rmin. The best fit collapse value of αd = 0.367 (used in
Fig. 3) and the error δαd = 0.009 were determined with
rmin = 26. For each value of the interaction exponent,
the final collapse parameters found, and the value of
rmin used for the final estimates, are given in Table I of
the main text.
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D. Iñiguez, A. Maiorano, F. Mantovani, E. Mari-
nari, V. Martin-Mayor, J. Monforte-Garcia, A. Muñoz
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