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One of the most intensely studied aspects of magnetic confinement fusion is edge plasma tur-
bulence which is critical to reactor performance and operation. Drift-reduced Braginskii two-fluid
theory has for decades been widely applied to model boundary plasmas with varying success. To-
wards better understanding edge turbulence in both theory and experiment, we demonstrate that
a novel multi-network physics-informed deep learning framework constrained by partial differential
equations can accurately learn turbulent fields consistent with the two-fluid theory from partial
observations of electron pressure which is not otherwise possible using conventional equilibrium
models. This technique presents a novel paradigm for the advanced design of plasma diagnostics
and validation of magnetized plasma turbulence theories in challenging thermonuclear environments.

I. INTRODUCTION

Predicting turbulent transport in the edge of magnetic
confinement fusion devices is a longstanding goal span-
ning several decades currently presenting significant un-
certainties in the particle and energy confinement of fu-
sion power plants [T, 2]. The boundary region is crit-
ical in determining the fusion device’s overall viability
since edge plasma conditions strongly influence a myr-
iad of reactor operations ranging from core fuelling to
power output to wall safety [3H5]. Yet edge modelling
continues to need improvement—comprehensive gyroki-
netic codes suitable for the boundary of tokamaks are
still under development and fluid simulations commonly
lack essential physics necessary to study collisionless sys-
tems. One particular transport theory relevant to bound-
ary plasmas and widely applied to analyze edge turbu-
lence is the drift-reduced Braginskii model [6H8]. Var-
ious adaptations of these equations have been recently
taken to investigate several important edge phenomena
including pedestal physics [9], blob dynamics [10], neu-
tral effects [I1], and heat fluxes impinging plasma-facing
components [I2]. And while various trends are at times
reproduced in these works, direct quantitative agreement
between the two-fluid turbulence theory and observations
is generally lacking on a wide scale due to difficulty in
aligning global simulations with intricate plasma exper-
iments where relevant measurements may be sparse or
missing altogether. Yet this is a crucially important en-
deavour since gathering sufficient information to effec-
tively test reduced turbulent transport models is vital
to developing predictive capability for future fusion de-
vices. These machines will access novel burning plasma
regimes and operate with some of the largest tempera-
ture gradients in the universe, but our existing models
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may be inaccurate and standard diagnostics incapable of
surviving such harsh thermonuclear environments [13].
Fusion plasma diagnostic measurements accordingly re-
quire suitable analysis techniques as they are inherently
noisy and limited in their spatiotemporal scope such as
1- or 2-dimensional profiles of electron density and tem-
perature [I4HI7]. Furthermore, it is essential to know
the turbulence-generated edge electric field since E x B
drifts, which strongly affect perpendicular transport, in-
fluence plasma stability and structure across the edge
[18-20]. Resultant downstream interactions from tur-
bulent particle and heat fluxes striking surfaces therein
pose significant risk to safe operation, e.g. the control
of radiative regimes such as detached divertor schemes,
in upcoming fusion reactors [2I 22]. To this end, we
demonstrate a novel physics-informed deep learning tech-
nique capable of diagnosing unknown turbulent field fluc-
tuations directly consistent with drift-reduced Braginskii
theory from limited electron pressure observations.

We represent the drift-reduced Braginskii model via
physics-informed neural networks (PINNs) [23H26]—
highly expressive function approximators trained to solve
supervised learning tasks while respecting nonlinear par-
tial differential equations—to infer unobserved field dy-
namics from partial measurements of a synthetic plasma.
As illustrated through a readily adaptable multi-network
machine learning framework, this paradigm is transfer-
able to the broad study of quasineutral plasmas in mag-
netized collisional environments and presents novel path-
ways for the Al-assisted design of plasma diagnostics. In
ways previously inaccessible with classical analytic meth-
ods, this framework has the ability to improve the direct
testing of reduced turbulence models in both experiment
and simulation to inform discovery of the equations nec-
essary to model the edge. The overall computational
technique introduces significant advances in systematiz-
ing the quantitative validation of plasma turbulence the-
ories and is to date among the most complex nonlinear
systems applied in physics-informed deep learning codes.
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To demonstrate this framework, we proceed with a de-
scription of drift-reduced Braginskii theory and compu-
tational modelling of a synthetic plasma in Section [[I}
outline a novel physics-informed machine learning archi-
tecture suited for the analysis of multi-field plasma turbu-
lence in Section[[I]} present results in the robust learning
of unknown turbulent fields in section [[V] and conclude
with a summary and future outlook in Section [V]

II. SYNTHETIC PLASMA CONSTRUCTION

The synthetic plasma analyzed is numerically simu-
lated by the global drift-ballooning (GDB) finite differ-
ence code [27, [28] which solves the two-fluid drift-reduced
Braginskii equations in the electrostatic limit relevant to
low-3 conditions. This is a full-f [29H31] fluid model in
the sense that the evolution of the equilibrium and fluc-
tuating components of the solution are not separated and
relative perturbation amplitudes can be of order unity as
found in experiments [32]. The plasma is magnetized and
quasineutral with the perpendicular fluid velocity given
by E x B, diamagnetic, and ion polarization drifts. Af-
ter neglecting collisional drifts, as well as terms of order
me/m;, one arrives at the following set of equations (in
Gaussian units) governing the evolution of the synthetic
plasma’s density (n ~ n. ~ n;), vorticity (w), parallel
electron velocity (v|.), parallel ion velocity (v);), elec-
tron temperature (7, ), and ion temperature (7;) [2§]
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whereby the field-aligned electric current density is j; =
en (v); — vje), the stress tensor’s gyroviscous terms con-
tain G, = 5 {2V |jv)s + ¢ [Cip) + Clp.)/(asn)] }, and 75,
O, and ¢, are the species (s = {e, i}) viscosity, cyclotron
frequency, and electric charge, respectively. The convec-
tive derivatives are d° f/dt = 0, f + (¢/B) [¢, f] + v V| f
with [F, G] = bg x VF - VG and bg representing the unit
vector parallel to the magnetic field. The field’s mag-
nitude, B, decreases over the major radius of the torus
(B x 1/R), and its curvature is K = —R/R. The cur-
vature operator, C(y) = bo x k- Vf, V| = —0/0z, and
bo = —2 follow past convention [28]. The coefficients
I{ﬁ and nﬁ correspond to parallel thermal conductivity
and electrical resistivity, respectively. Time-independent
Gaussian density (S,) and energy sources (Sg ) are
placed at the left wall while zero external momentum
(Sams) is explicitly forced upon the system. Explicit
hyperdiffusion consisting of both fourth-order cross-field
and second-order parallel diffusion is apphed for numerl—
cal stability in the form of Dy = x, 3m4 + Xy 4 + Xz
Under quasineutrality, electric fields arise not by local im-
balance of charged particles but by the requirement that
the electric current density is divergence free [33) [34].
Accordingly, the electrostatic potential, ¢, is numerically
solved via the following boundary value problem:
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The 3-dimensional simulation domain implemented is
a shearless field-aligned coordinate system where X is the
unit vector along the radial direction (i.e. R), the helical
magnetic field is oriented along Z, and ¥ is perpendic-
ular to both X and Z. The synthetic plasma consists
of deuterium ions and electrons with real masses (i.e.
m; = 3.34 x 10727 kg and m, = 9.11 x 1073! kg) and
on-axis magnetic field of B,;;s = 5.0 T with minor and
major radius of ag = 0.22 m and Ry = 0.68 m, respec-
tively, consistent with characteristics of discharges in the
high-field Alcator C-Mod tokamak [35] for which there
is notable evidence of fluid drift turbulence controlling
edge dynamics [36]. Moreover, drift-reduced fluid mod-
els, where the ion gyration frequency is considered to be
faster than the evolving turbulent plasma fluctuations
(ie. Q; > %), are generally good approximations to full
velocity models when studying edge turbulence [37].
This discretized toroidal geometry is a flux-tube-like
domain on the outboard side (i.e. strictly bad-curvature)
of the tokamak with field lines of constant helicity wrap-
ping around the torus and terminating on walls pro-
ducing both resistive interchange and toroidal drift-wave
turbulence. Transport is primarily along blobby field-
aligned structures with increased pressure propagating



due to perpendicular drifts which polarize the blob and
yield outward E x B drift of the filament. This is re-
lated to the Poynting vector representing the directional
energy flux density of the electromagnetic field [33] [38].
The physical dimensions of the entire simulation do-
main are [L, = 7.7 cm, L, = 5.5 cm,L, = 1800.0 cm]
with spatiotemporal resolution of [Az = 0.03 cm, Ay =
0.04 cm, Az = 56.25 cm, At = 4.55 x 10711 s]. Periodic
boundary conditions are employed in the binormal di-
rection for all quantities. Homogeneous Neumann condi-
tions are set in the radial coordinate for n, vjc, vy, T,
and T; while homogeneous Dirichlet conditions are used
for w and ¢. By constraining ¢ = 0 along the walls, this
in principal enforces radial E x B flows to go to zero on
the boundaries of the simulation domain. The lower limit
of the Bohm criterion is imposed as a sheath condition,
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where A = log \/mi/[27rme(1 + Z1)]. Since the direc-
tion of the flows at the sheath entrance are known, ghost
cells in the z-direction are filled such that an upwind
stencil ensues to evolve n, w, T,, and T; [28]. For T,
and T; specifically, finite conductive heat fluxes entering

the sheaths are applied according to ¢ , = —nﬁVHTS =

+ysnv) Ts, where the upper (lower) sign corresponds to
the top (bottom) sheath and s is the sheath transmis-
sion coefficient. Its value for ions and electrons is taken
to bey; = 5T; /2T, and v = 2+|ed|/Te, respectively [28].
Collisional coefficients and diffusivities are kept constant
in the direct numerical simulation as they can be un-
physically large at high temperatures due to the lack of
kinetic effects and generally require closures going be-
yond Chapman-Enskog. To start the numerical simula-
tion, electrons and ions are initialized with zero parallel
velocity and vorticity fields along with truncated Gaus-
sian density and temperature profiles. A second-order
trapezoidal leap-frog time-stepping scheme evolves the
system of equations forward with subcycling of parabolic
terms (e.g. V&) V| T5) due to the low frequency turbu-
lence structure changing slowly over the thermal diffusion
timescale. The commonly applied Boussinesq approxi-
mation [39] in Braginskii solvers is also used when evolv-
ing the generalized vorticity, w. The normalizations ap-
plied to solve these partial differential equations in both
the finite difference code and deep learning framework
are sketched in the Appendix. A complete treatment of
the numerical solver and greater specificity regarding the
turbulence simulations can be found in [27] [28].

III. MACHINE LEARNING PLASMA THEORY

Neural networks are operationally computational pro-
grams composed of elementary arithmetic operations
(e.g. addition, multiplication) and functions (e.g. exp,
sin, log) which can be differentiated to arbitrary order up
to machine precision via application of chain rule [40} 4T].
While biases are presently inevitable [42], these regres-
sion models are in theory constructed without necessar-
ily committing to a designated class of basis functions
(e.g. polynomial, trigonometric). Automatic differenti-
ation in conjunction with this adaptive capacity of neu-
ral networks permits them to effectively address nonlin-
ear optimization problems in physics and engineering by
training upon both partial differential equations and ob-
servational data via multi-task learning [24]. Constrain-
ing classically underdetermined systems by physical laws
and experimental measurements in this way presents an
emerging technique in computational mechanics which
we extend to the deduction of unknown turbulent plasma
dynamics. In this deep learning framework, every dy-
namical variable in equations f@ is approximated by
its own fully-connected neural network, which is com-
monly known as a data-efficient universal function ap-
proximator [43], since its high plasticity enables it to be
molded given sufficient training.
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FIG. 1. These 2-dimensional measurements of turbulent
electron density and temperature over a short temporal win-
dow are the only observed variables from the 3-dimensional
synthetic plasma exhibiting blob-like filaments.

For analysis in the multi-network framework, partial
measurements of n, and T, over time only come from
a smaller 2-dimensional field-aligned domain in the in-
terior of the synthetic plasma to emulate experiment
(e.g. gas puff imaging [44]) with dimensions of [L% =



3.8 cm,L; = 3.8 cm] and spatiotemporal resolution of
[A*z = 0.03 cm, A*y = 0.04 cm, A*t = 7.27 x 1077 s] as
depicted by a snapshot in Figure [[] Each network con-
sequently takes the local spatiotemporal points (z,y,t)
from the reduced domain for measurements as the only
inputs to the initial layer while the dynamical variable be-
ing represented is the sole output. In the middle of the
architecture, every network consists of 5 hidden layers
with 50 neurons per hidden layer and hyperbolic tangent
activation functions (o) using Xavier initialization [45].
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FIG. 2. A local time trace of the turbulent n. over 200 us
from the simulated plasma at [z = 1.0 cm,y = 0.0 cm, z =
—28.1 cm]. The observed synthetic data analyzed in the ma-
chine learning framework only comes from the small temporal
window (green) which corresponds to just 4 points in time.

In actuality, the repeated differentiation and summa-
tion of networks to construct every single term in the
partial differential equations trained upon subsequently
constructs a far larger resultant computation graph rep-
resenting the collective model beyond the 5 hidden lay-
ers in each dynamical variable’s individual network. The
cumulative graph is therefore a truly deep approxima-
tion of the turbulent plasma theory. Physical constraints
are learned by the networks via minimization of ascribed
loss functions encompassing both limited measurements
of the plasma and two-fluid turbulence model. In partic-
ular, partial observations of the simulated plasma consist
of only n. and T, measurements of 2-dimensional spatial
extent as visualized in Figure[] over just 4 separate time
slices (i.e. 2.9 us). For reference, the synthetic plasma’s
fluctuations have an approximate autocorrelation time of
1.5 us and radial autocorrelation length of 0.4 cm. The
narrow temporal extent of the strongly fluctuating n, ob-
servations at a local spatial point is further visualized in
Figure Properties of all other dynamical variables in
the 6-field turbulence theory are taken to be unknown,
and the networks are simultaneously optimized against
the drift-reduced Braginskii equations and observed data
to better approximate the unmeasured quantities. To

be precise, partial synthetic measurements are learned
by training the n. and T, networks against the average
Lo-norm of their respective relative errors

No
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where {x},yb, 25, th,ni o, Ti o} ~% correspond to the set
of observed data and the variables n} and T symbol-
ize predicted electron density and temperature, respec-
tively, by the networks. The theory enforcing physical
constraints in the deep learning framework is expressed
by evaluating the individual terms in the model by dif-
ferentiating the neural networks with respect to input
spatiotemporal coordinates via application of chain rule
through automatic differentiation [46]. Correspondingly,
model loss functions are embedded during training by
recasting the evolution equations of and in the
following implicit form
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and then further normalized into dimensionless form
matching the numerical code as in and . [28].
This normalized implicit formulatlon is Vltal to learnlng
via optimization since all physical terms collectively sum
to zero when the equations are ideally satisfied. These
physical constraints provided by the unitless evolution
equations of n. and T, from the two-fluid model are
jointly optimized using loss functions defined by
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where {%,y5, 25,4}, 1 denote the set of collocation
points, and f; and f7 are the null partlal differen-
tial equations prescrlbed by . ) and (| in normalized



NNy, (x,,t,08,,) NN,

Ile

(ny! tl evlle) NNd)(nyJ tveff)) NNU”L-(ny! tl BU”[) NNTe(x)y) t!eTe)

Jd d 0

e a;a:@;nwﬁnw

a* o*

Automatic differentiation l

Minimization

3 Lfne =F Lf’I'e

Observed

Or,

Minimization

Minimization

B(pf 81’ le’ 81" i

nobserv

FIG. 3.

Visualization of the physics-informed framework with individual networks being selectively trained against loss

functions comprising both partial observations, £, and Lr,, and reduced theory, Ly, and Ly, , to infer unobserved turbulent
dynamics. All spatial gradients and time derivatives in f,, and fr, are represented using automatic differentiation of each
individual variable’s network which in practice extends the size of the computation graph being evaluated. To handle reduced
2-dimensional data from the 3-dimensional synthetic plasma, the z-coordinate is removed from the networks for simplicity and
as a test for determining the minimal information necessary to learn ¢. If noisy data is observed, then 6,, (and 0r, if Te
measurements are available) should be additionally trained against Ly, (and Ly ).

form directly evaluated by the neural networks. Opti-
mization against the applied plasma theory is central to
the methodology and enforces physical constraints in the
deep learning framework by ensuring each sub-network
respects the multi-field turbulence model’s constraints
as visualized in Figure This enables fine tuning of
each neural networks’ weights and biases () by adjust-
ing them in this generalized regression model to sat-
isfy the physical laws governing the nonlinear connection
sought between the sub-networks. The set of collocation
points over which the partial differential equations are
evaluated can be arbitrarily large and span any extent
over the physical domain, but are taken in this exam-
ple to correspond to the positions of the synthetic mea-
surements being trained upon, i.e. {z},yd, 25, th N0, =
{x},y},z}, Zf}f\gl It should be once again noted that
the only observed dynamical quantities in these equa-
tions are 2-dimensional views of n. and T, without any
explicit information about boundary conditions nor ini-
tializations. All analytic terms encoded in these equa-
tions including high-order operators are computed ex-
actly by the neural networks without any approxima-
tion (e.g. linearization) nor discretization. This machine
learning framework with a collocation grid of arbitrarily
high resolution uses a continuous spatiotemporal domain

without time-stepping nor finite difference schema in con-
trast with the numerical code. To handle 2-dimensional
data, we assume slow variation of dynamics in the z-
coordinate and effectively set all parallel derivatives to
zero (i.e. % — 0). Notwithstanding, parallel flows and
Ohmic heating terms in the model are still kept. If mea-
surements in the z-direction are available or more collo-
cation points utilized during training with observational
data of reduced dimensionality, this procedure may be
relaxed—it is partly a trade-off between computational
fidelity and stability. It is noteworthy that the temporal
resolution of the data observed by the neural networks
is several orders of magnitude lower than the time steps
taken by the finite difference solver as required for numer-
ical stability, i.e. A*t > At. Also, if sought, training on
data sets viewed at oblique angles in 3-dimensional space
over long macroscopic timescales can be easily performed
via segmentation of the domain and parallelization, but a
limited spatial view with reduced dimensionality is taken
to emulate experimental conditions for field-aligned ob-
servations [44] and theoretically test what information is
indispensable to learn unobserved turbulent dynamics.

Loss functions are optimized with mini-batch sam-
pling where Ny = Ny = 500 using stochastic gradient
descent via Adam [47] and the limited-memory Broy-



den—Fletcher-Goldfarb—Shanno (L-BFGS) algorithm—a
quasi-Newton optimization algorithm [48]— for 20 hours
over 32 cores on Intel Haswell-EP processors which cor-
responds to approximately 8694 full iterations over both
optimizers. If observing noisy data, we find that expand-
ing to larger sample sizes with Ny = Ny = 2500 and
training solely via L-BFGS is optimal for learning. Re-
moving Ly, and Ly, from the optimization process (i.e.
setting Ny = 0) would correspond to training of classical
neural networks without any knowledge of the underly-
ing governing equations which would then be incapable of
learning turbulent field fluctuations. Setting Ny = 0 in-
stead while providing initial and boundary conditions for
all dynamical variables would alternatively correspond to
regularly solving the equations directly via neural net-
works. Overall, priming networks by firstly training in
stages on observed data or prior constraints is useful to
enhance stability and convergence in this multi-objective
task. Additionally, encoding domain expertise such as
subsonic bounds on parallel flows or regularizing tem-
perature to be strictly positive via suitable output acti-
vation functions can assist training by constraining the
admissible landscape of solutions. Networks constructed
in this way can intrinsically abide by physical laws which
is especially useful to uncover unknowns like v, and T;.

A fundamental goal in computational plasma mod-
elling is determining the minimum complexity necessary
(and no less) to develop sufficiently predictive tokamak
simulations. With sparse availability of measurements in
fusion experiments, designing diagnostic techniques for
uncovering such information is crucial. On this point, we
emphasize that training is from scratch over just a single
synthetic plasma discharge with no extraneous validation
nor testing sets required since overfitting is technically
not encountered in this physics-informed paradigm. The
multi-network deep learning framework simply utilizes a
single set of n, and T, measurements over a period of mi-
croseconds which corresponds to the small data regime
of machine learning. Merging partial observational data
of n. and T, along with physical laws in the form of par-
tial differential equations governing the time-dependent
evolution of n. and T sufficiently constrains the set of ad-
missible solutions for the previously unknown nonlinear
mappings the neural networks ultimately learn. It is also
quite general: due to quasineutrality, no significant ad-
justments are necessary to generalize the technique when
multiple ions and impurities may be present in boundary
plasmas beyond the inclusion of appropriate collisional
drifts and sources in multi-species plasmas [49]. This
deep learning technique for diagnosing turbulent fields
is hence easily transferable which permits its systematic
application across magnetic confinement fusion experi-
ments whereby the underlying physical model fundamen-
tal to the turbulent transport is consistent. The frame-
work sketched can also be readily extended to different
settings in the interdisciplinary study (both numerical
and experimental) of magnetized collisional plasmas in
propulsion engines and astrophysical environments.

IV. NUMERICAL EXPERIMENTS

Accurate turbulent edge electric field fluctuation char-
acterization is particularly significant to magnetic con-
finement fusion devices. By constraining the deep learn-
ing framework with the two-fluid turbulence theory and
strikingly little empirical information in the form of par-
tial 2-dimensional observations of n. and T., we find
that physics-informed neural networks can accurately
learn the plasma’s turbulent electric potential without
the physics-informed computational framework ever hav-
ing observed it, as displayed in Figures [d] and
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FIG. 4. The synthetic plasma’s unobserved electric potential
(top) is learned approximately up to an additive constant as
predicted by the physics-informed neural network (bottom).
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FIG. 5. 1-dimensional radial profile of the true and predicted

¢at [y =0.0 cm,z = —28.1 cm, t = 229.9 us| corresponds to a
slice of Figure[dl The ordinates have identical ranges spanning
exactly 410 V with equivalent spacing for direct comparison.

It is notable that despite there being no knowledge
of w,ve,v);, nor T; (i.e. multiple unknowns existing



in the partial differential equations and never even
being directly invoked), the electric field is nonetheless
learned consistently with the physical theory encoded
by the plasma turbulence model. Since ¢ is a gauge-
invariant quantity exact up to an additive constant, it is
accordingly uncovered up to a scalar offset which varies
randomly due to the stochastic nature of the optimiza-
tion employed in the machine learning framework. This
difference physically arises because no direct boundary
information was enforced upon the neural network when
learning ¢, although it could be straightforwardly imple-
mented. By contrast, the numerical code imposed zero
potential on the outer walls of the simulation domain.
General agreement in both magnitude and structure in
the learned radial electric field is evident in Figure[6] with
an average absolute error of 26.19 V/ecm while £y, and
Ly, are 3.101 x 107! and 3.743 x 10™!, respectively, af-
ter 8694 full iterations. In physical units, Ly, and Ly,
would be 3.472 x 107 em~3 /s and 1.273 x 106 eV /s.

Target electric field: E; (V/m)

60000

40000

20000

y (cm)

[=]

0.0 05 1.0 15 20 25 30 35
Predicted electric field: E. (V/m)

(b)

40000

y (cm)

20000

(=]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
® (cm)

FIG. 6. The learned turbulent E, (bottom) closely agrees
with the magnitude and structure of the true FE, (top) despite
W, V|le; V|5, and T; being initially unknown.

To emphasize the experimental practicality of these re-
sults based upon our synthetic plasma and a surprising
feature discovered, we note that the framework is robust
to very noisy measurements. For example, if only ob-
serving density fluctuations with strong Gaussian noise,
one could still largely recover the unmeasured radial and
poloidal electric fields and even resolve the true partially
observed variables. Namely, given just highly noisy n,
measurements as in Figure one can learn the true
turbulent density in this physics-informed deep learning
framework to subsequently infer the unmeasured electric
field. If F, was already known, this technique could then
precisely check the validity of the reduced turbulence the-
ory against observations from experiment or kinetic sim-

ulations [50]. But, if using a standard feed-forward neu-
ral network, one must be careful with convergence since
the objective of simply minimizing £,,, without sufficient
regularization, as innately provided by Ly, , can result
in overfitting of noisy data. ‘

For comparison, classical and oft-employed models for
calculating the electric potential with adiabatic electrons
such as the Boltzmann relation [51] fail when computing
perpendicular turbulent field fluctuations. Alternative
approximations of F, from simple ion pressure balance
as expected neoclassically [52] would yield highly incor-
rect estimates of the turbulent electric field, too. Such
methods ordinarily used in magnetic confinement fusion
are only applicable to discerning equilibrium fields and
dynamics parallel to the magnetic field in steady-state
scenarios, but are erroneous in the analysis of microtur-
bulence in nonquiescent plasmas as markedly observed
when comparing Figure[§|to the true ¢ and E, as plotted
in Figures [4] and [6] respectively. Our deep learning tech-
nique based upon drift-reduced Braginskii theory there-
fore provides a novel way to accurately measure the tur-
bulent electric field in edge plasmas from just the electron
pressure. As a further point of contrast compared to clas-
sical techniques, it is important to note that the inverse
learning scenario is not possible. In particular, given ob-
servations of ¢ and T, one cannot simply infer the turbu-
lent n. fluctuations with the machine learning framework
outlined. This one-way nature in learning indicates a di-
vision exists between the two pathways when attempting
to constrain the admissible solutions of and
to uncover unknown nonequilibrium dynamics. Training
is thus unidirectional and representative of asymmetries
extant in the partial data and turbulence theory being
learnt via optimization in the physics-informed model.

Observational and physical model errors
M L, (10) L, (11) Ly, (14) L, (15)
1 1.498 x 1072 | 7.258 <1072 [8.316x 1077 | 1.476x 10"
10 |[7.673x107% |8.525x 1077 [2.049% 10" [1.302x 10"
100 {9.334% 1071 [6.592x 101 | 5,746 10" | 1.895x 10
1000 |6.489x107% |3.203x107° |4.123x 107" [9.171x 107 ¢
8694 |4.715x107% [3.906x107° [3.101x 10" [ 3.743x 10~ ¢

TABLE I. Each normalized loss function optimized in the
machine learning framework is tabulated after M full itera-
tions, where M = 8694 corresponds to the final iteration after
20 hours of training against both the partial observations of
ne and T, and their implicit evolution equations.

To better interpret the learning process, we tabulate
the normalized loss functions being trained upon after
M full iterations by the optimizers in Table[] After 1 it-
eration, and are relatively small in magnitude,
and this would correspond to a trivial result satisfying
the partial differential equations given the nonunique-
ness of its solutions. As training progresses, observational
data is better captured in the deep learning framework
and the neural networks proceed to converge toward the
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FIG. 7. The physics-informed deep learning framework is ca-
pable of recovering the true n. despite strong Gaussian noise
(o = 0.25) present. The classical solution corresponds to a
standard feed-forward neural network where Ny = 0.

sought solution as opposed to trivial ones. A difference
in the rates of learning for n., T., and ¢ also exist since
the electric field is learned implicitly via the model in-
stead of being trained upon directly. Each individual
loss function being optimized therefore does not neces-
sarily decrease perfectly monotonically, but it is instead
the collective training against partial differential equa-
tions in conjunction with observational data that is key.
Namely, while there are many potential solutions to
and —and while they may be more easily satisfied by
trivial solutions—the limited n. and T, measurements
compel the optimizer towards the physical solution of
the partially observed plasma. In scenarios where incon-
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FIG. 8. Estimates of the turbulent ¢ and F, as expected
by the Boltzmann model, n.(¢) = ne(¢o)ec ¢/ Te [51], or
neoclassical estimates, V¢ = —Vp;/Zn;e [52], where Z = 1
for deuterium ions, yield markedly errant predictions in both
structure and magnitude when compared to the true values
displayed at the top of Figures [ and [6]

sistencies in the true and learned model F, exist, one
can repurpose this machine learning framework to itera-
tively test and thereby discover the correct partial differ-
ential equations altogether by quantitatively examining
the proposed model’s consistency with observations as
in Table [ For example, the analytic form of reduced
source models in fluid theories [11} [38] can be inserted in
the physics-informed deep learning framework to account
for local turbulent ionization and inelastic collisions with
kinetic neutrals by observing such measurements of n.,
T., and ¢ in global simulations [53] and experiments [17].

V. CONCLUSION

These results illustrate a custom physics-informed deep
learning paradigm with the novel capacity to learn un-
known nonequilibrium dynamics in a multi-field turbu-
lent transport model broadly relevant to magnetized col-
lisional plasmas. We specifically demonstrate the abil-
ity to determine unobserved turbulent electric fields con-
sistent with the drift-reduced Braginskii equations from
partial electron pressure observations in contrast with
with standard analytic techniques. This can be applied
to infer field fluctuations that may be difficult to measure
or when sought plasma diagnostics are simply lacking.
On the other hand, if experimental electric field measure-
ments exist, then the quantitative validity of the plasma
turbulence model embedded in the neural networks can
be expressly assessed. This technique is also quite robust
since, due to quasineutrality, it can be used to study



ionized gases in magnetized environments with multiple
ions and impurities present as commonly found in astro-
physical settings and fusion energy and space propulsion
systems. From a mathematical physics standpoint, it is
significant that nonlinear dynamics can be accurately re-
covered from partial data and theory in a 6-field model.
Inferring completely unknown turbulent fields from just
2-dimensional measurements and representations of the
evolution equations given by and demonstrates
a massive reduction in the original 3-dimensional turbu-
lence model indicating redundancy and the existence of
reduced theory characterizations. Going forward, this
framework has the capability to be generalized (e.g. to
learn T¢, T;, v|e, and v); in addition to ¢ using just 1-
dimensional n, measurements) and transform how turbu-
lence theories are systematically and quantitatively vali-
dated in both plasma simulations and experiments. The
interpretable physics-informed methodology outlined is
also transferable across models (e.g. collisionless fluids,
gyrokinetic, electromagnetic, atomic physics) and com-
plex geometries. Furthermore, known limitations and un-
known corrections to Braginskii’s theory exist [54] which
can be introduced in the deep learning framework to au-
tomate efficient testing and discovery of reduced plasma
turbulence models when high fidelity data is observed.
These extensions in theory and computing will be focused
upon in future works.

Appendix A: Normalization of plasma theory

Converting the drift-reduced Braginskii equations from
physical units to a normalized form is essential to nu-
merically solve the model in both finite difference solvers
and physics-informed machine learning codes. For com-
pleteness, the full normalization procedure is carried out
whereby the physical variables and all associated quan-
tities are transformed according to [28§]

— ) Ts < Ts/Tso,
n < n/ng /Tso (A1)
¢ < /¢, V|js < U|js/Cs0,
where ng = 5 x 109 m™3, T, = 25€V, cio =

Tso/mi, ¢0 = Boa2/Ct0, and to = \/aoRc/Q/Ceo is the
interchange-like reference timescale. To match our sim-
ulation with experimental edge parameters of the Al-
cator C-Mod tokamak, By = BgzisRo/(Ro + ap) and
R. = Ry + ap. This in turn defines the following di-
mensionless constants
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where ¢ and vgg denote the speed of light and collision
rate [55], respectively. The spatiotemporal coordinates
are normalized by the following conversions

y < y/ao,
t <« t/to.

x + x/ap,

z + z/Ro, (43)

Under these set of transformations, the normalized two-
fluid equations numerically solved are
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where the normalized diffusivities applied for all dynami-
cal variables are x, = —4.54x 10710, y,, = —1.89 x 1077,
and x, = —8.91 x 1073, The normalized evolution equa-
tions given by and are the physical model
constraints learnt in the machine learning framework as
detailed above. A few subtle yet importance differences
exist between the physical theory posed and the construc-
tion of the synthetic plasma. One deviation between the
theorized plasma and the one produced computationally
is that the numerical code actually evolves the logarith-
mic form of n, T, and T; to enforce positivity and the
high order diffusion operators act on these logarithmic
quantities, too. While equivalent analytically, this choice
numerically forces the drift-reduced Braginskii equations
to be posed and solved in non-conservative form by the
finite difference solver. Consequent errors due to numer-
ical approximation can manifest as unexpected artificial
sources or sinks in the simulation domain [2§]. In addi-
tion, simulation boundaries applied in practice only ap-
proximately satisfy the zero flux conditions when employ-
ing even- and odd-symmetry conditions on a cell-centered
discretized grid [28]. These computational discrepancies
can cause potential misalignment between inferred dy-
namics using idealized theory and numerical modelling of
the synthetic plasma’s turbulent fields. Physics-informed
deep learning can overcome these numerical limitations
when representing plasma theory since positivity can
be intrinsically encoded in the network plus it employs
a continuous spatiotemporal domain and the nonlinear

10

continuum equations represented by and are
consequently evaluated exactly up to computer precision
[40]. Unphysical numerical dissipation in observational
data can therefore present deviations from reflecting the
sought plasma theory, but reasonable agreement is nev-
ertheless found when analyzing the synthetic measure-
ments with the partial differential equations embedded
in the physics-informed machine learning framework.
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