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The spatial correlations of entangled polymer dynamics are examined by molecular dynamics simulations and
neutron spin-echo spectroscopy. Due to the soft nature of topological constraints, the initial spatial decays of
intermediate scattering functions of entangled chains are, to the first approximation, surprisingly similar to those
of an unentangled system in the functional forms. However, entanglements reveal themselves as a long tail in the
reciprocal-space correlations, implying a weak but persistent dynamic localization in real space. Comparison
with a number of existing theoretical models of entangled polymers suggests that they cannot fully describe the
spatial correlations revealed by simulations and experiments. In particular, the strict one-dimensional diffusion
idea of the original tube model is shown to be flawed. The dynamic spatial correlation analysis demonstrated
in this work provides a useful tool for interrogating the dynamics of entangled polymers. Lastly, the failure of
the investigated models to even qualitatively predict the spatial correlations of collective single-chain density
fluctuations points to a possible critical role of incompressibility in polymer melt dynamics.

I. INTRODUCTION

The topological constraints arising from chain connectivity
and excluded volume forces have a profound influence on the
dynamical properties of macromolecular liquids [1–3]. De-
spite the extensive research efforts of the past several decades,
notably around the framework of the tube model [4–6], the
precise physical nature of polymer entanglement is still not
fully understood. In this work, we demonstrate a fruitful ap-
proach to the dynamics of entangled polymers by calling at-
tention to the spatial correlations of their density fluctuations.
In a typical neutron spin-echo spectroscopy (NSE) experiment
or computer simulation, intermediate scattering functions are
studied at discrete wavenumbers. Here, we show that an “or-
thogonal” approach — probing spatial correlations of dynam-
ics at different correlation times — can provide valuable in-
sights into the molecular motions of entangled polymers.

To illustrate this idea, we start by discussing our molecular
dynamics simulations (MD) on entangled and untangled poly-
mer melts, performed with the GPU-accelerated LAMMPS
package [7–9]. We consider a semi-flexible coarse-grained
bead-spring model [10], where the non-bonded interactions
are described by an attractive Lennard-Jones potential with
cutoff rc = 2.5σ and the beads along the polymer chains
are connected by FENE bonds. The chain stiffness is con-
trolled by a bending potential Ubend = kθ (1+ cosθ ), where
θ is the angle between two successive bonds and kθ = 1.5 in
the current study. Three different systems with chain length
N = 25, 400, and 2000 are simulated at a reduced density
ρ = 0.89 and temperature T = 1. Since the entanglement
length Ne ≈ 28 [10], the N = 25 melt is unentangled, whereas
the N = 400 and 2000 systems are entangled. To describe
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FIG. 1. (a) 2D color map of the incoherent dynamic structure fac-
tor Sinc(Q, t) of the N = 400 semi-flexible system simulated by
MD. Both Q and t are presented in reduced Lennard-Jones units.
(b) Corresponding normalized single-chain dynamic structure factor
S(Q, t)/S(Q). (c) Spatial dependence of Sinc(Q, t) at different corre-
lation times (t = 102, 103, 104, 105, and 106τ). (d) Temporal corre-
lation of Sinc(Q, t) at different wavenumbers (Q = 1, 0.3, 0.1, 0.03,
and 0.01σ−1).

the microscopic dynamics, we focus on two time correla-
tion functions: the incoherent intermediate scattering function
Sinc(Q, t) and the normalized single-chain dynamic structure
factor S(Q, t)/S(Q). Additional information of the simula-
tions and data analysis is described in Sections II A and II B.

Representative 2D spatiotemporal maps [11] of Sinc(Q, t)
and S(Q, t)/S(Q) are shown in Figs. 1a and 1b for the N = 400
melt. The traditional method in this field [12–14] places em-
phasize on analyzing time correlations of scattering functions
at discrete wavenumbers. An alternative approach, however,
is to ask how the spatial correlations of dynamics are af-
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fected by entanglements on different time scales by taking
cuts along lines of constant correlation time on the 2D land-
scape (Fig. 1). To contrast this proposed approach with the
traditional method, an example is given in Figs. 1c and 1d
for the incoherent scattering function Sinc(Q, t). The func-
tional forms of Sinc(Q, t) appear to be similar, when compared
at different correlation times (Fig. 1c). On the other hand,
Sinc(Q, t) does not retain its shape, when examined at different
wavenumbers. This distinction between the two approaches
can be intuitively appreciated by treating Figs. 1a and 1b as
topographic maps and imaging ourselves as travelers explor-
ing the corresponding terrains. Walking along the Q direction
(cuts of constant correlation time), our experience is always
similar — the slopes resemble one another (Fig. 1c). By con-
trast, the trail is highly dependent on the choice of Q, if we
travel along the t direction. In other words, we find simplicity
in the spatial correlation analysis.

Moreover, there are deeper theoretical considerations for
taking this alternative point of view of polymer dynamics. Ac-
cording to the reptation idea [4, 5], entanglement interactions
effectively confine a tagged polymer in a tube-like region. We
may reason, therefore, that such a topological confinement
must leave fingerprints on the spatial correlations of chain mo-
tions. Indeed, on time scales shorter than the disengagement
time τd, the classical tube model [5, 15] predicts that the inco-
herent scattering function can be described by the following
equation:

Sinc(Q, t)≈ exp[Q4y(t)]erfc[Q2
√

y(t)], (1)

where erfc(x) is the complementary error function, and y(t) =
a2〈s2(t)〉/72, with a being the tube diameter and 〈s2(t)〉 the
mean-square curvilinear segment displacement. While the
temporal decay of Sinc(Q, t) at a given Q, according to Eq. (1),
takes on a complicated functional form, its spatial dependence
at a constant correlation time is much simpler:

Sinc(Q, t)≈ exp(x2)erfc(x), (2)

where x = Q2C2
t , with Ct a constant determined by t. Eq. (2)

produces a heavy-tailed distribution, in stark contrast to the
Gaussian behavior of Rouse chains (see Sec V for details).
The physical picture behind this prediction is that the real-
space localization causes the dynamic correlations to spread
out in the reciprocal space. Conversely, following this line of
thinking, one should be able to characterize the entanglement
effect by examining the spatial correlations of intermediate
scattering functions.

In this context, it is helpful to mention the pioneering work
of Granick and coworkers [16], who determined the tube con-
fining potential for entangled F-actin solutions using single-
molecule fluorescence imaging. Their approach was based on
analysis of probability distribution of transverse displacement
relative to the tube axis. Our proposal of spatial correlation
analysis for the classical scattering functions, which are de-
fined in the laboratory frame, is philosophically connected to
the idea of Granick et al., but more general — it applies to
both self and collective density fluctuations.

With these insights, this work sets out to systematically
explore the benefits of spatial correlation analysis for under-

standing entangled dynamics, using both molecular dynamics
simulations and neutron spin-echo spectroscopy experiments.
The results are analyzed and contrasted with several repre-
sentative theoretical models of polymer dynamics, including
the Rouse model [17], standard tube model [4–6, 15, 18],
slip-spring model [19], Ronca model [20], and des Cloizeaux
model [21]. The remainder of this paper is organized as
follows. The details of the computational and experimental
methods employed in this work are described in Section II.
Section III presents spatial correlation analyses of the interme-
diate scattering functions from MD simulations. Section IV
reports results from NSE experiments on entangled polyethy-
lene melts. In Section V, theoretical predictions of spatial cor-
relations of dynamics are examined and compared with the
experimental and computational results. Section VI discusses
the relation of the present MD and NSE studies with those in
the literature. The final section summarizes the main conclu-
sions of this investigation and outlines a few key implications.

II. COMPUTATIONAL AND EXPERIMENTAL METHODS

A. Dynamic spatial correlation analysis

The idea of dynamic spatial correlation analysis is a simple
one: direct examination of the wavenumber dependence of
intermediate scattering functions (ISFs) [22] at fixed correla-
tion times. In the current coarse-grained molecular dynamics
simulations, the single-chain dynamic structure factor (inter-
mediate scattering function) S(Q, t) can be evaluated as

S(Q, t) =
1
N

N

∑
i, j

〈exp[iQ · (R j(t)−Ri(0))]〉, (3)

where N is the total number of beads in a chain, Q is the
wavevector, and R j(t) is the position of the jth bead at time
t. Similarly, the incoherent intermediate scattering function
Sinc(Q, t) can be calculated as

Sinc(Q, t) =
1
N

N

∑
j

〈exp[iQ · (R j(t)−R j(0))]〉. (4)

Experimentally, the normalized single-chain dynamic struc-
ture factor S(Q, t)/S(Q) can be obtained from neutron spin-
echo measurements of properly labeled polymer melts. While
it is straightforward to investigate the spatial correlations of
intermediate scattering functions at discrete correlation times,
experimental and computational studies of polymer dynam-
ics have so far placed most attention to the time correla-
tion of ISFs at particular wavenumbers. It is worth noting
that spatial correlation analysis of the self van Hove function
Gs(r, t) [23] (often referred to as probability density func-
tion or propagator), which is the spatial Fourier transform of
Sinc(Q, t), is a standard practice in the literature of Brownian
motions [24, 25]. From this perspective, the current study is
a natural extension of this existing approach. The scope of
this investigation is nevertheless confined to spatial correla-
tions of polymer dynamics in the Fourier space. The results
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of real-space correlation analysis will be reported in a future
publication.

B. Molecular dynamics simulations

1. Semi-flexible chain model

Most of the simulation results reported in this work are
based on a coarse-grained semi-flexible bead-spring model.
The non-bonded interaction between beads is described by the
LJ potential,

ULJ(r) =

{

4ε[(σ
r
)12 − (σ

r
)6]− 4ε[( σ

rc
)12 − ( σ

rc
)6] r < rc

0 r ≥ rc
,

(5)
with a cutoff distance rc = 2.5σ [10]. A finitely extensible
nonlinear elastic (FENE) potential coupled with purely repul-
sive Weeks-Chandler-Andersen (WCA) potential [26] is used
to connect two neighboring beads along a polymer chain:

UFENE(r) =−1
2

kR2
0 ln[1− (r/R0)

2]+UWCA(r), (6)

where R0 = 1.5σ and k = 30ε/σ2. Additionally, a bond-
bending potential is considered:

Ubend(θ ) = kθ (1+ cosθ ), (7)

where θ is the angle between two subsequent bonds and
kθ = 1.5ε . Each chain has N beads of mass m. Equilibrium
molecular dynamics simulations were performed at a reduced
density ρ = 0.89 and temperature T = 1, and three different
chain lengths were investigated: N = 25, 400, and 2000.

2. Fully flexible chain model

To complement the molecular dynamics simulations of the
semi-flexible chain model, we further consider a fully flexible
bead-spring model [12, 27–29]. In this model, the pair inter-
actions between any two beads are described by the WCA po-
tential, i.e., the repulsive part of the Lennard-Jones potential
[Eq. (5) with rc = 21/6σ ]. The bond connectivity along the
chain is maintained by the FENE potential, with R0 = 1.5σ
and k = 30ε/σ2. Equilibrium molecular dynamics simula-
tions of melts of N = 40 and N = 500 were carried out at a re-
duced density ρ = 0.85 and temperature T = 1. Both the semi-
flexible and fully flexible chain simulations were performed
at the Oak Ridge Leadership Computing Facility with the
GPU-accelerated LAMMPS package [7–9]. All the coarse-
grained simulation results are expressed in reduced Lennard-
Jones units.

C. Slip-spring simulations

In Section V of this paper, we compare the results of our
molecular dynamics simulations and neutron-spin echo ex-
periments with a number of theoretical models, including the

slip-spring model of Likhtman [19]. This model is numeri-
cally solved by the Brownian dynamics (BD) simulation tech-
nique. In our simulations, the average entanglement spacing
Ne is 4 and the spring strength Ns is set to 1/2. The ratio of the
friction coefficient of the slip-link ζs to that of the chain seg-
ment ζ , ζs/ζ , is 0.1. In Likhtman’s work, the basic time unit
τ0 is τ0 = ζb2/

(

3π2kBT
)

, with b being the segment size. On
the other hand, our choice of time unit is τ0 = ζb2/(2kBT ),
which is more common for Brownian dynamics simulations.
The reduced simulation time is defined as t∗ = t/τ0. To sim-
plify the simulation, the non-crossing condition is not imple-
mented for the slip-links. As pointed out by Likhtman [19],
such a choice makes only a very small difference in the re-
sults. To benchmark with the simulations of Likhtman, we
choose the same set of chain lengths: N = 8, 16, 32, 64,
and 128 and verify that the shear relaxation modulus G(t) in
Ref. [19] can be correctly reproduced. The intermediate scat-
tering functions of the N = 64 and 128 systems are analyzed
and presented in this paper.

D. Neutron spin-echo spectroscopy

To complement the molecular dynamics investigation, neu-
tron spin-echo spectroscopy experiments were performed on
an isotopically labeled polyethylene (PE) melt with 10 v%
h-PE (Mw = 79 kg/mol, Mw/Mn = 1.05) and 90 v% d-PE
(Mw = 89 kg/mol, Mw/Mn = 1.05) at 470 and 509 K on the
IN15 beamline of the Institut Laue-Langevin. A wavelength
of λ = 10 Å with ∆λ/λ = 15% was used to achieve a mea-
surement range of 0.021 ≤ Q ≤ 0.21 Å−1 and 0.019 ≤ t ≤
194 ns. The backgrounds from the deuterated matrix and con-
tainer were measured separately and subtracted by using the
proper transmission factors [30]. Compared to typical neutron
spin-echo experiments where only a few Q values are inves-
tigated, the present study focuses specifically on the spatial
correlations of entangled polymer dynamics. A total of 23 Qs
are measured in the range of 0.021–0.21 Å−1. This allows
us to map out the normalized intermediate scattering function
S(Q, t)/S(Q) on a 29× 23 spatiotemporal grid of 29 discrete
correlation times and 23 Q values.

III. SPATIAL CORRELATIONS FROM MOLECULAR

DYNAMICS SIMULATIONS

This section presents the results from our molecular dynam-
ics simulations. Fig. 2a shows the Sinc(Q, t) of the N = 400
melt at correlation times both shorter and longer than the en-
tanglement time τe ≈ 2.2× 103τ . At first glance, there is no
obvious change of spatial dependence of Sinc(Q, t) across τe.
By applying a horizontal shift factor Kt to each curve, we are
able to collapse the data at different times onto a master curve
(Fig. 2b), which can be approximated by a Gaussian func-
tion: Sinc(Q, t) ≈ exp

(

− Q2ξ 2
t /6

)

. The N = 25 and 2000
systems behave in a similar way. Additionally, for the two en-
tangled melts at t > τe, the spatial decay of Sinc(Q, t) differs
substantially from the prediction of Eq. (2). Turning our atten-
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tion to the normalized single-chain dynamic structure factor
S(Q, t)/S(Q), we find similar results (Figs. 2c and 2d), with
the exception that the spatial correlations are now described
by a “compressed” Gaussian function:

S(Q, t)

S(Q)
≈ exp

[

−1
6
(Q2ξ 2

t )
β

]

, (8)

where β ≥ 1 and ξt is a characteristic length that is dependent
on t. For our current simulations, the curves are slightly com-
pressed, with β ≈ 1.15. As we shall show below, these obser-
vations are distinctly different from the predictions of several
theoretical models.

(b)

(c) (d)

(a)

FIG. 2. (a) Spatial dependence of Sinc(Q, t) at different correla-
tion times for the N = 400 semi-flexible system. Panel (b) shows
the master curves for the N = 25, 400, and 2000 semi-flexible sys-
tems, constructed by horizontally shifting the Sinc(Q, t) data at dif-
ferent correlation times by time-dependent scale factors Kt . For
clarity, we choose the shift factors in such a way that the mas-
ter curves of the three systems stay apart from each other. Solid
lines in (b): Gaussian function. Dashed lines: exp(x2)erfc(x). Pan-
els (c) and (d) are the results for the normalized single-chain dy-
namic structure factor S(Q, t)/S(Q), presented in the same format
as (a) and (b). Solid lines in (d): compressed Gaussian functions
S(Q, t)/S(Q) = exp

[

− (Q2ξ 2
t )

β/6
]

with β = 1.15.

Careful inspection shows some subtle changes of spectrum
shape as we vary the correlation time. Indeed, the master
curves in Fig. 2 are approximates and a closer examination
of the spatial correlations reveals important details. Fig. 3
presents the same simulation data on a log-linear scale. To
highlight the tail of the spatial correlation, we match the initial
decays at different times by choosing proper horizontal shift
factors Kt . The spatial correlation of Sinc(Q, t) for the unentan-
gled melt (N = 25) remains Gaussian at all times. By contrast,
as the correlation time increases above τe, the Sinc(Q, t) of the
two entangled melts develops a long tail (Figs. 3b and 3c).
Such behavior clearly arises from topological constraints: lo-
calization of real-space density correlations spreads out in the

(a)

(b)

(c)

(d)

(e)

(f)

N = 25 N = 25

N = 400N = 400

N = 2000 N = 2000

FIG. 3. (a)-(c) Tails of the spatial correlations of the incoherent
dynamic structure factors Sinc(Q, t) for the N = 25, 400, and 2000
semi-flexible systems. (d)-(f) Results for the normalized single-chain
dynamic structure factor S(Q, t)/S(Q). Black solid lines: Gaussian
functions. Red dashed lines: exp(x2)erfc(x). Blue dash-dotted lines:
compressed Gaussian functions with β = 1.15.

reciprocal space. However, the degree of confinement is evi-
dently much weaker than the prediction of the classical tube
model [Eq. (2)], where the 3D displacement in the laboratory
frame is assumed to be the result of strictly 1D diffusion [15].

On the other hand, the spatial decay of S(Q, t)/S(Q) fol-
lows a slightly compressed Gaussian function (β ≈ 1.15) at
short time and a Gaussian function at long time in the unen-
tangled melt (Fig. 3d). For the entangled systems, the spa-
tial correlations eventually become broader than the Gaussian
at t ≫ τe (Figs. 3e and 3f), which resembles the behavior of
Sinc(Q, t). Combining the analyses from Figs. 2 and 3, we con-
clude that the topological constraints have a relatively weak
influence on the functional forms of spatial distribution of den-
sity correlations and the entanglement effect manifests as a
long tail in Sinc(Q, t) and S(Q, t)/S(Q).

All these aforementioned qualitative features of spatial cor-
relations of dynamics are further confirmed by the fully flex-
ible chain simulations. Fig. 4 shows the spatial correlations
of the N = 40 and 500 systems. To highlight the tails of the
correlations, the data are horizontally shifted and presented
on a log-linear scale. Since the entanglement length Ne for
this fully flexible bead-spring model falls into the range of
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(a)

(c)

(b)

(d)

N = 40 N = 40

N = 500N = 500

FIG. 4. Tails of the spatial correlations for the fully flexible bead-
spring model. (a) and (b): results for the unentangled, N = 40 sys-
tem. (c) and (d): results for the entangled, N = 500 system.

60–86 [10, 27, 31], the N = 40 chain is unentangled and the
N = 500 system is moderately entangled. Overall, the spa-
tial correlations in these fully flexible chains are qualitatively
similar to those in the semi-flexible chains: for the unentan-
gled system, the incoherent scattering function Sinc(Q, t) is al-
ways a Gaussian function and the normalized single-chain dy-
namic structure factor S(Q, t)/S(Q) is a slightly compressed
Gaussian function at t < τR and becomes Gaussian when the
center-of-mass diffusion takes over at t ≫ τR; for the entan-
gled system, both the Sinc(Q, t) and S(Q, t)/S(Q) develop a
long tail at t > τe. Therefore, the main features of the spatial
correlations of dynamics reported in this work are indeed a
result of topological constraints and insensitive to the details
of interchain or intrachain interactions.

IV. SPATIAL CORRELATIONS FROM NEUTRON

SPIN-ECHO SPECTROSCOPY

Having examined the spatial correlations of polymer dy-
namics in molecular dynamics simulations of coarse-grained
bead-spring models, we now turn our attention to neutron
spin-echo experiments. The normalized intermediate scat-
tering functions S(Q, t)/S(Q) are shown in Fig. 5 in the
form of two-dimensional color maps for T = 470 K and
509 K. For further quantitative analysis, representative slices
of S(Q, t)/S(Q) are presented in Fig. 6 at discrete wavenum-
bers and correlations times, respectively. In accordance with
the standard practice, we perform fits of S(Q, t)/S(Q) by the

470 K 509 K

(a) (b)

FIG. 5. Two-dimensional color maps of the normalized inter-
mediate scattering function (single-chain dynamic structure factor)
S(Q, t)/S(Q) obtained from the NSE experiments. (a) 470 K. (b)
509 K. The data were collected on a 29×23 spatiotemporal grid of
29 discrete correlation times and 23 Q values.

following tube model equation [32]:

S(Q̃, t̃)

S(Q̃)
= exp

(

− Q̃2

6Z

)

[

8
π2 ∑

p:odd

1
p2 exp

(

− p2t̃

3Z

)

]

(9)

+

[

1− exp
(

− Q̃2

6Z

)]

exp
(

1
π2 Q̃4t̃

)

erfc
(

1
π

Q̃2t̃1/2
)

,

where Z = N/Ne, Q̃ = QRg, and t̃ = t/τR, with Rg and τR
being the radius of gyration and Rouse relaxation time, re-
spectively. To fully utilize the experimental data, the entire
2D surface in Fig. 5 is fitted by the nonlinear least-squares
method. Eq. (9) provides a “fair” but imperfect description
of the experimental data (please see further discussions in
Sec V). In agreement with our simulations, a master curve
(Fig. 7), which is a slightly compressed Gaussian function
with β ≈ 1.05, can be constructed by applying horizontal
shifts to the data in Figs. 6b and 6e. Note that the entangle-
ment time τe is on the order of a few nanoseconds for this sys-
tem (Fig. 8 and Ref. [32]). The construction of a master curve
for data across τe therefore confirms the weak influence of en-
tanglements on the functional form of spatial correlations.

Using the compressed Gaussian function [Eq. (8)], the char-
acteristic displacement ξ 2

t at each correlation time can be ex-
tracted from S(Q, t)/S(Q) for the coherent dynamics (Fig. 8).
Curiously, ξ 2

t exhibits a scaling relation of ξ 2
t ∼ t1/2 at t / 2 ns

and ξ 2
t ∼ t1/4 at t ' 2 ns, reminiscent of the well-known be-

havior of monomer mean-square displacement for the inco-
herent dynamics of entangled polymers [4, 6, 12, 33, 34]. This
observed resemblance between collective and self motions is
not a coincidence. The similarity between the overall features
of Sinc(Q, t) and S(Q, t)/S(Q) (Figs. 2, 3, and 4) suggests that
the self and pair correlations can be loosely related by a convo-
lution approximation [35] without the de Gennes-Sköld cor-
rection [36–38]:

Gd(r, t)≈
∫

H(r− r′, t)Gd(r)dr′, (10)

where H(r, t) = (2π)−3 ∫ [S(Q, t)/S(Q)]eiQ·r dQ ≈ Gs(r, t),
and Gs(r, t) and Gd(r, t) are the self and distinct parts of the
van Hove function, respectively. Here, we use the fact that
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470 K 509 K

(a)

(c)

(b)

(d)

(f)

(e)

FIG. 6. (a) S(Q, t)/S(Q) from the NSE experiments at 470 K, pre-
sented at different correlation times. (b) S(Q, t)/S(Q) at differ-
ent wavenumbers. (c) The same result in (b) presented on linear-
linear scale. Panels (d)-(f) are the same plots for the results at
509 K. Dashed lines: fits using Eq. (9). The fitting parameters
are: W b4 = 9.92 Å4/ps, a = 51.8 Å, and τd = 14.4 µs for 470 K;
W b4 = 18.7 Å4/ps, a = 53.1 Å, and τd = 13.7 µs for 509 K.

(a)

470 K

(b)

509 K

FIG. 7. Master curves for NSE S(Q, t)/S(Q) data collected at differ-
ent correlation times. (a) Results at 470 K. (b) 509 K. Solid lines:
compressed Gaussian functions with β = 1.05.

for high molecular weight polymers, the single-chain struc-
ture factor is dominated by pair correlation: G(r) ≈ Gd(r).
The analysis of ξ 2

t also demonstrates that while the func-
tional form of spatial correlation is not highly sensitive to
entanglements, the spatial decay rate ξ 2

t is. In fact, it is
easy to recognize that the monomer mean-square displace-
ment g1(t) is simply the second moment of Gs(r, t). When
Gs(r, t) can be approximated by a Gaussian function (Fig. 2b):
Gs(r, t) ≈ [3/(2ξ 2

t π)]3/2 exp[−3r2/(2ξ 2
t )], we have g1(t) =

∫

r2Gs(r, t)dr = ξ 2
t and Sinc(Q, t) = exp(−Q2ξ 2

t /6). On the
other hand, our preceding analysis indicates that the differ-

1/4

1/2

FIG. 8. Characteristic displacement ξ 2
t obtained by fitting the spatial

decay by Eq. (8). Blue diamonds: results at 470 K. Red circles:
results at 509 K. Inset: corresponding shape parameters β .

ence between the functional forms of Gs(r, t) in the entangled
and unentangled regimes is quite subtle.

V. COMPARISON WITH THEORETICAL MODELS

Having discussed the results from molecular dynamic sim-
ulations and NSE experiments, we now confront the question
of whether the spatial correlations of entangled polymer dy-
namics can be adequately described by the existing theoretical
models. In addition to the classical tube theory [Eqs. (1) and
(9)], we include in our investigation the slip-spring model of
Likhtman [19] as well as the models of Ronca [20] and des
Cloizeaux [21]. We organize the discussions into two sub-
sections: incoherent dynamics (Section V A) and single-chain
coherent dynamics (Section V B). For the convenience of the
reader, we will give a brief overview of our main findings at
the beginning of each subsection.

A. Incoherent dynamics

This subsection compares the incoherent intermediate scat-
tering functions Sinc(Q, t) from the molecular dynamics sim-
ulations with those given by three theoretical models: the
Rouse model [17], the standard tube model [4–6, 15, 18], and
the slip-spring model [19]. The Rouse model predicts, to the
first approximation, Gaussian spatial correlations of incoher-
ent dynamics on both short and long time scales. This gives
rationales for the behavior of unentangled polymer melts from
MD simulations, as well as that of entangled melts at t < τe.
For the entangled dynamics, i.e., Sinc(Q, t) at t ≥ τe, the strict
1D diffusion idea of the classical tube model [15] [Eq. (1)]
creates a confinement that is too strong to be consistent with
the simulations (Figs. 2b, 3b, 3c, and 4c). On the other hand,
the slip-spring model [19] relaxes the impenetrable tube con-
straint by trapping a Rouse chain with linear springs anchored
in space. Our analysis shows such a treatment significantly
improves the prediction of the tube model by suppressing the
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spread of correlations in the reciprocal space, and good agree-
ment is found between the molecular dynamics results and
the slip-spring simulations with comparable degree of entan-
glement. The details of the analyses and calculations are pro-
vided below.

1. Rouse model

While the focus of the current study is entangled poly-
mers, it is instructive to first examine the spatial correlations
of Rouse dynamics [17]. According to the Rouse model, the
incoherent intermediate scattering function Sinc(Q, t) can be
approximated by the following formula on time scales shorter
than the Rouse relaxation time τR [39]:

Sinc(Q̃, t̃)≈ exp
(

− 2
π3/2

Q̃2t̃1/2
)

, (11)

where Q̃ = QRg and t̃ = t/τR. Eq. (11) implies that the spatial
correlation of Sinc(Q, t) at a given correlation time t can be de-
scribed by a Gaussian function, Sinc(Q, t) = exp

(

− 1
6 Q2ξ 2

t

)

,
where ξt is a characteristic length scale that depends on t.
At t ≫ τR, the incoherent intermediate scattering function is
dominated by center-of-mass diffusion, and its spatial corre-
lation is also Gaussian: Sinc(Q, t) ≈ exp(−Q2Dt), with D be-
ing the center-of-mass diffusion coefficient. The Rouse model
thus offers an explanation for the Gaussian-like spatial corre-
lations of unentangled polymer dynamics in the MD simula-
tions, and that of entangled polymers at t < τe.

2. Tube model

In Section III, we show that the standard tube model fails to
capture the incoherent intermediate scattering function from
the MD simulations. A more quantitative analysis can be per-
formed as follows. For t ≥ τe, the incoherent scattering func-
tion Sinc(Q, t) of an entangled polymer can be calculated ac-
cording to the tube model as [15]:

Sinc(Q, t) = exp[Q4y(t)]erfc[Q2
√

y(t)]exp(−Q2Dt), (12)

where D is the center-of-mass diffusion coefficient, erfc(x) is
the complementary error function, and y(t) = a2〈s2(t)〉/72,
with a being the tube diameter and 〈s2(t)〉 the mean-square
curvilinear segment displacement. For a given correlation
time τe ≤ t ≪ τd, exp(−Q2Dt) ≈ 1 and the spatial decay of
Sinc(Q, t) is of the form exp(x2)erfc(x), where x = Q2C2

t , with
Ct a constant determined by t. Using the standard result for
〈s2(t)〉 [15], we give an example of calculation of Sinc(Q, t) in
Fig. 9 for a well-entangled system with Z = 300. As implied
by Eq. (12), the incoherent scattering function Sinc(Q, t) devi-
ates from the Gaussian function and exhibits a long tail due
to the “hard” confinement of the tube. This predicted devia-
tion, however, is too strong in comparison with the behavior
in molecular dynamics simulations (Figs. 2b, 3b, 3c, and 4c).

FIG. 9. Example of the incoherent scattering function Sinc(Q, t) pre-
dicted by the standard tube model [15]. Symbols: tube model calcu-
lations for a well-entangled system with Z = 300. Lines: Gaussian
functions.

(a) (b)

(c) (d)

slip-spring sim.

N = 64 N = 128

Sinc(Q,t) Sinc(Q,t)

FIG. 10. (a) and (b): Spatiotemporal maps of incoherent scattering
function Sinc(Q, t) for slip-spring simulations of two different chain
lengths N = 64 and 128 with Ns = 1/2, Ne = 4, and ζs/ζ = 0.1.
(c) Comparison of molecular dynamics simulations and slip-spring
Brownian dynamics simulations. The MD result shown here is for
the semi-flexible chain system with N = 400 and N/Ne ≈ 14. The BD
result is for the N = 64 system with N/Ne = 16. The spatial corre-
lations are compared at four normalized correlation times: t/τe = 1,
10, 102, and 103. To match the MD and BD results, a tube diameter
of 4.1σ is used to normalize the wavenumber of the MD simula-
tion. Symbols: MD simulations. Solid lines: slip-spring simulations.
Dashed lines: exp(x2)erfc(x). (d) The sample result presented on
log-linear scale.

3. Slip-spring simulations

To further evaluate the idea of the tube model, we proceed
to analyze the incoherent intermediate scattering function of
the slip-spring model [19], where entanglements take the
form of slip-links. Examples of 2D color maps of Sinc(Q, t)
are shown in Figs. 10a and 10b. Figs. 10c and 10d com-
pare the spatial correlations of Sinc(Q, t) from the molecu-
lar dynamics and slip-spring simulations. The semi-flexible
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chain model with N = 400 has an average degree of entan-
glement of N/Ne ≈ 14. On the other hand, the N/Ne for
the N = 64 slip-spring system is 16. After normalizing the
MD data with proper entanglement time τe and tube diame-
ter a, a good agreement is found between the MD and BD
results for Sinc(Q, t). Therefore, by relaxing the topological
constraint from an “impenetrable” tube to slip-links, the slip-
spring model significantly improves the prediction for the in-
coherent scattering function. This is reflected in the tail of
the spatial correlations. Compared to a “rigid” tube, the softer
slip-spring constraint causes less spread of spatial correlations
in the reciprocal space. We note that the slip-spring model in-
cludes the constraint release effect through virtual coupling of
slip-links, which should also contribute to the improvement of
the theoretical prediction.

B. Coherent dynamics

In this subsection, we examine the spatial correlations of
single-chain coherent dynamics predicted by several theoret-
ical models: the Rouse model, Ronca model, des Cloizeaux
model, standard tube model, and slip-spring model. Com-
pared to the incoherent dynamics, the situation for coherent
dynamics is much more complicated. The main findings are
as follows.

Our analysis of the Rouse model [17] reveals that it pre-
dicts a highly compressed Gaussian function with β ≈ 1.5
for S(Q, t)/S(Q) at t ≪ τR. By contrast, our simulations and
NSE experiments indicate that the spatial correlations of high-
frequency local dynamics follow a slightly compressed Gaus-
sian function, with β on the order of 1.1. Our observations are
consistent with the previous report on the failure of the Rouse
model [40], where a weaker-than-expected Q dependence was
also found. At t ≤ τe, the slip-spring model, Ronca model, and
des Cloizeaux model all produce the normal Rouse dynamics
with spatial correlations of a strongly compressed Gaussian
function (β ≈ 1.4− 1.5), at odds with simulations and exper-
iments. Since Rouse dynamics is an essential building block
of these models, its failure significantly complicates the dis-
cussion of entangled dynamics at t ≥ τe. The Ronca model
incorporates the entanglement effect by adding to the equa-
tion of motion a memory term that is related to the relaxation
modulus of the system. As a result, the predicted spatial corre-
lations of dynamics is exactly Rouse-like even in the entangled
regime. Both the slip-spring and des Cloizeaux models envi-
sion a long tail for the spatial correlations of S(Q, t)/S(Q) at
t ≥ τe. Overall, the confinement effects introduced in the two
models appear too strong, as the functional form of the spa-
tial correlations changes drastically from a highly compressed
Gaussian to a “stretched” Gaussian function as the correlation
time is varied across τe. Lastly, our dynamic spatial corre-
lation analysis offers an explanation to the apparent success
of Eq. (9) [32]. For a well-entangled polymer at t ≫ τe, the
contribution of the local reptation, i.e., the second term on
the RHS of Eq. (9), is negligibly small. In this limit, the
spatial correlations of dynamics are described by a Gaussian
function, which is in close agreement with simulations and

NSE experiments. This feature distinguishes Eq. (9) from the
Ronca and des Cloizeaux models. Nevertheless, our preced-
ing analyses show that Gaussian-like spatial correlations are
in fact not a genuine trait of reptation. Additionally, Eq. (9)
suffers a number of intrinsic problems [19].

The details of our analyses are presented below.

(a)

(b)

FIG. 11. Spatial correlations of coherent single-chain Rouse dynam-
ics. (a) Decay of the normalized single-chain dynamic structure fac-
tor at different correlation times. Solid lines: fitting results by the
compressed Gaussian function, S(Q, t)/S(Q) = exp

[

− (Q2ξ 2
t )

β /6
]

,
with β ≥ 1. (b) Dependence of the exponent β on the correlation
time t/τR.

1. Rouse model

The coherent single-chain dynamic structure factor of a
Rouse chain of length N is given by [6, 39]:

S(Q̃, t̃) =
1

N2 exp
(

− 2
π2 Q̃2t̃

)

N

∑
m,n=1

exp
{

(13)

− Q̃2

N
|n−m|− 4Q̃2

π2

N−1

∑
p=1

1
p2 cos

(

pπn

N

)

cos
(

pπm

N

)

[

1− exp
(

− p2t̃
)]

}

,
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where Q̃ = QRg and t̃ = t/τR. And the corresponding static
single-chain structure factor is:

S(Q̃) =
1

N2

N

∑
m,n=1

exp
(

− Q̃2

N
|n−m|

)

. (14)

In the limit of N → ∞, Eq. (14) becomes the well-known
Debye function [6]. The normalized single-chain dynamic
structure factor S(Q̃, t̃)/S(Q̃) can be computed by combin-
ing Eqs. (13) and (14). In the long-time limit, i.e., t ≫ τR,
it is easy to show that S(Q̃, t)/S(Q̃) ≈ exp

(

− 2Q̃2t̃/π2
)

. In
general, a direct analysis of the spatial correlations through
analytical methods is challenging. However, the study can
be done numerically. Fig. 11 presents the spatial correlations
of S(Q̃, t̃)/S(Q̃) at different correlation times. For t ≪ τR,
the spatial decay of S(Q̃, t̃)/S(Q̃) is a Gaussian function with
β ≈ 1.5. As the correlation time increases, S(Q̃, t̃)/S(Q̃) is
less compressed and eventually becomes Gaussian at t ≫ τR.
The strong spatial dependence predicted by the Rouse model
at t ≪ τR is inconsistent with the existing results from molec-
ular dynamics simulations (Figs. 2, 3, and 4) and neutron spin-
echo spectroscopy experiments (Fig. 7). This problem com-
plicates the discussion of entanglement effect in many theo-
retical models, where Rouse-like dynamics serves an essential
building block. Lastly, we note that the validity of our numer-
ical evaluations of Eq. (13) has been confirmed by Brownian
dynamics simulations of the Rouse model.

2. Ronca model

Historically, a viable candidate for describing the co-
herent single-chain dynamics of entangled polymers is the
model proposed by Ronca [20]. The Ronca model enjoyed
some success in describing the early neutron spin-echo ex-
periments [13], but ultimately was deemed inferior to the
tube model when long Fourier time NSE data became avail-
able [32]. The weakness of the Ronca model can be better
appreciated from the perspective of spatial correlations of dy-
namics. According to the model, the normalized single-chain
dynamic structure factor S(Q, t)/S(Q) of an entangled poly-
mer can be calculated as:

S(Q̃, t̃)

S(Q̃)
=

Q̃2

4Z

∫ ∞

0
exp

[

− Q̃2

8Z
g

(

s,
16
π2 Z2t̃

)]

ds, (15)

where Q̃2 = Q2R2
g = Q2a2Z/6, t̃ = t/τR, and

g(x,y) = 2x− exp(x)erfc
(√

y+
x

2
√

y

)

+ exp(−x)erfc
(

x

2
√

y
−√

y

)

.

In the limit of t → ∞, the spatial correlation in the entangle-
ment plateau region is

S(Q̃,∞)

S(Q̃)
=

Q̃2

4Z

∫ ∞

0
exp

{

− Q̃2

4Z
[s+ exp(−s)]

}

ds. (16)

(a)

(b)

FIG. 12. (a) Prediction of the Ronca model [20] for the normal-
ized single-chain dynamic structure factor S(Q, t)/S(Q,0) of a well-
entangled polymer with Z = 300. The wavenumber Q is normalized
by the tube diameter a. Lines: compressed Gaussian functions with
β = 1.5. (b) Master curve of S(Q, t)/S(Q) at different correlation
times.

The approximation given by Ronca is: S(Q̃,∞)/S(Q̃) ≈ 1−
9

124Z2 Q̃4, which has a much stronger Q dependence than the
Gaussian function. Numerically, we find that the S(Q, t)/S(Q)
at different correlation times can be approximated by a
strongly compressed Gaussian function with β = 1.5. Fig. 12
shows that according to the Ronca model the functional form
of S(Q, t)/S(Q) is exactly the same for t < τe and t > τe.
This behavior is a direct result of the basic approach of the
model: the entanglement effect is introduced to the equation
of motion by including a memory term that is closely related
to the relaxation modulus of the system. Since there is no
concept of topological constraint, the predicted spatial corre-
lations are still Rouse-like in the entanglement plateau region,
with β = 1.5. By contrast, both the molecular dynamics simu-
lations (Figs. 2, 3, and 4) and neutron spin-echo spectroscopy
experiments (Fig. 7) indicate that the spatial correlations of
entangled dynamics can be approximated by a slightly com-
pressed Gaussian function, with β on the order of 1.1.

3. des Cloizeaux model

Another entangled polymer model of interest is the one pro-
posed by des Cloizeaux [21], in which the normalized single-
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FIG. 13. Prediction of the des Cloizeaux model [21] for the normal-
ized single-chain dynamic structure factor S(Q, t)/S(Q) of a well-
entangled polymer with Z = 300. Solid line: compressed Gaussian
function with β = 1.4. Dashed line: Gaussian function.

chain dynamic structure factor is described by the following
equation:

S(Q̃, t̃)

S(Q̃)
=

Z

Q̃2
ln
(

1+
1
Z

Q̃2
)

(17)

+
∫ ∞

0
dµ e−µF

(

1√
π

Q̃2t̃1/2,µ
1
Z

Q̃2
)

,

with

F(x,y) =

∫ 1

0
dA

∫ 1

0
dB {yexp [−yA−G(A,B,x,y)]} ,

G(A,B,x,y) =
1√
π

∫ x

0
dw×

∑∞
p=−∞

∣

∣

∣

∣

exp
[

− (A− 2p)2y2

w2

]

− exp
[

− (B− 2p)2y2

w2

]
∣

∣

∣

∣

.

In the long-time limit, S(Q̃,∞)/S(Q̃) is of the form:

S(Q̃,∞)

S(Q̃)
=

Z

Q̃2
ln
(

1+
1
Z

Q̃2
)

− Q̃2

2Z

∫ 1

0

du ln|2u− 1|
(1+ uQ̃2/Z)2

. (18)

It is easy to verify that the spatial decay of S(Q, t)/S(Q) pre-
dicted by Eq. (18) is much slower than a Gaussian function,
which is inconsistent with our simulations and experiments.

4. Tube model

In Section IV, we show that the widely used the tube model
formula [Eq. (9)] provides a fair description of the normalized
single-chain dynamic structure factor S(Q, t)/S(Q) from neu-
tron spin-echo spectroscopy, in agreement with the previous
experiments [32]. This apparent success of the tube model re-
quires further examination and explanation. For large Z and
t ≫ τe, Eq. (9) is dominated by the reptational diffusion term:

S(Q̃, t̃)

S(Q̃)
≈ exp

(

− Q̃2

6Z

)

[

8
π2 ∑

p:odd

1
p2 exp

(

− p2t̃

3Z

)

]

, (19)

whose spatial dependence is described by a Gaussian function.
Furthermore, if t ≪ τd, S(Q̃, t̃)/S(Q̃)≈ exp(−Q̃2/6Z). On the
other hand, our molecular dynamics simulations and NSE ex-
periments show that the spatial correlations of S(Q, t)/S(Q)
can be approximated by a slightly compressed Gaussian func-
tion, with β ≈ 1.1. Therefore, the effectiveness of Eq. (9)
comes from the term exp(−Q̃2/6Z), instead of local repta-
tion dynamics. In the literature, exp(−Q̃2/6Z) is sometimes
referred to as the form factor of the tube [41]. However, a
close inspection of the calculations by de Gennes [18] and
Likhtman [19] indicates that this form factor is in fact not
an integral part of the classical tube theory: in de Gennes’
treatment, the Gaussian tube “form factor” is assumed, not
derived; in Likhtman’s derivation, the tube “form factor” is
1/(1+ Q̃2/6Z), which approaches the Gaussian function only
when Q̃2/6Z ≪ 1.

In addition to Likhtman’s criticisms about Eq. (9) in
Ref. [19], here we point out two more problems from the
viewpoint of spatial correlation analysis. First, the spa-
tial correlation of the single-chain dynamic structure factor
S(Q, t)/S(Q) is not properly normalized for a moderately en-
tangled polymer at t ≫ τe: limQ→0 S(Q, t)/S(Q) 6→ 1 in the
zero-angle limit. This problem can be seen in the fitting curves
of Fig. 6. Second, as we alluded to in the preceding discus-
sion, the contribution from the local reptation term, i.e., the
second term on the RHS of Eq. (9), is negligibly small for a
well-entangled system at t ≫ τe. In other words, it is not pos-
sible to use Eq. (9) to examine the local reptation mechanism
in any meaningful way.

(a) (b)

(c) (d)

slip-spring sim.

N = 64 N = 128

S(Q,t)/S(Q) S(Q,t)/S(Q)

FIG. 14. (a) and (b): spatiotemporal maps of normalized single-chain
dynamic structure factor S(Q, t)/S(Q) for slip-spring simulations of
two different chain lengths N = 64 and 128 with Ns = 1/2, Ne = 4,
and ζs/ζ = 0.1. (c) Comparison of molecular dynamics simulations
(N = 400 semi-flexible chains) and slip-spring Brownian dynamics
simulations (N = 64). Symbols: MD simulations. Solid lines: slip-
spring simulations. (d) The same result presented on log-linear scale.
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5. Slip-spring simulations

Finally, we consider Likhtman’s slip-spring model [19],
which seems to be able to provide a fair description of in-
coherent dynamics. Unfortunately, our analysis suggests that
the situation is less satisfactory for the single-chain coher-
ent dynamics. An inspection of the spatiotemporal map of
single-chain structure factor (Fig. 14) reveals visible changes
of color gradient along the wavenumber direction at differ-
ent correlation times, implying a significant difference in the
Q-dependence of S(Q, t)/S(Q). This behavior differs qual-
itatively from the molecular dynamics simulations (Fig. 1).
For t ≤ τe, the slip-spring model predicts a spatial decay of
S(Q, t)/S(Q) that is too steep to be consistent with the exper-
iments and simulations (Figs. 14c and 14d). This issue comes
directly from the failure of the Rouse model. For t ≫ τe,
the long tail predicted by the slip-spring model appears too
strong when compared with the molecular dynamics simula-
tions (Fig. 14).

VI. RELATION TO PREVIOUS STUDIES

A. Molecular dynamics simulations

Entangled polymers have been extensively studied by
molecular dynamics simulations [12, 14, 19, 34, 42–47]. To
put this work into perspective, we outline here the key dif-
ferences between our approach and those adopted by previ-
ous investigations. For the self dynamics, the focus of sim-
ulation studies is traditionally the mean-square displacement
(MSD) of monomers g1(t) in the laboratory frame, MSD of
monomers in the center of mass frame g2(t), and MSD of the
center of mass g3(t) [12], due to the well-known predictions
of the tube model for these quantities [4, 6]. As we know,
g1(t) is simply the second moment of the self part of the van
Hove function Gs(r, t) [23]:

g1(t) =
∫

r2Gs(r, t)dr. (20)

The incoherent scattering function Sinc(Q, t), which plays a
central role in our current investigation, is nothing but the spa-
tial Fourier transform of Gs(r, t):

Sinc(Q, t) =

∫

Gs(r, t)e
−iQ·r dr. (21)

In other words, this work calls attention to the space-time cor-
relation function Gs(r, t) itself, not just its statistical moments.
The monomer mean-square displacement g1(t) from our sim-
ulations is consistent with the previous studies in the literature
(Fig. 15): g1(t) ∼ t1/2 for t < τe and g1(t) ∼ t1/4 for t > τe.
Interestingly, while the classical tube model correctly predicts
the scaling behavior of mean-square displacement, our analy-
sis shows that the functional form of Sinc(Q, t) is not properly
described by the theory. This observation underscores the im-
portance of direct analysis of scattering functions, in addition
to mean-square displacements. For coherent dynamics, the

FIG. 15. Monomer mean-square displacement g1(t) for molecular
dynamics simulations of semi-flexible chains with different lengths
N = 25, 400, and 2000.

previous simulation studies follow the traditional strategy and
analyze the normalized single-chain dynamic structure factor
S(Q, t)/S(Q) at discrete wavenumbers. By contrast, the focus
of the current work is to illustrate the benefits of examining
the spatial correlations of S(Q, t)/S(Q) at different correlation
times.

B. Neutron spin-echo spectroscopy

The dynamics of entangled polymers has also been investi-
gated extensively by neutron spin-echo spectroscopy over the
past several decades [13, 30, 32, 33, 48–53]. It is therefore
imperative for us to put this work into the context of the ex-
isting NSE studies as well. From a technical point of view,
our NSE experiment differs from the previous studies in its
explicit focus on spatial dependence of dynamics. While a
typical study in the past covers only a few Qs in a narrow win-
dow, the present work examines 23 discrete Qs in the range of
0.021–0.21 Å−1. Another obvious difference is that instead of
analyzing the time correlation of scattering functions at dif-
ferent Qs, we place emphasis on the spatial correlations of
dynamics at discrete Fourier times.

There is also the question of whether our spatial correla-
tion analysis agrees with the published NSE data on entan-
gled polymers. To properly address this issue, we digitize the
polyethylene (PEB-2) data in Ref. [32] and the polyethylene
propylene (PEP) data in Ref. [33], present the single-chain
dynamic structure factor at discrete correlation times, and ap-
ply horizontal shift factors to construct master curves. Fig. 16
indicates that both data sets can be described by slightly com-
pressed Gaussian functions, which is in qualitative agreement
with our molecular dynamics simulations and NSE experi-
ments.

In Section V of this paper, dynamic spatial correlation anal-
ysis is applied to a number of molecular models of poly-
mers, including the Rouse model [17], the classical tube
model [4, 6, 15], the slip-spring model [19], the Ronca
model [20], and the des Cloizeaux model [21]. These models
were also the subject of previous NSE investigations [13, 30,
32, 33, 40, 48, 49, 52, 53], where a major goal was to see if the



12

(a) (b)

FIG. 16. Master curves constructed using our approach for the NSE
data reported in (a) Ref. [32] and (b) Ref. [33]. Symbols: NSE
data. Solid lines: compressed Gaussian functions. Dash-dotted lines:
Gaussian functions.

models provided a good fit to the experimental data. The dy-
namic spatial correlation analysis, on the other hand, allows us
to ask a more critical question: do these models contain all the
essential physics? For example, from the viewpoint of spatial
correlations, we are able to rationalize the apparent success of
the tube model formula [Eq. (9)] and at the same time under-
stand its deficiencies. Similarly, using dynamic spatial corre-
lation analysis, we are able to clearly illustrate the improve-
ment of the slip-spring model over the original tube model for
incoherent dynamics, and identify the missing physics for co-
herent motions. In this regard, our spatial correlation analysis
offers a different perspective for understanding the dynamics
of entangled polymers.

3D problem ✂�✁✄ ☎✆✝✞✟✠✡

FIG. 17. Schematic illustration of the original idea of the tube model:
the chain motion is confined in a one-dimensional tube-like region.

VII. CONCLUDING REMARKS AND SUMMARY

In summary, the dynamics of entangled polymers is exam-
ined through the lens of spatial correlation analysis. We find
that soft topological constraints have a relatively weak influ-
ence on the functional form of spatial correlations. Dynamic
localization in real space spreads out in the reciprocal space,
appearing as a long tail in the incoherent and coherent inter-
mediate scattering functions. These results cannot be fully
described by the theoretical models investigated in this work.
To further highlight the lessons we have learned from this ex-
ploratory study, we outline below some key implications of

the dynamic spatial correlation analysis.

• A different methodology: This work calls attention to
the spatial correlations of intermediate scattering func-
tions of polymers. For historical and practical reason,
intermediate scattering functions of liquids are typically
determined and analyzed at a few discrete wavenum-
bers in scattering experiments or computer simulations.
Spatial correlation analysis provides a simple, alterna-
tive viewpoint of polymer dynamics. This approach is
particularly useful when the traditional time correlation
analysis becomes difficult.

• Universality and signature of entanglement: Using
molecular dynamics simulations and neutron spin-echo
spectroscopy, we show that the initial spatial decays
of both self and collective dynamics are similar in the
unentangled and entangled regimes. This observation
holds for different molecular weights and systems of
different interactions, implying a level of universality in
polymer melt dynamics. The influence of entanglement
is mainly reflected in the tail of spatial correlations of
intermediate scattering functions, which is difficult to
resolve with the current neutron spin-echo technique,
but can be readily studied with computer simulations.

• Theoretical implications: The Rouse model does not
produce proper spatial correlations of collective single-
chain dynamics on short time scales (t < τR). This is a
problem for theoretical modeling of not only unentan-
gled melts, but also entangled polymers, where Rouse-
like local motions are elementary steps of chain dynam-
ics. Moreover, the idea of the standard tube model —
strongly confined Rouse dynamics in an impenetrable
tube (i.e., strict 1D diffusion idea, see Fig. 17) — fails
to describe the spatial correlations of incoherent dy-
namics. The task of describing collective dynamics is
even more challenging. The standard tube model for-
mula [Eq. (9)], the Ronca model [Eq. (15)], and the des
Cloizeaux model [Eq. (17)] all have problems of their
own. The slip-spring model, while reasonably success-
ful in describing the segmental self dynamics, still can-
not account for the collective spatial correlations of en-
tangled dynamics.

We note that the tube model has long been criticized for its
phenomenological treatment of topological constraints, where
simplified assumptions about liquid motions are introduced to
mimic the entanglement effect. In this regard, dynamic spa-
tial correlation analysis should provide a useful tool for de-
veloping a more fundamental theoretical description of poly-
mer entanglement. An intriguing question is whether the es-
sential features of spatial correlations reported here can nat-
urally arise from alternative theoretical approaches to entan-
gled polymers [54–60]. Additionally, our current MD inves-
tigations are limited to coarse-grained bead-spring models of
polymers. While these simulations are qualitatively consistent
with the NSE experiments, quantitative studies with atomistic
simulations are highly desirable in the future.
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Finally, we offer a speculative insight into possible direc-
tions for future theoretical development. Our hypothesis is
that incompressibility plays a crucial role in slow dynamics of
polymer melts. For a melt consisting of M chains of length
N, we can define the following normalized dynamic structure
factors:

Sintra(Q, t)≡ 1
MN2

M

∑
n

N

∑
i, j

〈

e−iQ·[Rn,i(t)−Rn, j(0)]
〉

, (22)

Sinter(Q, t)≡ 1
M2N2

M

∑
n 6=m

N

∑
i, j

〈

e−iQ·[Rm,i(t)−Rn, j(0)]
〉

, (23)

where Sintra(Q, t) and Sinter(Q, t) are respectively the intra-
chain and interchain dynamic structure factors. Rm,i(t) is the
position of segment i in chain m at time t. Using the stan-
dard argument in the literature, it is straightforward to show
that Sintra(Q, t) and Sinter(Q, t) are proportional to each other
under the constraint of incompressibility:

Sintra(Q, t) =−MSinter(Q, t). (24)

A derviation of Eq. (24) is given in the Appendix. Eq. (24)
indicates a close relation between intrachain and interchain
dynamics. It is the basis for extracting single-chain dynamic
structure factors from NSE experiments on isotopically la-
beled polymer melts. On the other hand, the static version
of Eq. (24) lays the foundation for determining single-chain
structure factors from SANS experiments [61–64].

Eq. (24) implies that the intrachain and interchain dynam-
ics of polymer melts are mirror images of each other due to
the incompressibility of liquids. This is a strong constraint for
collective polymer melt dynamics, which by definition cannot
be addressed by single-chain models. Our spatial correlation
analysis indicates that the incoherent dynamics of unentan-
gled and entangled polymers can be more or less described
by the Rouse and slip-spring models, respectively. However,
none of the models examined in this work can give proper
predictions for the single-chain coherent dynamics. These ob-
servations seem to point to a fundamental difficulty in model-
ing collective dynamics of polymer melts. In our view, a key
missing theoretical ingredient here is an explicit consideration
of liquid incompressibility.
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Appendix: Role of incompressibility in polymer melt dynamics

In this appendix, we give a derivation of Eq. (24) in the
main text. Let us consider the coherent scattering func-
tion I(Q, t) of a binary blend of hydrogenous and deuter-
ated polymers: I(Q, t) = b2

HSHH(Q, t) + 2bHbDSHD(Q, t) +
b2

DSDD(Q, t), where bH and bD are the coherent scattering
lengths of the hydrogenous and deuterated chain segments

respectively, and Sαβ (Q, t) = ∑
Nα
i=1 ∑

Nβ

j=1〈e−iQ·(ri(0)−r j(t))〉 is
the partial dynamic structure factor, with Nα and Nβ being
the total numbers of chain segments for species α and β re-
spectively. Using the standard technique [65], we can ex-
press Sαβ in terms of the fluctuations of the number density
∆nα(r, t)≡ nα(r, t)−〈nα〉 as:

Sαβ (Q, t) =

∫ ∫

〈∆nα(u,0)∆nβ (r+u, t)〉e−iQ·r dudr,

where the null scattering 〈nα〉〈nβ 〉V (2π)3δ (Q) at Q = 0
is discarded. Applying the incompressibility condition
∆nH(r, t)+∆nD(r, t) = 0, we have

SHH(Q, t)+ SHD(Q, t) =
∫ ∫

〈∆nH(u,0)[∆nH(r+u, t)+∆nD(r+u, t)]〉

× e−iQ·r dudr = 0.

Similarly, we can show that SHD(Q, t)+SDD(Q, t) = 0. It fol-
lows that

I(Q, t) = (bα − bβ )
2Sαα(Q, t)

=−(bα − bβ )
2Sαβ (Q, t).

(A.1)

Setting the correlation time t to zero, one recovers the funda-
mental theorem of small-angle neutron scattering by incom-
pressible liquids [63]. For an isotopically labeled polymer
melt containing φ volume fraction of hydrogenous chains and
(1− φ) deuterated chains, the partial dynamic structure fac-
tors SHH(Q, t) and SHD(Q, t) can be expressed in terms of
Sintra(Q, t) and Sinter(Q, t) as:

SHH(Q, t) = φMN2Sintra(Q, t)+φ2M2N2Sinter(Q, t), (A.2)

SHD(Q, t) = (1−φ)φM2N2Sinter(Q, t). (A.3)

Combining Eqs. (A.1), (A.2), and (A.3), we arrive at a key
relation between intrachain and interchain dynamics:

Sintra(Q, t) =−MSinter(Q, t). (A.4)
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