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In material design, microstructure characterization and reconstruction are indispensable for
understanding the role of a structure in a process–structure–property relation. The significant
contribution of this paper is to introduce a novel methodology for the characterization and
generation of material microstructures using deep generative networks as the first step in the
establishment of a process–structure–property linkage for forward/inverse material design. Our
approach can be divided into two parts: (i) characterization of material microstructures by Vector
Quantized Variational Auto-Encoder, and (ii) determination of the correlation between the extracted
microstructure characterizations and the given conditions, such as processing parameters and/or
material properties, by Pixel Convolutional Neural Network. As an example, we tested our
framework in the generation of low-carbon-steel microstructures from the given material processing.
The results were in satisfactory agreement with the experimental observation qualitatively and
quantitatively, demonstrating the potential of applying the proposed method to forward/inverse
material design. One of the advantages of the proposed methodology lies in the capability to
capture the stochastic nature behind the microstructure generation. As a result, this methodology
enables us to build a process–structure–property linkage while quantifying uncertainties, which not
only makes a prediction more robust but also shows a way toward enhancing our understanding of
the stochastic competitive phenomena behind the generation of material microstructures.

I. INTRODUCTION

The goal of materials design is to achieve inverse
material design, the aim of which is to discover novel
materials that have certain desired properties. The
establishment of a process–structure–property linkage
is indispensable for developing a general methodology
for inverse material design and understanding the
physical mechanisms behind materials microstructure
generation [1–3]. For that purpose, a central
problem is the analysis, characterization, and control
of microstructures, since microstructures are highly
sensitive to materials processing and critically affect
material’s properties. Thus, as a first step toward
developing a methodology for inverse material design, the
aim of this work is to consider a general methodology
for the characterization and reconstruction of random
heterogenous microstructures, which can lead to the
establishment of a process–structure–property linkage.

Bostanabad et al. [4] listed major challenges in
the building of a methodology for the characterization
and reconstruction of microstructures: (i) how to
efficiently and accurately quantify (characterize) the
stochastic nature of high-dimensional data embedded
in the material morphology and (ii) how to use
this characterization to generate (reconstruct) virtual
microstructure samples that are statistically equivalent,
preserving as much of the inherent stochasticity as

possible.
In recent years, machine-learning-based methods have
received much attention in the field of computational
material design [1, 4–12]. In particular, generative
models are attracting considerable interest [13–19].
The task of generative models is to directly capture
the stochastic generation process of the input data.
Variational Auto-Encoder (VAE) [20] and Generative
Adversarial Networks (GAN) [21] are two major
algorithms of generative models. There have been
a lot of works on modeling material microstructures
and establishing process–structure–property relationship
using VAE [22–24] and GAN [13, 15, 16, 25, 26].

VAE includes encoding and decoding networks. The
encoder coverts an input datum into a low-dimensional
vector known as a latent variable, and the decoder
reproduce the original representation from the latent
variable. On the other hand, GAN composes of generator
and discriminator networks. Specifically, the generator
tries to generate similar data to input from sampling
noise, whereas the discriminator tries to distinguish data
as synthetic or real. The goal of the training of GAN
is that the generator is trained to produce data that
cannot be identified as fake by the discriminator. In this
way, GAN implicitly gives control over data generation
by the discriminator, while VAE explicitly gives control
over data generation via latent variables. The motivation
of this work is developing a general methodology
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for stochastic characterization and reconstruction of
material microstructures as a basis of a data-driven
framework to capture governing physical mechanisms
behind material microstructure generation. For that
purpose, because VAE-based models include an encoder
network as a mapping from material microstructures into
a latent space which is expected to disentangle physical
correlations affecting material microstructure generation
in latent space, VAE-based models are considered to be
better choice than GAN-based models. Thus, in this
work, we established our framework based on VQVAE,
that is one of the VAE-based models.

We address the above two challenges for the
characterization and reconstruction of material
microstructures by applying two deep generative
networks, namely, Vector Quantized Variational
Auto-Encoder (VQVAE) [27] to challenge (i), that is,
microstructure characterization, and Pixel Convolutional
Neural Network (PixelCNN) [28, 29] to challenge (ii),
that is, microstructure generation. The basic idea
in this work is to consider the characterization and
generation of material microstructures as a data-driven
supervised learning using microstructure images with
the corresponding process parameters and/or material
properties as a training dataset. This work can be
understood as an application of VQVAE and PixelCNN
in the generation of material microstructures.

The following aspects are covered in this paper.
(i) We propose the image-based general methodology
for the characterization of materials microstructures
by VQVAE. (ii) We propose to use PixelCNN to
determine the relationship between the characterization
of microstructures and any conditions users can select
depending on their purpose, such as process parameters
and/or material properties. (iii) We test the proposed
framework on low-carbon-steel microstructures and show
the potential of applying the proposed method to
material design.

The main purpose of this paper is to introduce a novel
methodology for the characterization and generation
of material microstructures using deep generative
networks as the first step in the establishment of a
process–structure–property linkage for forward/inverse
material design. The advantage of our approach is
that the proposed method can capture the stochastic
relationship between material microstructures and the
given conditions by elucidating the microstructure
characterizations and relating the characterizations to
the given conditions, resulting in the establishment
of a stochastic process–structure–property linkage. In
other words, the proposed methodology allows us to
build a stochastic mapping from the given conditions
to the corresponding microstructures, which can be
used to generate an ensemble of statistically equivalent
microstructure samples. Also, because the introduced
framework can be straightforwardly applied to relate the
microstructure to the material properties, the proposed
methodology can be the basis of the inverse material

design in which the uncertainties resulting from the
stochastic nature of microstructures are considered.

The rest of this paper is organized as follows.
Section II explains the deep generative networks used
in the proposed framework, and Section III gives results
of an example of its application to low-carbon-steel
microstructures. Then, we conclude the paper in Section
IV.

II. METHODOLOGY

In this section, we introduce the deep learning
algorithms used in our framework. Our fundamental idea
is to consider the microstructure characterization and
generation problem as data-driven supervised learning
using microstructure images with the corresponding
process parameters and/or material properties as the
training dataset. The proposed methodology is
composed of the two deep learning models, VQVAE [27]
and PixelCNN [28, 29]. VQVAE is used for the extraction
of the features of microstructure images to obtain their
characterization, and PixelCNN is used to establish the
relationship between the extracted characterizations and
given conditions, such as process parameters and/or
material properties. Because PixelCNN learns stochastic
mapping from the given conditions to the feature
space of microstructures, the introduced methodology
enables us to stochastically predict the microstructures
corresponding to the given conditions.

Fig. 1 shows a schematic of the procedure of our
framework, which has three steps for the generation of
new microstructures: (Training 1) characterization of
microstructures by extracting features using VQVAE,
(Training 2) correlation of the extracted features to
the given conditions using PixelCNN, and (Prediction)
generation of microstructures corresponding to the given
condition using trained networks.

A. Vector Quantized Variational AutoEncoder
(VQVAE)

First, we describe VQVAE used for characterizing
the material microstructures. The task of VQVAE is
to learn the stochastic generation process of the input
data through latent variables. The input data are
microstructure images here. Since VQVAE is related to
Variational AutoEncoder (VAE) [20] and VQVAE shares
basic ideas with VAE, we start with an explanation of the
fundamental idea of VAE to describe the architecture of
VQVAE.

VAE includes probabilistic encoder Q(z|x) and
probabilistic decoder P (x|z) networks, which are
modeled by convolutional neural networks; see Fig. 2.
Q(z|x) is defined as an approximation of the intractable
true posterior P (z|x). The encoder maps the input
image to a vector following a probability distribution
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FIG. 1. Schematic of the procedure of the proposed framework. (Training 1) Characterization of microstructures by VQVAE
[27]. As a result of VQVAE, we can extract index lists corresponding to input images, which are the input of PixelCNN in
this framework. (Training 2) Determination of the correlation between extracted features and given conditions, such as process
parameters and/or material properties, by PixelCNN [28, 29]. In its application to low-carbon-steel microstructures, the natural
logarithm of the cooling rate was given to PixelCNN as an example of conditions h. (Prediction) Microstructure generation
using the trained networks. First, by using the trained PixelCNN, the index list is sampled from the probability distribution
conditioned by the given parameter. Then, each index is replaced by the discrete latent vector in the codebook. Finally, the
decoder can generate the corresponding microstructure from the set of latent vectors.

on a lower-dimensional space known as the latent space.
The distribution is often Gaussian because of its useful
numerical and theoretical properties. Specifically, the
encoder has a fully connected layer as the final layer;
thus, the encoder outputs a mean vector µ and a vector
of the diagonal elements of covariance matrix σ that
describe the Gaussian distribution, where the covariance
matrix of the Gaussian distribution is usually assumed

as the diagonal matrix. The decoder maps a latent
vector sampled from the assumed distribution back to
the original image, as shown in Fig. 2. In practice, the
noisy vector is obtained by transforming the sampled
Gaussian noise from the standard normal distribution
n ∼ N(0, I) using the mean and the covariance matrix
z = µ+σn, where z is considered to be the sampled latent
vector from the assumed Gaussian that is the input of
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the decoder. Therefore, VAE must regenerate the input
datum from the noisy vector. As a result, VAE can
obtain the representation of the input datum not as a
fixed point but as a probability distribution on the latent
space. In the act of compressing and decompressing
information, VAE is expected to extract some essential
continuous features from the input images.
In VAE, the following error function is optimized
(minimized) [20]. The error function is written as the
sum of the reconstruction error and the Kullback–Leibler
divergence error:

LV AE = ||x− x̂||2 +KL [Q(z|x)||P (z)] . (1)

The first term is the mean squared error between the
input data x and the regenerated data x̂, and the second
term can be written as

KL [Q(z|x)||P (z)] =

∫
Q(z|x)log

Q(z|x)

P (z)
dz, (2)

where P (z) is assumed as a standard normal distribution
as usual. This term acts like the regularization term; in
other words, this term prohibits Q(z|x) from being too
complex distribution in the sense of being too different
from the standard normal distribution.
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FIG. 2. Schematic of architecture of VAE.

VQVAE has been developed on the basis of the above
VAE. The schematic of the architecture of VQVAE is
shown in Fig. 1 (Training 1). VQVAE is also composed
of a convolutional encoder and a convolutional decoder.
However, while VAE has the continuous latent vectors
that are usually assumed to follow Gaussian distribution,
VQVAE has discrete latent vectors. VQVAE does not
explicitly assume the distribution that the latent vectors
follow; instead, VQVAE applies an additional vector
quantization (VQ) procedure. In VQVAE, K discrete
latent D-dimensional vectors are randomly sampled
from the D-dimensional latent space. The set of K
D-dimensional vectors is called codebook e ∈ RD×K .
These D-dimensional vectors are also optimized in the
training. The latent vector z in VAE is replaced by two
variables such as ze ∈ RM×N×D and zq ∈ RM×N×D.
ze is the output of the convolutional encoder and is
understood to be a set of M ×N D-dimensional vectors
in VQVAE, and zq is the set of the nearest vectors in the

codebook to the D-dimensional vectors included in ze, as
given by

zqmn(x) = ej , where j = argmink||zemn(x)− ek||2, (3)

where ek is a D-dimensional discrete latent vector
included in the codebook. Unlike VAE, the output of
the encoder is not directly used for the input of the
decoder. Instead, the nearest D-dimensional vector in
the codebook, ej , according to Eq. (3) is used as the
input of the decoder. The decoder regenerates the input
image from a set of replaced discrete vectors zq. This
replacement procedure based on Eq. (3) in VQVAE is
called the vector quantization procedure. Unlike in VAE,
since the latent vectors of VQVAE are not forced to follow
the unimodal Gaussian distribution, the latent vectors
are expected to be more flexible. As a result, VQVAE can
capture more sophisticated features than the usual VAE,
leading to clearer and sharper reconstructed images.

The error function of VQVAE is composed of three
error terms, reconstruction error, codebook error, and
commitment error [27], as the first, second and third term
in Eq. (4), respectively,

LV QV AE = ||x− x̂||2
+ ||φsg(ze)− zq||2 + β||ze − φsg(zq)||2, (4)

where φsg is the stopgradient operator and β is the
weight for adjusting the influence of the commitment
error. The reconstruction error is the same one as in
the usual VAE. The codebook error is used for making
chosen vectors included in codebook zq approach the
corresponding D-dimensional vectors in the output of
encoder ze, while the commitment error is applied for
making vectors included in ze close to the selected vectors
in codebook zq in D-dimensional space with respect to
L2-distance. φsg is introduced so that ze and zq can
approach each other alternately. Note that the result is
not sensitive to the value of β [27].

B. PixelCNN

Next, we describe PixelCNN, which is used for
obtaining the relationship between the features extracted
by VQVAE and the given conditions, such as process
parameters and/or material properties. The schematic
of the architecture is shown in Fig. 1 (Training 2).
PixelCNN is an autoregressive model for building the
joint distribution of pixels over an image x as the
following product of conditional distributions [28, 29],

P (x|h) =

n2∏
i=1

P (xi|x1, · · · , xi−1,h), (5)

where x represents the input image, xi is a single pixel in
the image, and h is the given condition. The conditional
distribution written as Eq. (5) is modeled by a CNN
that is connected to a softmax layer to estimate the
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probability of nc classes, depending on the problem. For
example, in the case of estimating the probability of pixel
values in an 8-bit single-channel image, nc = 256. The
ordering of the pixel dependences is left to right and top
to bottom. In other words, every pixel is dependent on all
pixels above and to the left of it; see Fig. 3. The network
of PixelCNN is modeled to realize this dependence of
pixels [28, 29]. Note that h does not depend on the
location of the pixel in the image. This is equivalent
to adding a condition-dependent bias at every layer of
the network.

VQVAE can extract the index list corresponding to
the input images, which is an M×N -dimensional matrix
composed of the indexes of the chosen vectors according
to Eq. (3); see Fig. 1 (Training 1 and 2). Using the
trained encoder of VQVAE, we can obtain index lists for
all input images. For any index list, since it records only
the indexes of the discrete latent vectors in the codebook,
we can treat it as a single-channel image. Each pixel in
the index list hasK possible values, depending on the size
of the codebook: nc = K. In other words, PixelCNN can
be used to model the possibility of K discrete values for
each pixel based on the dependence of pixels shown in
Fig. 3.

𝑥!

𝑥" 𝑥#

𝑥!$"

FIG. 3. Schematic of pixel dependences assumed in
PixelCNN. The central red pixel xi is dependent on the green
pixels x1, x2, · · · , xi−1.

Modeling the probability distribution of the index lists
by PixelCNN resembles the process for a low-resolution
image. The inputs of PixelCNN are the index lists and
the conditions that users can select. Then, the network
is trained using the cross-entropy loss function for the
expectation of the inference of the network to be identical
to the true index list. After training, the network can
capture the pattern of microstructure images in the latent
space as a conditional distribution of index lists based on
the preceding index order.

C. Microstructure generation

Using the trained networks, microstructures can be
generated corresponding to the given conditions such
as process parameters and/or material properties [28].
The schematic procedure of macrostructure generation
is shown in Fig. 1 (prediction). First, the desired

conditions are given to the trained PixelCNN to obtain
the probability distribution of index lists. Each index
is sampled on the basis of the obtained distribution in
accordance with the preceding order. Since PixelCNN
is an autoregressive model, we must generate the index
list pixel by pixel. In practice, by inputting the zero
matrix and the desired conditions to the PixelCNN, we
obtain the first pixel’s distribution. After sampling the
value of the first pixel from the distribution, we update
the input matrix by adding the first pixel value, and
repeat this process until all pixel values are generated.
Then, from the sampled index list, we can build a set of
latent vectors that will be the input of the decoder, using
the trained codebook. Finally, from the obtained latent
vectors, the microstructure image is generated by the
trained decoder. As a result, we can obtain the stochastic
mapping from the given conditions to the corresponding
microstructure images.

III. RESULTS OF APPLICATION TO STEEL
MICROSTRUCTURES

A. Training dataset of steel microstructures

In this section, to illustrate the potential of
the proposed methodology for microstructure
characterization and generation, the proposed
methodology is applied to cold-rolled (CR)
low-carbon-steels under different process conditions
and the obtained results are shown. The CR steel
samples were austenitized at 1000 ◦ C and cooled at
1.0, 3.0, 10.0, or 30.0 ◦ C/s to room temperature. Then,
they were polished and etched using picral solution.
The details about preparation of steel microstructure
images can be found in [7]. Note that in this reference,
the microstructure corresponding to the cooling rates
1.0, 3.0, 10.0, and 30.0 ◦ C/s are referred to as A10-01,
A10-03, A10-10, and A10-30, respectively. Fig. 4 shows
examples of the prepared steel microstructure images.

To create a training dataset, square patches (128 ×
128 pixel) are cropped from the original microstructure
images (1024 × 768 pixel), and the cropped patches are
converted to grayscale images; see Fig. 5. We cropped
165 square images overlapping with each other for each
original microstructure image. In addition, we added
the square images flipped horizontally to the training
dataset, which are also 165 square images for each
original microstructure image. As a result, since we can
crop 330 square images from one original microstructure
image, the training dataset includes 52,800 grayscale
images cropped from 160 original microstructure images
of 40 observed microstructures for each of the four cooling
rates 1.0, 3.0, 10.0, and 30.0 ◦ C/s.
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FIG. 4. Examples of original microstructure images. The size
of the images is 1024 × 768 pixel, and 1 pixel is 0.34 µm ×
0.34 µm in these microstructure images. The upper left,
upper right, lower left, and lower right images show the
steel microstructures cooled at 1.0, 3.0, 10.0, and 30.0 ◦ C/s,
respectively. The total number of prepared images is 160 and
comprise 40 microstructure images for each of the four cooling
rates 1.0, 3.0, 10.0, and 30.0 ◦ C/s.

Cropping 
+ Grayscale

12
8 

pi
xe

l

128 pixel

FIG. 5. Schematic of procedure of creating the training
dataset from the original microstructure images. 128 ×
128 pixel patches are cropped and then converted to grayscale
images.

B. Results of application to the steel
microstructures

We trained each network by the procedure presented
in Fig. 1 (Training 1) and (Training 2). First, using
the prepared training microstructure image dataset,
VQVAE was trained as shown in Fig. 1 (Training
1). In this application, we set M,N, and D in the
architectures of VQVAE and PixelCNN as 16, 16, and
128, respectively. Also, the number of prepared latent
vectors in codebook K is set as 512. Fig. 6 presents the
microstructure images reconstructed after training with
the corresponding training microstructure images. This
result illustrates that VQVAE can reproduce sharp and
clear microstructure images.

Then, PixelCNN was trained using index lists obtained
by the trained VQVAE and the corresponding cooling
rates as shown in Fig. 1 (Training 2). In this application,
the natural logarithm of the cooling rate was adopted

(a)

(b)

FIG. 6. Image reconstruction by VQVAE. (a) Microstructure
images reconstructed by VQVAE. (b) Corresponding original
microstructure images. This result shows that VQVAE can
reproduce sharp and clear microstructure images.

as a condition h in PixelCNN. As a result of training,
we can obtain stochastic mapping from the cooling rate
to the corresponding microstructures as shown in Fig. 1
(Prediction).

Using the mapping obtained from the results of the
trained networks, we can generate new microstructures
corresponding to any cooling rate. Fig. 7 presents
the generated microstructures corresponding to the
given cooling rates by the proposed methodology along
with the sampled training images in the dataset for
each cooling rate. These results indicate that the
proposed method can produce qualitatively realistic
microstructure images for each cooling rate in the sense
that the generated microstructures have similar features
to those observed in training microstructure images in
terms of the basic topology of microstructures and a
similar trend relative to the change in the cooling rate.
It should be emphasized that the introduced method
can generate new microstructures in the sense that the
generated microstructure images are not exactly the same
as the images in the training microstructure dataset.
In addition, the significance of our approach is that
this method can create an ensemble of microstructures
illustrating the distribution of material microstructures
conditioned by the given parameters. In other words,
the generated images in Fig. 7 can be understood to
be the results of sampling from the distribution of
microstructures modeled by the proposed method; this
can lead to the establishment of the process–structure
linkage with uncertainty taken into consideration.

In addition, the proposed method can generate
the microstructures corresponding to the interpolated
cooling rates but were not included in the training
dataset. Fig. 8 shows the generated microstructures
corresponding to the interpolated cooling rates
2.0, 6.5, and 20.0 ◦ C/s. The trend of microstructures
relative to the change in the cooling rate seems to
be captured with respect to the basic morphology of
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 7. Original microstructure images and generated microstructure images corresponding to the given cooling rates. (a), (c),
(e), and (g) are original microstructures for each of the four cooling rates 1.0, 3.0, 10.0, and 30.0 ◦ C/s, respectively. (b), (d),
(f), and (h) are generated microstructures for each of the four cooling rates 1.0, 3.0, 10.0, and 30.0 ◦ C/s, respectively. Each
set shows nine microstructure images.
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(a) (b) (c)

FIG. 8. Microstructure interpolation. (a), (b), and (c) are generated microstructure images corresponding to the cooling rates
2.0, 6.5, and 20.0 ◦ C/s, respectively, which were not included in the original dataset. Regarding microstructure morphology,
trained VQVAE seems to capture the trend relative to the change in cooling rate. Each set shows four microstructure images.

(a) (b)

FIG. 9. Original microstructures observed in the experiment and microstructures predicted by our approach. (a) and (b) are
respectively original and predicted microstructures for cooling rate 3.0 ◦C/s. We can see that the predicted microstructures
have similar topology to the original microstructure images. This result validates the capability of the proposed method to
predict the microstructures corresponding to interpolated conditions. Each set shows nine microstructure images.

microstructures. Although more careful discussion is
needed, this result shows the significant potential of the
presented methodology.

To validate the capability of the proposed method
to generate new microstructures corresponding to the
interpolated cooling rates, we trained the networks
using the training dataset without the microstructure
images corresponding to the cooling rate 3.0 ◦ C/s.
After training, we compare the microstructure images
corresponding to the cooling rate 3.0 ◦ C/s in the
original dataset with the microstructures predicted by
the networks trained with the limited dataset. Fig. 9
presents the results of validation. In terms of the basic
morphology of microstructures, such as the composition
of black and white microstructures and the grain
sizes, the prediction is in acceptable agreement with
the microstructures observed in experiments. This
result validates the capability of the proposed method
to predict the microstructures corresponding to the
interpolated conditions.

To validate the generated microstructures
quantitatively, we consider two descriptors of

microstructure morphology: the volume fraction
and the average grain size. From the physical viewpoint,
since the picral solution lightly colors ferrite in the
microstructure, the proportion of white region in the
microstructure is considered to correspond to the
volume fraction of ferrite. Thus, in the rest of this
paper, the ratio of the white region to the total area
of a unit patch of microstructure (128 × 128 pixel) is
used synonymously with the ferrite volume fraction.
We calculated the ratio of the white region to the
total area in the cropped patches of microstructures.
First, we binarized the microstructure patches by
Otsu’s method [30]. Then, the ratio of white pixels
in a patch (128 × 128 pixel) was calculated for 1000
training and 1000 generated images for each of the four
cooling rates 1.0, 3.0, 10.0, and 30.0 ◦ C/s. Also, the
mean and the variance were calculated for each set of
images. Fig. 10 shows the box plot of the calculated
ferrite volume fraction for the training images and the
generated images corresponding to each cooling rate.
Table I presents the results of the calculated means and
variances.
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FIG. 10. Box plots of the ferrite volume fractions in (a) the microstructure patches cropped from the original images, and (b)
the microstructure patches generated by the introduced methodology. The black lines and green triangles in the boxes denotes
median and mean values of sets of images for each cooling rate, respectively. Larger variance corresponds to higher spatial
variation of microstructures.

TABLE I. Calculated means and variances of the ferrite
volume fractions of 1000 training and 1000 generated images
for each of the four cooling rates 1.0, 3.0, 10.0, and 30.0 ◦ C/s.

Cooling rate (◦ C/s) 1.0 3.0 10.0 30.0

Mean (%)
Training images 73.4 68.8 66.2 63.4
Generated images 74.4 68.6 64.1 60.3

Variance (%2)
Training images 15.8 13.9 29.3 50.3
Generated images 14.9 14.3 25.8 30.0

In terms of mean values, the ferrite volume fractions
of the generated images for all cooling rates are in
satisfactory agreement with those of the training images.
Also, the volume fraction of ferrite in the generated
images in Fig. 10 clearly shows the similar trend of
variances to the original observed microstructures; as
the cooling rate increases, the variance of the volume
fraction of ferrite also increases. Since the images
used for the calculation of the volume fraction were
local microstructure images cropped from the larger
original microstructure images of 1024 × 768 pixels,
the higher variance means a larger spatial variation of
microstructures. Therefore, these results indicate that
the proposed method can reveal the effect of the cooling
rate on the behavior of microstructures including the
stochastic spatial variation. In this sense, the proposed
method can be considered to capture the stochastic
relationship between the given process parameters and
the corresponding microstructures.

Next, we consider the average grain size in a
micrograph. In this paper, as a variable corresponding

𝐼!

Test line(a) (b)

4 grains

(c) (d)

8
grains

FIG. 11. Original microstructure patches ((a) and (c)) and
schematic figures for the calculation of the mean free path
((b) and (d)). The example test line passes through four
white grains in (b) and eight white grains in (d). The mean
free path corresponds to the average of the segments of the
test lines shown as the red lines in these figures.

to the average grain size, the mean free path df defined
in [31] is used. The mean free path is also calculated
for the binarized microstructure images. df is defined as
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FIG. 12. Box plots of the average grain sizes (a) in each patch cropped from the original images, and (b) in each generated
microstructure patch by the introduced methodology. The black lines and green triangles in the boxes denote median and mean
values of sets of images for each cooling rate, respectively. The mean values are corresponding to the overall averages for each
cooling rate. Note that 1 pixel is 0.34 µm × 0.34 µm in the microstructure images.

df = Vf/(NL ·Iu), where Vf is an area of the white region
in a binarized microstructure images and NL is the total
number of white grains that test lines pass through in
a microstructure image; see Fig. 11. The test lines are
drawn in the unit interval Iu vertically or horizontally.
The final mean free path for a micrograph is calculated
by averaging the mean free paths calculated for the set
of vertical test lines and the set of horizontal test lines.
Physically, it represents the average linear distance in one
grain without encountering an obstacle in a micrograph.

In the present study, two kinds of average grain size
based on the mean free path are considered; one is the
overall average which is derived by averaging mean free
paths for all prepared square patches, while another
the local average obtained by assuming that the mean
linear intercept length in each cropped micrograph is
representing the average grain size in the corresponding
region of interest. Even though each cropped area
is not large enough to give a statistically satisfactory
number of intercepts, we use the measure to quantify
the spatial variation of grain size in each microstructure.
Consequently, Fig. 12 reveals the variation in the overall
average grain size for each cooling rate as well as the
spatial distribution of the local average.

Fig. 12 shows the box plots of the local average
grain sizes and their mean values as the overall averages
for each patch cropped from original microstructures
and the generated images. The local average grain
sizes are calculated for 1000 training and 1000
generated images for each of the four cooling rates
1.0, 3.0, 10.0, and 30.0 ◦ C/s, where 1 pixel is 0.34 µm×

0.34 µm in the microstructure images. Also, Table II
presents the means and variances of the sets of local
average grain sizes for each cooling rate. The trend of the
predicted overall and local average grain sizes are in good
agreement with the trend of the overall and local grain
sizes calculated using the original microstructure images.
In this sense, this result indicates that our approach
can also capture the trend of the average grain size of
microstructures from the given parameters including the
stochastic spatial variation. Finally, from the results of
the ferrite volume fraction and the average grain size, we
can quantitatively validate the capability to predict the
microstructures corresponding to the given cooling rates
in terms of the morphology of material microstructures.

TABLE II. Calculated means and variances of the average
grain sizes of 1000 training and 1000 generated images for
each of the four cooling rates 1.0, 3.0, 10.0, and 30.0 ◦ C/s.
Note that 1 pixel is 0.34 µm × 0.34 µm in the microstructure
images.

Cooling rate (◦ C/s) 1.0 3.0 10.0 30.0
Mean Training images 6.50 4.49 3.88 3.64
(µm) Generated images 7.54 5.26 4.65 4.50

Variance Training images 0.857 0.346 0.361 0.528
(µm2) Generated images 1.03 0.398 0.365 0.543

As a supplement to Fig. 10 (b) and Fig. 12 (b),
the ferrite volume fractions and the average grain
sizes are also calculated for the interpolated cooling
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FIG. 13. Stochastic relationship between the cooling rate and the ferrite volume fraction in the microstructure patches predicted
by the proposed methodology. The black lines and green triangles in the boxes denote median and mean values of sets of images
for each cooling rate, respectively.

FIG. 14. Stochastic relationship between the cooling rates and the average grain sizes in the microstructure patches predicted
by the proposed methodology. The black lines and green triangles in the boxes denote median and mean values of sets of images
for each cooling rate, respectively. Note that 1 pixel is 0.34 µm × 0.34 µm in the microstructure images.
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FIG. 15. Plots of microstructure images in the latent space with the corresponding cooling rates, visualized by PCA [32]. (a)
Plot of images embedded in the latent space. (b) Plot of latent vectors colored for cooling rates.

rates not included in the training dataset, such as
2.0, 6.5, and 20.0 ◦ C/s. The box plots of all results
of ferrite volume fractions and average grain sizes are
presented in Fig. 13 and Fig. 14. The trend of the ferrite
volume fraction and the average grain size with respect
to the cooling rate seem to be satisfactorily captured.
Although more quantitative discussion is needed, these

results might indicate the significant potential of the
proposed methodology as a predictor.

The above results suggest that the introduced
methodology can predict the basic morphology
of microstructures, such as the composition of
microstructure phases and the average grain size, from
the given process parameters. In its application to steel
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microstructures, the volume fraction of ferrite and the
average grain size can be predicted, including the spatial
variation. Moreover, the volume fraction and the average
grain size are known as the dominant factors determining
the strength of steels [7, 31, 33, 34]. Therefore, this
result implies that we can predict the strength of
the steel microstructures generated from the given
processing parameters. This means that we can partially
establish the process–structure–property relation, taking
into consideration the uncertainty of the prediction due
to the stochastic nature of microstructure generation,
via the characterization of material microstructures by
VQVAE and the determination of the stochastic relation
between the characterization and the target parameters
by PixelCNN.

Next, to better understand how the input
microstructure patches are clustered and related in
the feature space (latent space) extracted by VQVAE,
we visualize the microstructures patches embedded in the
latent space using principal component analysis (PCA)
[32]. In practice, after the output tensors of the trained
encoder in VQVAE corresponding to the input images
are flattened into vectors, the vectors are compressed
into two-dimensional vectors by PCA. Then, we map
the microstructure patches in two-dimensional space in
accordance with the compressed vectors. Fig. 15 (a)
illustrates the result of the visualization of 2000 sampled
patches randomly selected from the training dataset.
This result shows that the patches seem to be mapped
on the basis of the morphology of microstructures. We
can see the continuous change of the microstructures
in terms of the basic topology in the latent space. For
example, the darker images are mapped in the left of
Fig. 15 (a) and the lighter images are mapped in the
right. Also, the grain sizes of microstructures are larger
in the upper part of Fig. 15 (a). Fig. 15 (b) shows that
the corresponding cooling rates are mapped in the same
positions as the microstructures. Although the clusters
corresponding to each cooling rate seem to be overlapped
in the two-dimensional space, the microstructures for
each cooling rate are clustered. Considering that the
microstructure images are continuously distributed, the
overlapped microstructures for different cooling rates
are similar to each other in terms of the morphology
of microstructures. Even though further investigation
is needed to understand the physical background of
this mapping of the microstructures, this result also
demonstrates the potential of the proposed methodology.

From these results, this work shows the clear path to
discuss material microstructure generation through the
framework composed of VQVAE and PixelCNN. This
framework gives the general data-driven methodology
which could be applied for modeling and understanding
a wide range of physical systems such as disordered
condensed matters and amorphous/glassy materials.
Future work will focus on the investigation about
establishment of a methodology for making it possible
to obtain physical knowledge based on the proposed

framework. We provide the visualizations of the
probability distribution of material microstructures in
the latent space captured by PixelCNN in the appendix
section, that could be a starting point for future
investigation.

IV. CONCLUSION

As a first step in inverse material design, in
this paper, we proposed a general methodology
for the characterization and generation of material
microstructures using two deep generative networks,
Vector Quantized Variational Auto-Encoder (VQVAE)
and PixelCNN. The fundamental idea of our approach
is to consider the characterization and generation
problems as data-driven supervised learning using the
microstructure images as a training dataset. VQVAE was
used for characterizing microstructures and PixelCNN
was used for obtaining the correlation between the
characterization and the given conditions such as
processing parameters and/or material properties. Our
work can be considered as an application of VQVAE and
PixelCNN in the generation of material microstructures.
To illustrate the potential of the introduced methodology,
we applied the proposed method to the generation of
steel microstructures from the given cooling rates as
an example of material microstructure generation from
selected process parameters and/or material properties.

As a result, the microstructures generated from
given cooling rates by our methodology are in
satisfactory agreement with the microstructures observed
in experiments qualitatively in terms of the basic
topology and quantitatively in terms of the ferrite volume
fraction and the average grain size. Since the volume
fraction and the average grain size are the dominant
factors determining the strength of steels, this result
implies that we can build the process–structure–property
relation by the introduced methodology.

It should also be noted that the generated
microstructure images are not the same as those in
the training dataset. Therefore, the introduced method
can generate new microstructures from the given cooling
rates owing to the sophisticated characterization of
microstructures by VQVAE. The significance of our
methodology lies in the capability to directly model
the distribution of microstructures conditioned by the
given parameters such as the cooling rate. In other
words, our method can capture the inherent stochastic
nature that the training microstructures dataset may
have and generate new microstructures while preserving
the stochastic nature from the given conditions. This
implies that our approach can capture the stochastic
generation process of microstructures from the cooling
rates; this can be a first step toward enhancing our
understanding of the stochastic competitive phenomena
behind microstructure generation.

The results of application to steel microstructures
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also suggest that our method enables us to obtain the
stochastic mapping from given processing parameters
to material microstructures, which means that we can
obtain the stochastic process–structure relationship by
the proposed method. In the same way, the extracted
features of microstructures can be related to material
properties, which results in the stochastic mapping
from the material properties to the corresponding
microstructures. Thus, the introduced methodology
can be straightforwardly applied to inverse material
design by giving the target properties as conditions
to PixelCNN. Therefore, our method allows us to
stochastically predict the microstructures from particular
desired properties, including the uncertainties. In
conclusion, our approach can be a basis of establishing a
stochastic process–structure–property linkage for inverse
material design with uncertainty quantification.

DATA AVAILABILITY

The code is available at https://github.com/
inouejunyalab/for_public/tree/main/VQVAE_
PixelCNN. Also, original microstructure images are
available from the corresponding author upon reasonable
request.
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Appendix: Visualization of the distribution of
material microstructures in the latent space

To demonstrate a potential of our framework to
capture governing physical mechanisms behind material
microstructure generation, we provide the probability
distributions of material microstructures for each cooling
rate in the latent space given by PixelCNN in the case
of low-carbon-steel. As described in the main part of
this paper, PixelCNN can provide a stochastic mapping
from the given conditions such as processing parameters
and/or material properties to the corresponding index
lists. Since each index corresponds to geometrical
feature which can be decoded to a certain microstructural
image using the decoder of VQVAE, PixelCNN can
be understood to provide a distribution of material
microstructures conditioned by the given processing

parameters and/or material properties in the latent
space.

Fig. 16 visualizes vectors included in the trained
codebook using primary component analysis (PCA) [32].
In practice, each 128-dimensional vector included in
the codebook is mapped into two-dimensional vector
by PCA. Fig. 16 is a plot of the compressed vectors
in two-dimensional space. Their colors are determined
based on the coordinate along the first primary
component (horizontal direction). Thus, the similarity
of colors corresponds to the spatial location of each
vector in the latent space. Then, based on this coloring,
sampled index lists are also colored. Fig. 17 shows the
generated microstructures for each cooling rate and the
corresponding colored index lists. Fig. 17 (b), (d), (f),
and (h) can be regarded as the visualizations of the
probability distributions of material microstructures for
each cooling rate in the latent space. From the material
viewpoint, these figures are visualizations of stochastic
process–structure relation captured by PixelCNN. From
these results, it is expected that PixelCNN can extract
a part of governing physical mechanisms behind the
generation of material microstructures affected by the
change in cooling rate. Actually, as the cooling
rate becomes higher, the number of pink or blue
pixels increase in the index lists, which seem to be
corresponding to the darker areas in the generated
microstructure images.

To make our methodology more attractive for material
design, understanding these index lists from the physical
viewpoint need to be done, which will be provided in the
future study.

-2 0 2 4 6 8
PCA1

0

1

2

3

4

5

P
C

A
2

FIG. 16. A plot of the vectors included in the codebook
colored based on the coordinate along the first main axis
(horizontal direction) in PCA.
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FIG. 17. Generated microstructure images and sampled index lists. (a), (c), (e), and (g) are generated microstructures for
each of the four cooling rates 1.0, 3.0, 10.0, and 30.0 ◦ C/s, respectively. (b), (d), (f), and (h) are sampled index lists for each
of the four cooling rates 1.0, 3.0, 10.0, and 30.0 ◦ C/s, respectively. We can see the correspondence between the generated
microstructure images and sampled index lists. Each set shows nine microstructure images and index lists.
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