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The design and optimization of radiofrequency-wave systems for fusion applications is often per-
formed using ray-tracing codes, which rely on the geometrical-optics (GO) approximation. However,
GO fails at wave cutoffs and caustics. To accurately model the wave behavior in these regions, more
advanced and computationally expensive “full-wave” simulations are typically used, but this is not
strictly necessary. A new generalized formulation called metaplectic geometrical optics (MGO) has
been proposed that reinstates GO near caustics. The MGO framework yields an integral represen-
tation of the wavefield that must be evaluated numerically in general. We present an algorithm
for computing these integrals using Gauss–Freud quadrature along the steepest-descent contours.
Benchmarking is performed on the standard Airy problem, for which the exact solution is known an-
alytically. The numerical MGO solution provided by the new algorithm agrees remarkably well with
the exact solution and significantly improves upon previously derived analytical approximations of
the MGO integral.

I. INTRODUCTION

Electromagnetic (EM) waves are widely used in plasma
applications, including magnetic confinement fusion [1–
3] and inertial confinement fusion [4, 5]. Accurately
modeling how EM waves propagate in plasma is there-
fore of upmost importance. Full-wave modeling, that
is, directly solving Maxwell’s equations with appropri-
ate source terms, can be computationally expensive. In-
stead, the geometrical-optics (GO) approximation is of-
ten used to quickly calculate the wave amplitude along
the GO rays that illuminate the region of interest [6, 7].
The obtained amplitude profile can then be used as a
source term in calculations of macroscopic plasma equi-
librium [8, 9]. Design studies for EM-wave systems are
often performed in this manner [9–12].

Unfortunately, GO solutions develop singularities at
caustics such as cutoffs or focal points [13, 14]. This is an
issue for applications in which caustics play a central role,
such as initializing spherical tokamak plasmas [15–17]
via electron cyclotron resonance heating [18, 19] (where
the time-evolution of caustic surfaces directly defines the
window of operation [12]), or driving current in over-
dense plasmas via mode conversion to the electron Bern-
stein wave [20–30] (where the field structure near the
EM wave cutoffs must be precisely resolved to obtain ac-
curate mode-conversion efficiency estimates). Reduced
modeling of these processes requires a more advanced
machinery than traditional GO.

In response to this need, a new reduced theory called
metaplectic GO (MGO) has been recently developed that
leads to solutions that are finite at caustics [31, 32]. By
default, MGO yields an integral representation of the
wavefield, which can be approximated analytically to
some extent but in general must be evaluated numeri-
cally. Unfortunately, the integrands in MGO are highly
oscillatory, so standard integration methods are insuffi-

cient [33]. Special numerical algorithms tailored to MGO
are needed.

As part of ongoing work on MGO algorithms [31, 32,
34, 35], here we present a quadrature rule for calculating
MGO integrals based on numerical steepest-descent inte-
gration [36]. This algorithm emerges naturally from the
MGO framework in that MGO integrals always contain
saddlepoints that correspond to the ray contributions to
the wavefield. We benchmark our algorithm on a class
of examples in which the MGO integral contains a sin-
gle isolated saddlepoint of various degeneracy, physically
representing a wavefield either far from a caustic or at the
critical point of a cuspoid-type caustic. We then apply
our algorithm to the classic problem of an EM-wave re-
flecting off an isolated cutoff as governed by Airy’s equa-
tion [1, 6]. We show that the numerical MGO solution
agrees with the exact result amazingly well, much better
than the analytical approximation to the MGO integral
that was previously derived [31].

This paper is organized as follows. In Sec. II the ba-
sic machinery of MGO is summarized, and the various
types of caustics one expects to encounter are briefly
surveyed. Section III constitutes the bulk of our pa-
per, first introducing steepest-descent integration and
Gaussian quadrature, then proceeding to derive our new
quadrature rule. Benchmarking examples are provided
in Sec. IV, and Sec. V summarizes our main results.

II. METAPLECTIC GEOMETRICAL OPTICS
AND CAUSTICS

A. A brief overview

Here we provide a brief overview of MGO; for more
details, see Refs. [31, 32]. Let ψ(x) be a scalar station-
ary wavefield in a plasma described by an N -dimensional
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(N -D) Euclidean coordinate system. (Generalizations to
arbitrary metric are discussed in Ref. [37]). Neglecting
nonlinear effects, the governing wave equation for ψ(x)
is most generally written in the following integral form:

∫
dx′D(x,x′)ψ(x′) = 0, (1)

where the integral kernel D(x,x′) is determined from
the linear dielectric response of the plasma ε(x,x′) in a
known manner [1, 6]. For example, transverse EM waves
have D(x,x′) given by

D(x,x′) = −∇2δ(x− x′)− ε(x,x′), (2)

where ∇2 is the Laplacian operator with respect to x.
In the traditional GO limit, when ψ(x) is highly oscil-

latory, adopting the eikonal partition

ψ(x) = φ(x)eiθ(x) (3)

ultimately leads to the local dispersion relation that gov-
erns the phase function θ(x),

D[x,∇θ(x)] = 0, (4a)

and the transport equation that governs the envelope
function φ(x),

v(x)ᵀ∂x log φ(x) = −1

2
∂x · v(x). (4b)

Here, we have defined the local group velocity as

v(x)
.
= ∂kD [x,∇θ(x)] , (5)

and we have introduced the dispersion function D(x,k),
obtained from D(x,x′) using the Wigner transform [38]

D(x,k)
.
=

∫
ds eik

ᵀsD
(
x− s

2
,x +

s

2

)
. (6)

(Vectors are interpreted as row vectors unless explicitly
transposed via ᵀ, so kᵀs = k · s. Also, the symbol

.
=

denotes definitions.) Note that the Wigner transform of
the two-point correlation function ψ(x)ψ∗(x′), i.e.,

Wψ(x,k)
.
=

∫
ds

(2π)N
eik

ᵀs ψ
(
x− s

2

)
ψ∗
(
x +

s

2

)
, (7)

acts as a phase-space (quasi-)distribution function for the
field intensity, satisfying [39]

|ψ(x)|2 =

∫
dkWψ(x,k), (8a)

|ψ̃(k)|2 =

∫
dxWψ(x,k), (8b)

where ψ̃ is the Fourier transform of ψ.
The local dispersion relation (4a) is commonly solved

via the ray equations

∂ξx = ∂kD(x,k), ∂ξk = −∂xD(x,k), (9)

where the evolution of k along a ray (considered as a
vector field over x) is constrained by

k = ∇θ(x), (10a)

and the initial conditions must satisfy

D(x,k) = 0. (10b)

The rays encoded by Eq. (9) naturally reside in the 2N -
D ray phase space (x,k) with the wavevector k serving
as the ray momentum. The constraints (10) define an
N -D manifold in this phase space called the ‘dispersion
manifold’ on which ψ is asymptotically confined. More
specifically, if we parameterize this manifold as the zero
set of N independent functions [6, pp. 467–468]

M(x,k)
.
= (M1(x,k), . . .MN (x,k)), M1 ≡ D, (11)

then Wψ(x,k) ∼ δ[M(x,k)] in the GO limit [40, 41].
Correspondingly, |φ(x)|2 diverges in the GO limit (Fig. 1)
at locations where the projection of the dispersion man-
ifold onto x-space is singular, i.e., where [42]

det ∂kM [x,∇θ(x)] = 0, (12)

or equivalently, where

det ∂2xxθ(x)→∞. (13)

These locations are called ‘caustics’ [13], and they typ-
ically occur where distinct branches of the dispersion
manifold coalesce. Notice, though, that the ray equa-
tions (9) in these regions remain well-defined.

The singularity of φ at caustics signifies that the tra-
ditional GO approximation fails in regions where the
projection of the dispersion manifold onto x-space is ill-
behaved. However, working in x-space is not a necessity.
One can instead formulate GO on more general phase-
space planes specifically chosen to avoid singular projec-
tions of the dispersion manifold as the wave propagates.
This is the main idea of the MGO method as proposed
in Refs. [31, 32] (see Fig. 1). To develop this idea in
more detail, let us introduce an N -D coordinate system
τ such that the dispersion manifold can be parameter-
ized as (x(τ ),k(τ )). We choose τ1 = ξ, the longitudinal
coordinate along the ray trajectories (9). The remain-
ing τ2, . . . , τN , which can be chosen as the coordinates
generated byM2, . . . ,MN , parameterize the initial con-
ditions to Eqs. (9) along the dispersion manifold, e.g.,
the remaining spatial coordinates.

Let us consider a specific point τ = t on the disper-
sion manifold. The optimal rotation to avoid projection
singularities is the one that aligns the tangent plane of
the dispersion manifold at t, denoted Xt-space, with x-
space. This is accomplished by performing the following
linear coordinate transformation of the phase space:


Xt

Kt


 = St


x

k


 , St

.
=


At Bt

Ct Dt


 , (14)
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FIG. 1: Top row – the phase-space distribution of the wave intensity in the phase space (x, k) for a wave near a fold-type
Airy caustic (see Sec. IV B): (a) The exact Wigner function Wψ ∝ Ai[D(x, k)]; (b) GO solution Wψ ∼ δ [D(x, k)]; (c) GO
solution in the phase space rotated by π/2. Bottom row – the corresponding wave fields: (d) the exact field |ψ(x)|2; (e) the
field intensity |φ(x)|2 .

= 〈|ψ(x)|2〉 in the GO approximation (where the angular brackets denote averaging over the local
wavelength); (f) the field intensity in the spectral representation, |φ̃(k)|2 .

= 〈|ψ̃(k)|2〉. The dispersion manifold D(x, k) = 0 is
shown as the black dashed line. Clearly, |φ(x)|2 diverges at x→ 0, but |φ̃(k)|2 is well-behaved everywhere.

where St is the 2N × 2N unitary symplectic matrix that
rotates phase space to align Xt-space with x-space. (The
matrices At, Bt, Ct, and Dt are each N×N .) An explicit
construction of St using ray trajectories near t is provided
by the ‘symplectic Gram–Schmidt’ algorithm of Ref. [31].

Ultimately, repeating these ‘optimal’ rotations for all
points on the dispersion manifold, synthesizing the re-
sulting GO solutions, and transforming them back to the
original phase space yields the MGO solution [31]

ψ(x) =
∑

t∈τ (x)

Nt(x) Υt(x), (15)

where τ (x) is the function inverse of x(τ ); accordingly,
the sum is taken over all branches of k(x)

.
= k[τ (x)]. In

Eq. (15), we have introduced the integral function

Υt(x)
.
=

∫

C0
dεΨt [ε+ Xt(t)] exp

(
− i

2
εᵀDtB

−1
t ε

)

× exp
{
iεᵀB−ᵀt [x− Dᵀ

tXt(t)]
}
, (16)

where Ψt(Xt) is the GO solution in the rotated phase
space (14). The integration is performed along the
steepest-descent contour that passes through the saddle-
point ε = 0 (Sec. III A), which importantly means that
Υt(x) is not generally a unitary mapping of Ψt unless C0
can be deformed to lie along the real axis [43]. Note that
Eq. (16) requires Bt to be invertible; this is done for sim-
plicity, and the generalization to arbitrary Bt is provided
in Ref. [32]. Also, the prefactor Nt(x) in Eq. (15) can be
simply evolved along the ray trajectories using the for-
mulas provided in Ref. [31]. Efficiently computing Υt(x)
is comparatively less understood, and shall be the focus
of the remainder of this work.

B. Caustics as optical catastrophes

The behavior of Υt(x) near caustics can be broadly
understood using catastrophe theory [13, 14, 45]. This
theory provides a classification system for caustics based
on their codimension, that is, the minimum number of
spatial dimensions in which they can be observed. For
example, the simplest type of caustic is the fold caustic,
which occurs when a wave encounters a cutoff. The fold
caustic has codimension 1, so it can be observed in N -D
systems with N ≥ 1. On the other hand, the cusp caus-
tic, which occurs at a focal point, has codimension 2 and
can thus only be observed for N ≥ 2. This supports the
intuition that cutoffs are well-described by 1-D models
like Airy’s equation, but foci are inherently 2-D.

There are three main advantages to using the catas-
trophe classification system to study caustics: (i) Only
‘structurally stable’ caustics that are robust under small
perturbations are included. These are the caustics that
are most physically relevant, since a structurally unstable
caustic will be destroyed by any imperfections in the ex-
perimental setup (which are of course unavoidable). For
example, an EM wave propagating in an unmagnetized
cold plasma with a linear density profile n(x) will have a
cutoff at some xc. If the density is perturbed from n(x)
to ñ(x) by some global motion of the plasma, the cutoff
location will shift from xc to x̃c, but will generally not
disappear; hence, the cutoff (fold caustic) is ‘structurally
stable’. (ii) There are only a finite number of distinct
caustic types that are stable in a given number of dimen-
sions. For example, only six different caustics can occur
in 3-D (including ‘no caustic’; see Table I). (iii) General

3
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Name α m M fα(κ,y)

No caustic A1 0 1 κ2
1

Fold A2 1 1 κ3
1 + y1κ1

Cusp A3 2 1 κ4
1 + y2κ

2
1 + y1κ1

Swallowtail A4 3 1 κ5
1 + y3κ

3
1 + y2κ

2
1 + y1κ1

Hyperbolic umbilic D+
4 3 2 κ3

1 + κ3
2 + y3κ1κ2 + y2κ2 + y1κ1

Elliptic umbilic D−
4 3 2 κ3

1 − 3κ1κ
2
2 + y3(κ2

1 + κ2
2) + y2κ2 + y1κ1

TABLE I: A complete list of the normal-form generators fα(κ,y) for caustics with codimension m ≤ 3 [13, 14, 44]. The
interference patterns that correspond to these caustics can be viewed in their entirety when the number of spatial dimensions
N = 3. For each caustic, α is the Arnold label [44], m is the codimension, and M is the corank.

properties of a given caustic type can be determined by
studying a single member in detail, often chosen to be the
‘simplest’ member (the so-called ‘normal-form generator’
of the caustic class; see below).

These three results from catastrophe theory greatly re-
duce the work required to validate any new method in
catastrophe optics; indeed, a new method for modeling
caustics need only be tested on three different caustics to
be fully viable in 2-D, or on six different caustics for 3-D.
In our case, a numerical quadrature rule for Υt(x) can be
validated on the standard integrals of catastrophe theory,
which are integral representations for caustic wavefields
and take the general form

Iα(y)
.
=

∫
dκ exp [ifα(κ,y)] , (17)

where y is an m-D collection of ‘external’ (or ‘control’)
variables, κ is an M -D collection of ‘internal’ (or ‘state’)
variables, and α labels the type of caustic. The integers
m ≤ N and M ≤ N are the ‘codimension’ and ‘corank’ of
the caustic, respectively, and the function fα(κ,y) is the
normal-form generator for a type-α caustic. For example,
the fold caustic, also called the A2 caustic in Arnold’s
nomenclature [44], has m = 1, M = 1, and

fA2
(κ1, y1) = κ31 + y1κ1. (18)

The corresponding IA2
(y1) is proportional to the Airy

function Ai(y1/
3
√

3) [46, pp. 194–213]. See Table I for
more examples. Note that if M < N such that only a
subset of the integration variables of Υt are included in
the standard integral Iα, then by the splitting lemma of
catastrophe theory [14, 45], the remaining N −M inte-
grals contained in Υt are decoupled and involve phase
functions that are quadratic at most, and thereby triv-
ially integrated.

For practical problems, Iα(y) typically represents only
the local behavior of a given type-α caustic. The global
behavior can sometimes be modeled using the method of
‘uniform approximation’ [46–48]. However, this method
relies on (i) the caustic type being known beforehand
(which is fine for interpretive but not predictive simula-
tions) and (ii) only a single caustic being present. In-
deed, the elementary catastrophes mentioned here often

combine to form ‘caustic networks’, an example being
an EM wave focused on a cutoff producing a fold-cusp
network. It might be possible to infer basic properties of
such caustic networks from the constituent members, but
complete understanding can only be achieved by consid-
ering the caustic network as a whole, which is very diffi-
cult to do analytically. Hence, a robust numerical scheme
for computing catastrophe integrals that does not assume
any specific caustic structure is needed.

III. GAUSS–FREUD QUADRATURE FOR
STEEPEST-DESCENT INTEGRATION

A. Steepest-descent method

As seen from Eq. (17) and Table I, we generally expect
Iα(y) to involve a highly oscillatory integrand when y
and κ are both real. These rapid oscillations would make
the direct evaluation of Υt(x) analytically and numeri-
cally challenging, if not for the fact that Υt(x) is eval-
uated along the steepest-descent contour C0 [Eq. (16)].
Along C0, oscillatory terms become exponentially de-
caying terms, reinstating the viability of standard nu-
merical integration methods like Gaussian quadrature
(Sec. III B). However, this simplification is contingent on
the ability to determine C0 for arbitrary wavefields. Let
us therefore characterize the steepest-descent contours of
the standard forms Iα(y). For simplicity, we restrict at-
tention to 1-D integrals, i.e., M = 1 in Eq. (17).

For integrals of the form

I(y) =

∫
dκ g(κ,y) exp[if(κ,y)] (19)

[where we have generalized Eq. (17) to include a slowly
varying amplitude g(κ,y)], the steepest-descent contours
at fixed y are by definition the streamlines of ∇Im(f)
in the complex κ plane C1, where ∇ .

= (∂Re(κ), ∂Im(κ)).
(Here, Re and Im denote the real and imaginary parts of a
complex function.) When f is analytic in κ, a more useful
definition arises from the Cauchy–Riemann relation [49]

i∂Re(κ)f(κ,y) = ∂Im(κ)f(κ,y), (20)

4
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which implies that ∇Re(f) and ∇Im(f) are orthogonal,
i.e.,

∇Re(f) · ∇Im(f) = 0. (21)

Therefore, the streamlines of ∇Im(f) that pass through
a given point κ0 are also the set of points in C1 that
satisfy the implicit equation

Re [f(κ,y)] = Re [f(κ0,y)] . (22)

The steepest-descent contours are almost-everywhere
smooth curves, although non-differentiable kinks can oc-
cur at special points where Eq. (21) is indeterminate,
i.e., where ∇Re (f) = ∇Im (f) = 0 [50]. At these points
[which are saddlepoints per Eq. (20) [51]], the direction of
∇Im (f) generally changes abruptly, producing the afore-
mentioned kinks that require special parameterization.
As shown later, such parameterization can be done by
treating the kink as two independent curves that inter-
sect at a finite angle.

Although saddlepoints are ‘rare’ in that they occur at
isolated points in C1, they are often of primary interest
due to their prominent role in asymptotic wave theory.
More specifically, each saddlepoint of f encodes the con-
tribution to I(y) from a single corresponding GO ray.
Consequently, a saddlepoint κs(y) will be real when y is
in the lit region of a caustic, but may be complex when
y is in the shadow region. Also, a caustic occurs at the
specific values of y, denoted yc, such that multiple sad-
dlepoints coalesce and consequently,

∂2κf [κs(yc),yc] = 0. (23)

Having now characterized the general behavior of
steepest-descent contours, in the following subsections,
we shall briefly overview the Gaussian quadrature
method [52], and then show how it can be used to ac-
curately compute Υt(x) along C0.

B. Gaussian quadrature for numerical integration

Suppose we wish to compute the integral of some real-
valued function h(κ) over the real interval (a, b), with
both a and b allowed to be infinite. Suppose further that
h(κ) can be partitioned as

h(κ) = ω(κ)r(κ), (24)

with ω(κ) positive-definite on (a, b) and r(κ) a polyno-
mial of degree 2n−1. Then, the following n-point quadra-
ture formula holds:

∫ b

a

dκh(κ) ≡
∫ b

a

dκω(κ)r(κ) =

n∑

j=1

wjr(κj), (25)

where the quadrature weights {wj} and nodes {κj} are
determined as follows.

Let us introduce the inner product

〈h1, h2〉
.
=

∫ b

a

dκω(κ)h1(κ)h2(κ). (26)

Let us also introduce the family of real-valued polyno-
mials {p`(κ)} (with ` the polynomial degree) that are
orthogonal with respect to Eq. (26), that is,

〈p`, pm〉 = η` δ`m, η`
.
= 〈p`, p`〉, (27)

where δ`m is the Kronecker delta. By performing polyno-
mial division of r(κ) by pn(κ) and Lagrange interpolation
of the residual, it can be shown [53, pp. 135–137] that the
quadrature weights {wj} are determined by the formula

wj =

〈
n∏

`=1
j 6=`

κ− κ`
κj − κ`

, 1

〉
=
〈pn(κ), (κ− κj)−1〉

p′n(κj)
, (28)

and the quadrature nodes are the n zeros of pn(κ), i.e.,

{κj} = {κ | pn(κ) = 0}. (29)

If h(κ) cannot be decomposed as Eq. (24) with poly-
nomial r(κ), the corresponding integral can still be ap-
proximately computed as

∫ b

a

dκh(κ) ≈
n∑

j=1

wj
h(κj)

ω(κj)
. (30)

Equation (30) defines the Gaussian quadrature method
of numerical integration. The error in using Eq. (30)
depends on how ‘close’ h(κ)/ω(κ) is to being a 2n − 1
degree polynomial, as determined by the maximum value
of ∂2nκ (h/ω) over (a, b). Explicitly, [54]

∣∣∣∣∣∣

∫ b

a

dκh(κ)−
n∑

j=1

wj
h(κj)

ω(κj)

∣∣∣∣∣∣
≤ ηn

(2n)!
max
ζ∈(a,b)

∣∣∣∣∂2nκ
h(ζ)

ω(ζ)

∣∣∣∣ .

(31)
Note that the right-hand side vanishes when h(κ)/ω(κ)
is a 2n− 1 degree polynomial, as desired. Also note that
Eq. (30) is still valid when h(κ) is complex-valued.

Common choices for {p`(κ)} are the rescaled Legendre
polynomials for integrals over finite (a, b) with ω(κ) = 1,
or the Hermite polynomials for integrals with (a, b) =
(−∞,+∞) and ω(κ) = exp(−κ2). For our purposes,
though, we will find it more convenient to use the less-
common Freud polynomials (Appendix A), as we shall
now explain.

C. Gauss–Freud quadrature

Let us now develop the appropriate Gaussian quadra-
ture rule for MGO. Along the steepest-descent contour

5



Donnelly, Lopez, & Dodin Numerical MGO

that passes through a given saddlepoint at κ = κ0, de-
noted C0, Eq. (19) takes the general form

I(y0) = exp
{
iRe[f(κ0,y0)]

}

×
∫

C0
dκ g(κ,y0) exp

{
−Im

[
f(κ,y0)

]}
, (32)

or equivalently,

I(y0) = exp
{
iRe[f(κ0,y0)]

}

×
∫ ∞

−∞
dl κ′(l)g[κ(l),y0] exp [−F (l,y0)] , (33)

where we have introduced κ(l) as a 1-D parameterization
of C0 with κ(0) = κ0, we have defined

F (l,y0)
.
= Im

{
f [κ(l),y0]

}
, (34)

and we have set y = y0 to emphasize that y should
be considered a fixed parameter for the integration over
κ [55]. Note that κ0 being a saddlepoint implies

∇Im
[
f(κ0,y0)

]
= 0, ∂lF (0,y0) = 0, (35)

and C0 being a steepest-descent contour implies

F (l,y0) ≥ F (0,y0). (36)

Suppose first that κ0 is a non-degenerate saddlepoint,
which typically occurs when y0 does not coincide with a
caustic. This means that

∂2l F (0,y0) > 0. (37)

Hence, F (l,y0) is well-approximated around l = 0 as

F (l,y0) ≈ F (0,y0) + ∂2l F (0,y0) l2. (38)

However, this approximation has obvious issues when κ0
is a degenerate saddlepoint, which occurs when y0 coin-
cides with a caustic. For this case, although by Eq. (23),

∂2l F (0,y0) = 0, (39)

a quadratic function can still be fit to F (l,y0) as

F (l,y0) ≈ F (0,y0) + s(y0) l2, (40)

provided the scaling factor s(y0) is chosen appropriately;
we choose to use the finite-difference formula

s(y0) =




s−(y0), l ≤ 0

s+(y0), l > 0
, (41a)

s±(y0)
.
=
F (l±,y0)− F (0,y0)

|l±|2
, (41b)

where l± satisfy the threshold condition

F (l±,y0)− F (0,y0) ≥ C± (42)
with C± arbitrary constants. (We use C± = 1 for sim-
plicity, but we found varying C± over the range [0.5, 5]
produced only O(10−5) differences.) Note that we have
allowed the possibility for different scaling factors on ei-
ther side of l = 0 in case C0 has a kink at κ0 (see Fig. 2).
Importantly, Eq. (36) implies that s > 0. Also note that
Eq. (40) reduces to Eq. (38) in the limit C± → 0 when
κ0 is non-degenerate.

As a final simplification, let us adopt a piecewise linear
approximation to C0 such that [56]

κ(l) ≈ κ0 + |l| ×





exp(iσ−), l ≤ 0

exp(iσ+), l > 0
(43)

for suitable rotation angles σ±, which are allowed to be
different in case C0 has a kink at κ0. It would be nat-
ural to choose σ± such that Eq. (43) is a tangent-line
approximation to C0 at κ0; however, this choice cannot
be applied to degenerate saddlepoints. Instead, we shall
allow Eq. (43) to generally describe the secant-line ap-
proximations to C0 that underlie Eq. (41b), namely,

σ± = arg [κ(l±)− κ0]

= sign

{
Im [κ(l±)− κ0]

‖κ(l±)− κ0‖

}
cos−1

{
Re [κ(l±)− κ0]

‖κ(l±)− κ0‖

}
.

(44)

Here, we take the convention that sign(0) = 1; hence
Eq. (44) restricts σ± to lie on the interval (−π, π].

Inserting Eqs. (40), (41a), and (43) into Eq. (33) yields

I(y0)

exp[if(κ0,y0)]
≈
∫ ∞

0

dl
{
g[κ0 + l exp(iσ+),y0] exp[iσ+ − s+(y0)l2]− g[κ0 + l exp(iσ−),y0] exp[iσ− − s−(y0)l2]

}

=

∫ ∞

0

dl

{
g

[
κ0 +

l exp(iσ+)√
s+(y0)

,y0

]
exp(iσ+)√
s+(y0)

− g

[
κ0 +

l exp(iσ−)√
s−(y0)

,y0

]
exp(iσ−)√
s−(y0)

}
exp(−l2). (45)

Hence, an appropriate Gaussian quadrature rule for MGO is based on the inner product

〈h1, h2〉 =

∫ ∞

0

dl h1(l)h2(l) exp(−l2), (46)

6
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Re(κ)

Im
(κ

)

Non-degenerate saddle: a = 2

Re(κ)

Im
(κ

)

Degenerate saddle: a = 3

Re(κ)

Im
(κ

)

Degenerate saddle: a = 4

FIG. 2: Steepest-descent contours (orange) for the integrand phase function f(κ)
.
= κa of Eq. (49) for various values of the

parameter a, which characterizes the saddlepoint degeneracy. The background color represents the magnitude of the
integrand −Im(f), with green corresponding to larger values and blue corresponding to smaller values. The order n = 5
quadrature nodes are shown as white dots, while the points κ(l±) [Eq. (42)] that are used to determine the rotation angles σ±
[Eq. (44)] are shown as black dots. Unused steepest-descent contours are shown as dashed orange lines. As can be seen, the
steepest-descent contour has a kink when a is odd, which requires σ+ and σ− to be calculated separately.

for which Freud polynomials are orthogonal (Appendix A). Using Eq. (30), we obtain the quadrature rule for MGO:

I(y0) ≈
n∑

j=1

wj exp(l2j )

{
h

[
κ0 +

lj exp(iσ+)√
s+(y0)

,y0

]
exp(iσ+)√
s+(y0)

− h

[
κ0 +

lj exp(iσ−)√
s−(y0)

,y0

]
exp(iσ−)√
s−(y0)

}
, (47)

where h(κ) = g(κ,y0) exp[if(κ,y0)], and {lj} are the
quadrature nodes. [We use {lj} rather than {κj} to be
consistent with the notation of Eq. (46).] Since Gauss–
Freud quadrature is somewhat uncommon, a table of the
corresponding {wj} and {lj} for various values of n is
also provided in Appendix A.

D. Angle memory feedback for MGO simulations

Let us now allow y to vary in Eq. (47) (rather than
being fixed at some y = y0), as will occur when MGO
is used to simulate a propagating wave. The steepest-
descent topology for I(y) will be different for each new
value of y, with correspondingly new values of σ±. Re-
peatedly searching for C0 to compute σ± via Eq. (44) can
be computationally expensive, and merely identifying the
correct C0 can be difficult in situations where multiple
valid steepest-descent lines exist, as occurs at caustics.
Fortunately, the steepest-descent topology of I(y) typ-
ically evolves smoothly with y, which means successive
calculations of σ± will be correlated. We use this fact to
construct a ‘memory feedback’ algorithm to both speed
up the time required to calculate the steepest-descent
topology of I(y) and to correctly identify C0 at caustics.

First, let us initialize the MGO simulation far from a
caustic such that C0 is sufficiently simple: we expect the

initial angles σ
(0)
± to be approximately given as

σ
(0)
± ≈ −

π

4
− arg[∂2κf(κ0,y0)]

2
± π

2
(48)

restricted to the interval (−π, π]. By starting the search

for the exact C0 near this value of σ
(0)
± , the search time

can be reduced. As the simulation progresses, C0 will
evolve smoothly; at each new point yj , the search-time
for C0 can be reduced by initializing the search near

the previously calculated σ
(j−1)
± corresponding to the

previous position yj−1. Moreover, by restricting the

search to only consider angles near σ
(j−1)
± , i.e., restrict-

ing |σ(j)
± − σ

(j−i)
± | ≤ ∆ for some threshold ∆ (we choose

∆ = 0.01), the correct C0 will naturally be identified by
analytic continuation, even at caustics.

IV. BENCHMARKING RESULTS

A. Isolated saddlepoint

As a first benchmarking of our numerical steepest-
descent algorithm (47), let us consider the numerical eval-
uation of the following family of integrals:

I(a, b)
.
=

∫ ∞

−∞
dκκb exp (iκa) , a ≥ 2, b ≥ 0, (49)

7
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whose exact solution is given by

Iex(a, b) =
2

a
Γ

(
2χ

π

)
×





exp (iχ) , ā = 0, b̄ = 0

0, ā = 0, b̄ = 1

cosχ, ā = 1, b̄ = 0

i sinχ, ā = 1, b̄ = 1

,

(50)
where we have defined

χ
.
=

1 + b

2a
π, ā

.
= mod2(a), b̄

.
= mod2(b). (51)

The family I(a, b) also corresponds to the Aa−1 ‘cuspoid’
caustic family (Table I) evaluated at y = 0; as such,
the integrand of I(a, b) has an isolated saddlepoint at
κ = 0 whose degeneracy is controlled by the value of a,
with a = 2 being non-degenerate. To evaluate I(a, b) via
Eq. (47) the scaling factors s± and rotation angles σ±
are needed; these are given respectively as s± = 1 and

σ+ =
π

2a
, σ− =




σ+ − π, ā = 0

π − σ+, ā = 1
. (52)

In particular, Eq. (52) implies that the steepest-descent
contour has a kink at κ = 0 when a is odd, which ne-
cessitates our partitioning of Eq. (47) into incoming and
outgoing branches. This feature is also shown in Fig. 2.

Figure 3 shows the error that results from evaluating
I(a, b) via Eq. (47) for quadrature order n ≤ 10. The
quadrature weights and nodes used have precision 10−15

and are listed explicitly in Table II. Note that our quadra-
ture rule was developed to evaluate I(a, b) exactly when
a = 2 and b ∈ [0, 2n−1], and indeed, we observe that the
error for these values of a and b remains on the order of
the node/weight precision until n = 6, beyond which the
error is slightly larger than expected. However, this in-
creased error is not due to issues with our quadrature rule
per se, but rather due to the round-off error that unavoid-
ably accumulates when subtracting large numbers. This
conclusion is corroborated by the fact that the increased
error is isolated to the cases when b is even and I(a, b)
should be identically zero in exact arithmetic by (anti-)
symmetry. When a > 2, our quadrature rule achieves a
respectable accuracy of 10−4 even at the relatively low
quadrature order of n = 10, demonstrating the utility of
Eq. (47) at caustics and regular points alike.

B. EM wave in unmagnetized plasma slab with
linear density profile

As a more realistic example, let us consider the MGO
description of an EM wave propagating in a stationary
unmagnetized plasma slab with a linearly varying density
profile. Suppose that the EM wave and all subsequently
induced fluctuations have time dependence of the form

0 2 4 6 8 10

Quadrature order n

-16

-12

-8

-4

0

lo
g

1
0
(e

rr
o

r) a = 2, b = 0

a = 2, b ∈ [0, 2n− 1]

a = 2, b ∈ [0, 2n− 1] (even)

a = 3, b = 0

a = 4, b = 0

FIG. 3: Comparison of the error in computing Eq. (49)
using the quadrature rule of Eq. (47) for various values of a
and b. The error metric used is the relative error when
I(a, b) [Eq. (48)] is nonzero and the absolute error
otherwise. The shaded gray region marks the range of error
over the entire range b ∈ [0, 2n− 1] for which our quadrature
rule is expected to be exact, while the dashed black lines
bound the region obtained when only even values of b are
considered. The precision of the quadrature nodes and
weights used is 10−15.

exp(−iΩt), where Ω is the wave frequency. Then, after
defining x as the direction of inhomogeneity, the electric
field of the EM wave can be shown to satisfy [1, p. 344]

∂2xE(x) +
Ω2

c2

[
1− n(x)

nc

]
E(x) = 0, (53)

where c is the speed of light in vacuum and nc is the
cutoff density. Let us assume

n(x) = nc

(
1 +

x

Ln

)
, (54)

where Ln is some constant length scale. Then, Eq. (53)
takes the form

∂2qE(q)− qE(q) = 0, (55)

where we have introduced the re-scaled spatial variable

q
.
= x

(
Ω2

c2Ln

)1/3

. (56)

Equation (55) is known as Airy’s equation, and con-
tains a fold-type A2 caustic at the cutoff location q = 0.
Assuming that E(q →∞) = 0, the exact solution is given
by the Airy function

Eex(q) = Ai(q), (57)

(where the overall constant is set to unity for simplicity)
while the MGO solution (15) to Eq. (55) can be written

8
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Re(κ)

Im
(κ

)

p = 2

Re(κ)

Im
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)

p = 0.4

Re(κ)

Im
(κ

)

p = 0.1

Re(κ)

Im
(κ

)

p = 0.01

Re(κ)

Im
(κ

)

p = -2

Re(κ)

Im
(κ

)
p = -0.4

Re(κ)
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(κ

)

p = -0.1
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Im
(κ

)

p = -0.01

FIG. 4: Same as Fig. 2 for the phase function f(ε, p) [Eq. (60)] at various values of p. The white dots correspond here to the
n = 10 quadrature nodes. The steepest-descent contours evolve smoothly with p and ultimately coalesce into a fold-type A2

caustic at p = 0.

in the underdense region q ≤ 0 as [31]

EMGO(q) =Υ
(
|q|1/2

)
exp

(
−i2

3
|q|3/2

)

+ Υ
(
−|q|1/2

)
exp

(
i
2

3
|q|3/2

)
. (58)

The integral function Υ in Eq. (58) has the form

Υ(p)
.
=

1

2π

∫

C0
dε

ϑ(p) exp [if(ε, p)]

[ϑ4(p)− 8ϑ(p)pε]
1/4

, (59)

where the phase function f is given as

f(ε, p)
.
=
ϑ6(p)−

[
ϑ4(p)− 8ϑ(p)pε

]3/2

96p3

− ϑ3(p)

8p2
ε+

ϑ2(p)

4p
ε2, (60)

and we have defined ϑ(p)
.
=
√

1 + 4p2. When Eq. (59) is
evaluated using the stationary-phase approximation, the
standard GO approximation for Eq. (55) is obtained:

EGO(q) = π−1/2|q|−1/4 sin

(
2

3
|q|3/2 +

π

4

)
. (61)

Clearly, the GO solution diverges at the caustic q = 0.
Conversely, if Eq. (60) is expanded to cubic order in ε,
then Eq. (59) can be evaluated along the steepest-descent
contour to yield the approximate MGO solution [31]

Eapprox(q) =
√

1− 4q Ai
[
−%2(q)

]
cos[$(q)]

−
√

1− 4q Bi
[
−%2(q)

]
sin[$(q)] , (62)

where we have defined

%(q)
.
= (1− 4q)

√
|q|, $(q)

.
=

2

3
%3(q)− 2

3
|q|3/2. (63)

Here, we evaluate Eq. (59) numerically via Eq. (47)
over the range q ∈ [−8, 0] using the angle memory feed-
back algorithm described in Sec. III D. Figure 4 shows
the smooth evolution of steepest-descent curves obtained
with the memory feedback algorithm, while Fig. 5 com-
pares the resultant numerical MGO solution with the
exact solution (57) and the two analytical approxima-
tions of Eqs. (61) and (62). As Fig. 5 shows, both the
numerical MGO solution and the analytically approxi-
mated MGO solution remain finite at the caustic q = 0,
whereas the GO solution diverges. However, the analyti-
cal approximation overestimates the peak intensity width
near the caustic. Conversely, the numerical MGO solu-
tion agrees remarkably well with the exact solution ev-
erywhere, even though a relatively low quadrature order
of n = 10 was used. Moreover, although the relative error
with respect to the exact solution does not decrease much
after quadrature order n = 2, the ‘pseudo error’ (defined
as the relative error between the numerical MGO solu-
tion for a given n compared with the reference solution
n = 10) continues to decrease with increasing n. This
suggests that the numerical MGO algorithm quickly con-
verges to the residual intrinsic error of the MGO theory,
at least for this specific example.

9
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FIG. 5: (a) Comparison of the numerical MGO solution
(orange) with the analytically approximated MGO solution
(62) [31] (dashed pink), the standard GO solution (61)
(dashed gray), and the exact solution (57) (black) for Airy’s
equation (55). The numerical MGO solution was obtained
by applying the quadrature rule of Eq. (47) with order
n = 10 to Eqs. (58) and (59). The numerical MGO solution
displays remarkable agreement with the exact solution
compared with the analytical approximations, even near the
fold-type caustic at q = 0. (b) Error of the numerical MGO
solution with respect to a scan over the quadrature order n.
Note that the ‘pseudo error’ is defined as the relative error
with respect to the n = 10 solution used in (a).

V. CONCLUSIONS

Metaplectic geometrical optics is a recently proposed
formalism for modeling wave propagation in general lin-
ear media that avoids the usual singularities at caustics.
MGO is therefore a promising alternative to the tradi-
tional GO approximation underlying ray-tracing codes.
However, MGO yields solutions in the form of highly
oscillatory integrals, which cannot be easily calculated
using standard numerical methods. Here, we present a
new algorithm for taking such integrals numerically that
is based on the steepest-descent method combined with
Gauss–Freud quadrature.

We first validate our algorithm on isolated saddlepoints
of various degeneracy to demonstrate the expected 2n−1
polynomial accuracy of an n-point Gaussian quadrature
formula. We then use our algorithm to simulate an EM
wave propagating into an unmagnetized plasma that has
a fold-type caustic at the critical cutoff density. The

numerical solution agrees remarkably well with the ex-
act solution and significantly improves upon the analyt-
ically approximated MGO solution that was previously
obtained in Ref. [31]. This encouraging result provides
strong evidence that MGO can be suitable for practical
applications.
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Appendix A: Gauss–Freud quadrature nodes and
weights

The Freud polynomials are the unique family of poly-
nomials that are orthogonal with respect to the inner
product

〈h1, h2〉 =

∫ ∞

0

dκh1(κ)h2(κ) exp(−κ2). (A1)

Since the Freud polynomials are uncommon, the corre-
sponding quadrature nodes {κj} and weights {wj} are
not typically provided in standard software. Moreover,
the definitions of {κj} (29) and {wj} (28) are not prac-
tical when the functional forms of {p`(κ)} are unknown.

In this case, it is better to use the Golub–Welsch algo-
rithm [57], which relies on the following eigenvalue rela-
tionship that {κj} and {wj} can be shown to satisfy [53,
pp. 141–144]:

Jnνj = κjνj , j = 1, . . . , n. (A2)

Here, Jn is the symmetric tridiagonal n × n Jacobi ma-
trix corresponding to the first n members of {p`(κ)} [46,
p. 82], i.e.,

Jn =




a0
√
b1

√
b1 a1

. . .

. . .
. . .

√
bn−1√

bn−1 an−1



, (A3)

with a` and b` being the coefficients of the three-term
recurrence relation that the monic family {p̃`(κ)} satisfy:

p̃`+1(κ) = (κ+a`)p̃`(κ) + b`p̃`−1(κ), ` = 0, 1, . . . (A4)

subject to the initial conditions

p̃−1(κ) = 0, p̃0(κ) = 1. (A5)

There are established algorithms to obtain these coeffi-
cients [52, 58]. The weights are then obtained from the

10
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Order Nodes Weights Order Nodes Weights

n = 1 5.64189583547756 (1) 8.86226925452758 (1) 5.29786439318514 (2) 1.34109188453360 (1)

3.00193931060839 (1) 6.40529179684379 (1) 2.67398372167767 (1) 2.68330754472640 (1)

n = 2 1.25242104533372 (0) 2.45697745768379 (1) 6.16302884182402 (1) 2.75953397988422 (1)

1.90554149798192 (1) 4.46029770466658 (1) 1.06424631211623 (0) 1.57448282618790 (1)

n = 3 8.48251867544577 (1) 3.96468266998335 (1) n = 8 1.58885586227006 (0) 4.48141099174625 (2)

1.79977657841573 (0) 4.37288879877644 (2) 2.18392115309586 (0) 5.36793575602526 (3)

1.33776446996068 (1) 3.25302999756919 (1) 2.86313388370808 (0) 2.02063649132407 (4)

6.24324690187190 (1) 4.21107101852062 (1) 3.68600716272440 (0) 1.19259692659532 (6)

n = 4 1.34253782564499 (0) 1.33442500357520 (1) 4.49390308011934 (2) 1.14088970242118 (1)

2.26266447701036 (0) 6.37432348625728 (3) 2.28605305560535 (1) 2.35940791223685 (1)

1.00242151968216 (1) 2.48406152028443 (1) 5.32195844331646 (1) 2.66425473630253 (1)

4.82813966046201 (1) 3.92331066652399 (1) 9.27280745338081 (1) 1.83251679101663 (1)

n = 5 1.06094982152572 (0) 2.11418193076057 (1) n = 9 1.39292385519588 (0) 7.13440493066916 (2)

1.77972941852026 (0) 3.32466603513439 (2) 1.91884309919743 (0) 1.39814184155604 (2)

2.66976035608766 (0) 8.24853344515628 (4) 2.50624783400574 (0) 1.16385272078519 (3)

7.86006594130979 (2) 1.96849675488598 (1) 3.17269213348124 (0) 3.05670214897831 (5)

3.86739410270631 (1) 3.49154201525395 (1) 3.97889886978978 (0) 1.23790511337496 (7)

8.66429471682044 (1) 2.57259520584421 (1) 3.87385243257289 (2) 9.85520975191087 (2)

n = 6 1.46569804966352 (0) 7.60131375840058 (2) 1.98233304013083 (1) 2.08678066608185 (1)

2.17270779693900 (0) 6.85191862513596 (3) 4.65201111814767 (1) 2.52051688403761 (1)

3.03682016932287 (0) 9.84716452019267 (5) 8.16861885592273 (1) 1.98684340038387 (1)

6.37164846067008 (2) 1.60609965149261 (1) 1.23454132402818 (0) 9.71984227600620 (2)

3.18192018888619 (1) 3.06319808158099 (1) n = 10 1.70679814968913 (0) 2.70244164355446 (2)

7.24198989258373 (1) 2.75527141784905 (1) 2.22994008892494 (0) 3.80464962249537 (3)

n = 7 1.23803559921509 (0) 1.20630193130784 (1) 2.80910374689875 (0) 2.28886243044656 (4)

1.83852822027095 (0) 2.18922863438067 (2) 3.46387241949586 (0) 4.34534479844469 (6)

2.53148815132768 (0) 1.23644672831056 (3) 4.25536180636608 (0) 1.24773714817825 (8)

3.37345643012458 (0) 1.10841575911059 (5)

TABLE II: Gauss–Freud quadrature nodes and weights for quadrature orders up to 10. The notation a (b) denotes a× 10b.

first eigenvector ν1, which can be normalized such that
{wj} are given by its vector components as

ν1 =
1√
〈1, 1〉

(√
w1 . . .

√
wn

)ᵀ
, νᵀ

1ν1 = 1. (A6)

The resulting list of {κj} and weights {wj} for quadra-

ture orders n ≤ 10 is provided in Table II, adapted from
a similar table for 2 ≤ n ≤ 20 presented in Ref. [59].
These values can also be calculated with high precision
for arbitrary values of n using the code of Ref. [60]; see
Ref. [61] for more details.
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