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Living cells respond to mechanical changes in the matrix surrounding them by applying contractile
forces that are in turn transmitted to distant cells. We consider simple effective geometries for the
spatial arrangement of cells, we calculate the mechanical work that each cell performs in order
to deform the matrix, and study how that energy changes when a contracting cell is surrounded
by other cells with similar properties and behavior. Cells regulating the displacements that they
generate are attracted to each other in a manner that does not depend on the cells rigidity. Whereas
cells regulating the active stress that they apply repel each other. This repulsion depends on the
cells bulk modulus in spherical geometry, while in cylindrical geometries the interaction depends
also on their shear modulus. In nonlinear, strain stiffening matrices, for displacement regulation,
in the presence of other cells, cell contraction is limited due to the divergence of the shear stress.
For stress regulation, the interaction energy drops at the nonlinear stiffening stress. Our theoretical
work provides insight into matrix-mediated interactions between contractile cells and on the role of
their mechanical regulatory behavior.

I. INTRODUCTION

Living cells embedded in, or adhered on an elastic en-
vironment transmit mechanical forces through deforma-
tions of their surrounding solid medium [1]. Thus their
active contraction may be felt by non-contacting cells
through the propagation of stress and strain fields via
this matrix. Such mechanical interactions between cells
and their surrounding environments, as well as matrix-
mediated cell-cell interactions are important for many
biological processes, such as stem-cell differentiation [2],
wound healing [3], embryonic development [4], cell di-
vision [5, 6], cancer metastasis [7, 8], and cell-cell bio-
chemical communication [9–11]. Recent experiments in
synthetic setups or geometries enable to isolate and study
these mechanical interactions [12–17].

Theoretically, cell contraction is customarily modeled
by assuming that cells generate active force dipoles [18],
namely that they apply on the elastic medium pairs of
equal-magnitude and oppositely-pointing forces. The in-
teraction between distant such force dipoles may be de-
scribed in terms of the excess elastic energy stored in the
medium in a situation with interacting cells compared to
the total energy of these cells without interactions. In-
teraction energies between active force dipoles have been
studied in the past in the context of atoms adsorbed to
surfaces [19], and more recently in the cell mechanics
context, with studies ranging from simple, linear dipoles
comprised of pairs of point forces [20–25] to more com-
plex continuous shapes [26].

To simplify the description of actively contractile cells,
cells within a three-dimensional medium [5, 17] have
been modeled as spherical force dipoles [27–30]. Namely,
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the mechanical activity of each cell is described by
an isotropic distribution of radial external forces that
are applied on the surface of a sphere within a three-
dimensional elastic medium. This may be thought of as
a continuous collection of linear force dipoles distributed
isotropically on the surface of this sphere, with each such
linear force dipole applying equal and opposite forces at
two opposing points on the sphere. This spherical ge-
ometry implies spherical symmetry for the elastic fields
around a cell, and thus simplifies the partial differential
equations of elastic equilibrium that should be solved to
a one-dimensional or ordinary differential equation for
the radial displacement as a function of the radial coor-
dinate. We note that this model should be thought of
as a representation of an effective geometry. If the cell
would simply contract isotropically as in our simplified
model, its volume would change, which is not consistent
with the fact that actual cells are nearly incompressible.
Instead, our geometry should be thought of as an effec-
tive description for the more complex realistic situation
in which cell contraction is very anisotropic. Having said
that, there are experiments of relatively symmetric fi-
broblast cells exhibiting contraction in 3D fibrin gels in
the first hours after seeding the cells in the gel [17, 31] or
of cancer cells contracting in collagen gels [32].

Along these lines, interactions between biological cells
have been modeled by imposing a zero-displacement
boundary condition at some distance from this spheri-
cal cell [29]. The justification for this is to first assume
that the spatial distribution of cells in their elastic envi-
ronment is on a periodic array. In such case, by symme-
try, the normal displacement on the surface of each pe-
riodic unit-cell of this array should vanish. A reasonable
mean-field approximation would then be to replace the
actual polyhedral periodic unit-cell with a spherical unit-
cell with zero displacement on its boundary, which results
in a simple one-dimensional geometry also for the study
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of cell-cell interactions. Note that the periodic unit-cell
of an array of biological cells and the spherical domain
approximating this unit-cell should not be confused with
the biological cells.

Cell-cell elastic interactions are similar, but not iden-
tical to electrostatic interactions between induced elec-
tric dipoles [1, 18, 23, 33, 34], and the interaction energy
scales algebraically with distance. Interestingly, the sign
of the interaction energy is set by the homeostatic be-
havior of the cells; cells regulating the displacement on
their boundary repel each other, and cells regulating the
force that they apply are mechanically attracted to each
other [29]. Elaborate solutions, which include the inter-
ference between the angular dependence of the deforma-
tion fields around two spheres recover these mean-field
results, both in terms of the sign and of the exponents of
the power-law decay in the magnitude of the interaction
energy [34].

In this Paper we use the aforementioned mean-field ap-
proach to study additional geometries, namely not only
spherical symmetry, but also two simple cylindrical se-
tups [35] that relate to cells on substrates or to elongated
cells in a three-dimensional matrix. In doing that, we
provide further insight on matrix-mediated elastic inter-
actions in more complex geometries, for which analytical
results are not known. Furthermore, we include in our
calculations the stiffness of the interior the cell, and not
only that of the surrounding matrix. Finally, and most
importantly, we extend our analysis to cells in nonlinear,
strain-stiffening media [27].

II. MODEL AND INTERACTION ENERGY

We analyze two geometries, one in which the contract-
ing cell is assumed to be a sphere of radius R0, and the
other in which it is assumed to be a cylinder of radius R0.
In both geometries, we model the presence of neighboring
cells by imposing a rigid wall with zero normal displace-
ment at some larger radius R1, see Fig. 1. This radius
represents half of the distance to nearby cells, since in re-
alistic geometries, by symmetry the normal displacement
should vanish at that position. In our model, the biolog-
ical cell has linear elastic response characterized by shear
modulus µc and bulk modulus Kc. In Sec. III we will
assume that the matrix is also linearly elastic with shear
modulus µm and bulk modulus Km, while in Sec. IV we
will include nonlinear strain-stiffening of the matrix.

The elastic energy stored in the cell and in the ma-
trix together is equal to the mechanical work performed
by the active, or external forces, which act only at the
surface of the cell. Here, these are radial forces that act
at the radius R0 and generate a radial displacement u0

there. We assume that in the absence of these active
forces, the elastic medium is relaxed, and hence we cal-
culate the work done on the matrix by integrating over
the adiabatic process of building up the displacement u0,
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FIG. 1. Schematic of a single cell in an infinite matrix (a)
and in a bounded region (b). The cell may be a sphere (c),
a flat cylinder (d) for plane stress, or a long cylinder (e) for
plane strain.

starting from this relaxed state [26]

E =

∫ u0

0

gτ(w)dw. (1)

Here w denotes the displacement at R0 during this pro-
cess, and τ(w) = σc(R0) − σm(R0) is the active stress
applied by the cell, namely the discontinuity in the ra-
dial component of the stress tensor on the surface of the
cell when the displacement there is equal to w. We use
σc and σm to denote the radial component σrr of the
stress tensor in the cell and in the matrix, respectively.
The geometrical factor relating stress to force is equal to
g = 4πR2

0 in the spherical geometry. In the cylindrical
geometry we use g = 2πR0 to obtain the force per unit
length of the cylinder, and subsequently the energy per
unit length. Since much of our analysis and discussion be-
low is performed simultaneously for the two geometries,
for brevity we will use the term energy and the symbol E,
for energy in the spherical geometry and for energy per
unit length in the cylindrical geometry. If the medium
is linearly elastic (Sec. III), there is a linear proportion-
ality between displacement and active stress, τ(w) ∝ w,
and Eq. (1) reduces to E = 1

2gσ0u0, where σ0 = τ(u0) is
the active stress, or stress difference on the surface of the
cell when the displacement there is equal to u0 [29, 34].
However, for nonlinear media (Sec. IV), the entire de-
pendence of τ on w up to the actual displacement u0 is
required in order to perform the integration in Eq. (1).

We define the interaction energy as the added work
that the cell has to perform due to the presence of neigh-
boring cells. Within our mean-field approximation, this
is equal to the difference

∆E = E1 − E∞ (2)
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between the elastic energy E1 stored in the medium when
there is a zero-displacement boundary condition at R1

(Fig. 1b) and the elastic energy E∞ of the same cell in
an unbounded matrix (Fig. 1a). Care should be given
to the meaning of this placement of the same cell in
two different mechanical environments. Obviously when
identical cells have different environments, they behave
differently [2, 36–41]. In our case, the confining geome-
try alters the relation between the active stress τ and the
displacement u0. Thus cells in the confined and in the
unbounded geometries cannot simultaneously have both
the same active stress and the same deformation. We will
consider two extreme scenarios: i) displacement regula-
tion, for which cells are assumed to be biologically pro-
grammed to generate a given displacement u0, regardless
of what active stress they need to apply in order to reach
that deformation, and ii) stress regulation, for which cells
apply a given active stress σ0, regardless of the displace-
ment they manage to generate.

For cells regulating the displacement on their surface,
the far-field zero-displacement boundary condition im-
posed by the presence of neighboring cells causes cells to
apply a higher active stress in order to generate a given
contraction. Thus we expect the interaction energy to be
positive, representing repulsion between cells. For stress
regulation, on the other hand, a smaller displacement will
be generated in the presence of other cells, thus leading
to a negative interaction energy, or to attraction [29, 34].
We consider cells that are embedded in a solid surround-
ing, thus they cannot easily move due to these repul-
sive or attractive interactions. However, we suggest that
these interactions are the mechanical cause for instance
for cells to send protrusions one toward each other or
rather away from each other [15] or for cells to generate
bands of densification and alignment of the network of
fibers around them [9, 31], and also for migratory behav-
ior of cells on substrates [12]. Alternatively, our results
could be used to explain when do cells regulate their dis-
placement and when do they regulate their active stress,
depending on the energetic cost for doing so.

Our strategy for calculating the interaction energy for
the different cases described above is as follows: We first
assume a displacement u0 on the boundary of the cell,
and solve for the displacement field. Using the resulting
strain, we calculate the stress on the boundary of the cell,
and from that the active stress σ0 that the cell has to ap-
ply to generate the displacement u0. We then use these
to calculate the elastic energy stored in the deformation.
For displacement regulation we subtract the resulting en-
ergies in the bounded and in the unbounded geometries
to get the interaction energy, Eq. (2) at a given displace-
ment u0. For stress regulation, we combine our results
for E vs. u0 and for σ0 vs. u0 to obtain E vs. σ0, and
then use Eq. (2) to get the interaction energy at a given
active stress σ0. This procedure has been applied previ-
ously [29] for an empty spherical cell in a linearly elastic
medium, with the focus on the asymptotic behavior when
cells are far apart from each other, which translates to

R1 � R0 in our model. Here, we provide the full depen-
dence on distance, and also: i) include a passive, elastic
rigidity of the interior of the cell, ii) solve for additional
cases with cylindrical symmetry, and iii) study the effects
of nonlinear elastic response of the matrix.

III. LINEAR MEDIUM

Our spherical and cylindrical geometries both as-
sume radial symmetry, such that the displacement vector
~u(~r) = u(r)r̂ is given only by the radial component u(r),
which depends only on the radial coordinate r. In this
section we assume that the mechanical response of both
the cell and the surrounding matrix is linearly elastic.
This leads to linear ordinary differential equations for
u(r), which we analytically solve. Thus we obtain exact
analytical expressions for the interaction energy in the
different geometries. More complicated nonlinear mate-
rial models may be considered for the cell and for the
matrix, for instance the nonlinear elastic response of the
matrix as described in Sec. IV below. Such models re-
sult in nonlinear differential equations that need to be
solved in order to obtain the displacement field. How-
ever, the spherical and cylindrical symmetries of our ge-
ometrical setups reduces the general three-dimensional
partial differential equations of nonlinear elasticity to
one-dimensional ordinary differential equations, which,
if needed, may be solved numerically much more easily.

A. Spherical Cell

For spherical symmetry (Fig. 1c), mechanical equilib-
rium implies [42]

d2u

dr2
+

2

r

du

dr
− 2u

r2
= 0. (3)

The general solution to this equation is:

u(r) = Cr +
D

r2
, (4)

where the constants C and D are set by the boundary
conditions. For spherical symmetry, the radial stress is
given by [42]

σrr =
4

3
µ

(
du

dr
− u

r

)
+K

(
du

dr
+

2u

r

)
, (5)

which for the general solution (4) may be written as

σrr = 3KC − 4µD

r3
. (6)

Thus for spherical symmetry, the u ∝ r term in (4) rep-
resents pure compression, while the u ∝ 1/r2 term rep-
resents pure shear.
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Inside the cell (0 < r < R0) the boundary conditions
are u(0) = 0 and u(R0) = u0, thus the displacement is
given by

uc =
u0r

R0
, (7)

which contains only compression, and the stress in the
cell is uniform and equal to

σc = 3Kc
u0

R0
, (8)

which depends only on the bulk modulus of the cell and
not on its shear modulus.

In the surrounding matrix (r > R0), the displacement
at the cell border is u(R0) = u0. For the unbounded case,
the second boundary condition is that u = 0 at r = ∞,
leading to

um,∞ =
u0R

2
0

r2
, (9)

which contains only shear. The stress in the matrix in
this case is thus

σm,∞ = −4µmu0R
2
0

r3
= −4µm

u0

R0
, (10)

where the second equality is obtained by setting the po-
sition to be on the surface of the cell, r = R0. The total
work that an isolated cell performs in order to deform
both itself and the matrix that surrounds it is thus

E∞ = 2πu2
0R0(3Kc + 4µm). (11)

For the bounded case, the second boundary condition
is now u(R1) = 0, and the displacement in the matrix is

um,1 =
u0R

2
0

R3
1 −R3

0

(
R3

1

r2
− r
)
, (12)

which contains both shear and compression. In this case,
the stress in the matrix is

σm,1 = −4µmR
3
1 + 3KmR

3
0

R3
1 −R3

0

u0

R0
, (13)

and the energy is

E1 = 2πu2
0R0

[
3Kc +

4µmR
3
1 + 3KmR

3
0

R3
1 −R3

0

]
. (14)

1. Displacement Regulation

If the cell generates the same displacement u0 on its
boundary regardless of its mechanical environment, the
interaction energy is just the difference between the en-
ergy (14) when it is bounded and the energy (11) when
it is unbounded, namely

∆E = E1 − E∞ = 2πu2
0R

4
0

4µm + 3Km

R3
1 −R3

0

. (15)

This result depends on both the bulk and shear moduli
of the matrix because both compression and shear are
generated in the matrix. It does not, however, depend
on the elastic moduli of the cell since for displacement
regulation, the cell deforms in the exact same way in
the bounded and in the unbounded geometries, thus the
same energy is stored in the cell for both geometries. As
predicted above, for displacement regulation, the inter-
action energy is positive, representing repulsion between
cell. For large separation between cell (R1 � R0), the
interaction energy decays as 1/R3

1, which is consistent
with a mapping to interactions between induced electric
dipoles [29, 34].

2. Stress Regulation

If the cell generates the same active stress σ0 both
when it is bounded and when it is unbounded, we need
to first express the energies E1 and E∞ in terms of σ0

rather than u0, and only then subtract them to get the
interaction energy. Using Eqs. (10) and (8), for an un-
bounded cell, the displacement on its boundary is given
by

u0,∞ =
σ0R0

3Kc + 4µm
, (16)

And from Eq. (11), the energy in this case is given by

E∞ =
2πσ2

0R
3
0

3Kc + 4µm
. (17)

Similarly, from Eqs. (13) and (8), the displacement on
the boundary of a bounded cell is

u0,1 =
σ0R0(R3

1 −R3
0)

4µmR3
1 + 3KmR3

0 + 3Kc (R3
1 −R3

0)
, (18)

and the energy (14) in this case is

E1 =
2πσ2

0R
3
0(R3

1 −R3
0)

4µmR3
1 + 3KmR3

0 + 3Kc (R3
1 −R3

0)
. (19)

By subtracting (17) from (19) we get that for stress reg-
ulation the interaction energy is

∆E = − 2πσ2
0R

6
0(4µm + 3Km)

(4µm + 3Kc) [4µmR3
1 + 3KmR3

0 + 3Kc (R3
1 −R3

0)]
.

(20)
As discussed above, for stress regulation, the interaction
energy is negative, representing attraction between cells.
Moreover, here the contraction of the cell differs between
the bounded and unbounded geometries, therefore the
interaction energy depends on the stiffness of the cell.
However, for spherical symmetry the deformation of the
cell includes only compression, thus the interaction en-
ergy depends on the bulk modulus of the cell but not on
its shear modulus. The 1/R3

1 decay in the magnitude of
the interaction energy for large distances between cells is
similar to that found above for displacement regulation.
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B. Cylindrical Cell

For cylindrical symmetry, the boundary conditions at
the ends of the cylinder affect the stress inside it. If the
cylinder is prevented from deforming in the axial direc-
tion, the axial strain vanishes εzz = 0, this is termed
plane strain, and the radial stress reads [42]

σArr =
2

3
µ

(
2
du

dr
− u

r

)
+K

(
du

dr
+
u

r

)
. (21)

In order to maintain this state, external axial forces
should be applied at the ends of the cylinder. Note that
there is no displacement there, hence these forces do not
perform any work, and thus do not contribute to the en-
ergy. If such forces are not applied, the axial stress is
zero σzz = 0, this is termed plane stress, and the radial
stress is given by [42]

σErr =
2

3
µ

(
2
du

dr
− u

r

)
+

1− 4ν2

1− ν2
K

(
du

dr
+
u

r

)
, (22)

with the Poisson ratio given by

ν =
3K − 2µ

2(3K + µ)
. (23)

Also for plane stress no work is done due to the axial de-
formation since no forces are applied in that direction.
The simple geometries considered here are not meant
to exactly describe the shapes of specific biological cells
and their environments. However, we suggest that plane
stress (Fig. 1d) may be more relevant for thin cells in a
monolayer or for cells on a substrate, while plane strain
(Fig. 1e) may be more relevant for elongated cells such
as neurons, in a three dimensional environment.

Regardless of the aforementioned boundary conditions
in the axial direction, cylindrical symmetry implies that
the radial displacement satisfies the following differential
equation, which ensures mechanical equilibrium [42]

d2u

dr2
+

1

r

du

dr
− u

r2
= 0. (24)

The general solution to this equation reads:

u(r) = Cr +
D

r
, (25)

where the constants C and D are set by the boundary
conditions in the radial direction. We now generalize the
two cases for the axial boundary conditions, plane strain
(21) and plane stress (22) to write the radial stress for
both cases as

σrr =
2

3
µ

(
2
du

dr
− u

r

)
+ K̂

(
du

dr
+
u

r

)
, (26)

with an effective bulk modulus given by

K̂ =

{
K plane strain

1−4ν2

1−ν2 K plane stress
(27)

Substituting the general solution for the displacement
(25) in (26) enables to generally write the stress as

σrr = 2µ

(
C

3
− D

r2

)
+ 2K̂C. (28)

From this we see that the solution u = D/r contains
only shear. However, as opposed to the spherical case
discussed above, in cylindrical geometry, the solution u =
Cr contains both shear and compression.

Similarly to the procedure employed above for a spheri-
cal cell, we will now solve for the displacement field u(r),
from that we will obtain the relation between the dis-
placement u0 on the cell boundary and the active stress
σ0 that the cell applies, and from that we will calculate
the elastic energy for a bounded and for an unbounded
cell, and subsequently the interaction energy for displace-
ment regulation and for stress regulation.

Inside the cell, the displacement has the same form as
for the spherical geometry,

uc =
u0r

R0
. (29)

Here, by Eq. (28), the stress inside the cell is given by

σc =

(
2

3
µc + 2K̂c

)
u0

R0
. (30)

Outside the cell, for the unbounded cylindrical geometry,
the displacement is

um,∞ =
u0R0

r
, (31)

which leads to the following radial stress on the surface
of the cell (r = R0)

σm,∞ = −2µm
u0

R0
, (32)

and subsequently to the energy per unit length

E∞ = 2πu2
0

(µc
3

+ K̂c + µm

)
. (33)

It is interesting to note that E∞ does not depend on the
cell radius, R0. For the bounded geometry, the displace-
ment is given by

um,1 =
u0R0

R2
1 −R2

0

(
R2

1

r
− r
)
, (34)

thus the stress on the surface of the cell reads

σm,1 = − 2u0R0

R2
1 −R2

0

[
µm

(
1

3
+
R2

1

R2
0

)
+ K̂m

]
, (35)

and the energy per unit length is

E1 =πu2
0

{
2

3
µc + 2K̂c+[

2

3
µm

(
1 + 3

R2
1

R2
0

)
+ 2K̂m

]
R2

0

R2
1 −R2

0

}
. (36)
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As for the spherical case, for fixed displacement, we
obtain the interaction energy by subtracting (33) from
(36), leading to

∆E =
2

3
πu2

0R
2
0

4µm + 3K̂m

R2
1 −R2

0

. (37)

Similarly to the procedure described above for spherical
symmetry, also in cylindrical symmetry for regulation of
the active stress, we use (30), (32) and (35) to obtain u0

in terms of σ0 for the bounded and for the unbounded
cases, and from that obtain the interaction energy,

∆E = −π
6
σ2

0R
4
0

(
4µm + 3K̂m

)
(
µm + µc

3 + K̂c

) [(
µm

3 + K̂m

)
R2

0 + µmR2
1 +

(
K̂c + µc

3

)
(R2

1 −R2
0)
] . (38)

As for the spherical geometry, also for the cylindrical
geometry we get for displacement regulation a repulsive
interaction (37) which depends only on the elastic mod-
uli of the matrix, while for stress regulation we obtain
attractive interaction (38), which depends also on the
elastic moduli of the cell. Here there is both shear and
compression in the cell, thus (38) depends on both µc and
Kc. For large separations between cells, R1 � R0, the
interaction energy in the cylindrical geometry decays as
1/R2

1, as opposed to 1/R3
1 in spherical geometry, which

is consistent with the dimensionality reduction between
the two cases.

IV. NONLINEAR MEDIUM

A. Nonlinear Material Model

The analysis presented in Sec. III assumes linear elas-
ticity and is hence valid only for extremely small defor-
mations. The extracellular matrix is a gel of crosslinked
polymers, which exhibits nonlinear mechanical response;
its response to shear is linear at small stress, while
for higher stress, the differential shear modulus crosses
over to a power law increase with shear stress, G(σ) ∝
σ3/2 [43–46]. The nonlinearity of the material may be
quantified by the strain where this crossover occurs. Due
to their near-incompressibility, biopolymer gels are usu-
ally compressed much less than they are sheared, thus
we shall include nonlinearity only in their response to
shear. Specifically, we describe the nonlinear medium
surrounding our cells using the following energy density
function [27]

W =
µ

2

{[
1− b

(
Ī1 − 3

)]−1 − 1
}

+
K

2
(J − 1)

2
, (39)

where µ andK are the shear and bulk moduli in the linear
regime, and b is a dimensionless parameter quantifying
the strength of the nonlinearity. The second term de-
scribes compression in a neo-Hookean manner with J =
det(F) quantifying the compression, and Fi,j = ∂xi/∂Xj

the deformation gradient tensor, where ~X is the reference
position and ~x the deformed position. The first term

in (39) describes shear with Ī1 = tr(B)/J2/3 the nor-
malized first eigenvalue of the left Cauchy-Green strain
tensor, B = FFT . Most generally, the Cauchy stress
tensor is derived from the energy density as

σij =
1

J
Fik

∂W

∂Fkj
. (40)

However, for an energy density function which depends
only on J and I1, this reduces to [42]

σ =
2

J5/3

∂W

∂Ī1

(
B− I1

3
1

)
+
∂W

∂J
1, (41)

with 1 the unit tensor. For our model (39), this yields

σ =
µ

J5/3

[
1− b

(
Ī1 − 3

)]−2
(
B− I1

3
1

)
+K(J − 1)1.

(42)
For simple shear, the deformation may be written

as x = X + γZ, y = Y , z = Z, thus Eq. (42)

gives a shear stress of σxz = µγ
(
1− bγ2

)−2
, result-

ing in the differential shear modulus G ≡ dσ/dγ =

µ
(
1 + 3bγ2

) (
1− bγ2

)−3
. In the limit of small shear

(γ � 1), we obtain linear response σ ≈ µγ with a con-
stant differential shear modulus equal to µ. For large
shear, the shear stress σxz diverges as the strain γ ap-
proaches a maximal possible strain γa = 1/

√
b. In that

limit of σ � µγa, the differential shear modulus may be

approximated as G ≈ 4µ [σ/ (µγa)]
3/2

, which exhibits the
power law stiffening G ∝ σ3/2 characteristic of biopoly-
mer gels, see Fig. 2.

Below, we will study the effects of this power-law stiff-
ening on matrix mediated elastic interactions between
cells. We will consider the same geometrical model stud-
ied above, of a symmetric contracting cell, surrounded
by an effective wall, which provides a mean-field descrip-
tion for the effect of neighboring cells. For simplicity, we
will restrict ourselves to a spherical cell. However, the
extensions described above for for cylindrical cells are
straightforward.

In order to simplify the analysis, we will restrict our-
selves to the small deformations limit, which is relevant
for strongly nonlinear materials (b� 1) that have a very
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small maximal shear strain γa � 1. As shown in [27],
the nonlinearity of biological gels has 2 < b < 400, or
equivalently maximal shear strain of 0.05 < γa < 0.7.
In such cases, the deformations will always be small
γ � 1, and we will have strong nonlinear effects even
at small deformations. In our spherical case, this implies
u/r, du/dr � 1. We will obviously keep terms linear in
u. However, since for simple shear b = 1/γ2

a, for consis-
tency, we will keep also terms proportional to bu2, and
will neglect only terms that are higher order than that.

For spherical symmetry, the deformation is described
by the difference u(R) = r(R)−R between the deformed
radius r and the reference radius R. The compression
and shear components of the deformation are generally
given by [42]

J =
(

1 +
u

R

)2
(

1 +
du

dR

)
,

Ī1 =
(

1 +
u

R

)−4/3
(

1 +
du

dR

)4/3

+ 2
(

1 +
u

R

)2/3
(

1 +
du

dR

)−2/3

. (43)

For small displacements (u � R), these are approxi-

10-2 10-1 100
10-2

10-1

100

101

102

(a)

10-2 10-1 100 101
100

101

(b)

FIG. 2. Stress stiffenning for simple shear: a) Stress vs strain

is linear for small strain and then diverges at γa = 1/
√
b.

b) differential shear modulus is constant for small stress and

then increases as G ∝ σ3/2 for stress larger than µγa.

mated as

J ≈ 1 + 2
u

r
+
du

dr
,

Ī1 − 3 ≈ 4

3

(
du

dr
− u

r

)2

, (44)

where we have also used the small deformation approxi-
mation to replace R with r.

Force balance ∇ · σ = 0 implies

dσrr
dr

+
2

r
(σrr − σθθ) = 0. (45)

In spherical coordinates, the general expression for the
stress tensor (41) gives

σrr =
4

3J5/3

∂W

∂Ī1

[(
du

dr

)2

+ 2
du

dr
−
(u
r

)2

− 2
u

r

]
+
∂W

∂J
,

σrr − σθθ =
2

J5/3

∂W

∂Ī1

[(
du

dr

)2

+ 2
du

dr
−
( u
R

)2

− 2
u

r

]
,

(46)

where for our strain energy density (39),

∂W

∂Ī1
=
µ

2

[
1− b(Ī1 − 3)

]−2
, (47)

and

∂W

∂J
= K

(
du

dr
+

2u

r

)
. (48)

By substituting the partial differentials of the energy den-
sity function (47,48) in the expression (46) for the stress
tensor, we may write the condition for mechanical equi-
librium (45) as



8{
K +

4µ

3

[
1− b

(
Ī1 − 3

)]−2
}(

d2u

dr2
+

2

r

du

dr
− 2u

r2

)
+

8µ

3
b
[
1− b

(
Ī1 − 3

)]−3 dĪ1
dr

(
du

dr
− u

r

)
= 0. (49)

After multiplying by
[
1− b

(
Ī1 − 3

)]3
we write

[
1− b

(
Ī1 − 3

)]{
K
[
1− b

(
Ī1 − 3

)]2
+

4µ

3

}(
d2u

dr2
+

2

r

du

dr
− 2u

r2

)
+

8µ

3
b
dĪ1
dr

(
du

dr
− u

r

)
= 0. (50)

To bring (50) to dimensionless form, we normalize the radial coordinate by the cell radius r̃ = r/R0 and the

displacement by the displacement on the cell boundary ũ = u/u0. We quantify the nonlinearity by A = b (u0/R0)
2

=

[(u0/R0) /γa]
2
, which is a measure of the ratio between the typical scale u0/R0 of the strain on the cell surface and

the maximal shear strain γa = 1/
√
b that the material can sustain. Finally, we express the ratio of bulk modulus to

linear shear modulus in terms of the Poisson ratio (23), and eventually write the equilibrium condition as:(
1−AĨ3

)[ 1 + ν

2(1− 2ν)

(
1−AĨ3

)2

+ 1

](
d2ũ

dr̃2
+

2

r̃

dũ

dr̃
− 2

ũ

r̃2

)
+ 2A

dĨ3
dr̃

(
dũ

dr̃
− ũ

r̃

)
= 0, (51)

where

Ĩ3 =

(
R0

u0

)2 (
Ī1 − 3

)
=

4

3

(
dũ

dr̃
− ũ

r̃

)2

(52)

is a dimensionless measure of the shear in the matrix.
Equation (51) is a nonlinear second order ordinary dif-

ferential equation for the dimensionless displacement as
a function of the dimensionless radius, ũ (r̃). We obtain
ũ (r̃) by numerically solving the boundary value problem
using our two boundary conditions: given displacement
on the cell border ũ(1) = 1, and zero displacement, either
at infinity for the unbounded geometry ũ(∞) = 0 or at

R̃1 = R1/R0 for the bounded geometry ũ
(
R̃1

)
= 0.

Clearly, in the limit A = 0 of vanishing nonlinearity,
Eq. (51) reduces to Eq. (3), which describes a linearly
elastic medium. In this linear limit, there are two solu-
tions, ũ = r̃ and ũ = 1/r̃2, and as shown in Sec. III, a
linear combination of the two can match any given set of
boundary conditions. More interestingly, in this spheri-
cal geometry, the solution ũ = r̃ that contains only com-
pression without shear, leads to Ĩ3 = 0 and thus solves
Eq. (51) for arbitrary strength A of the nonlinearity. This
solution is consistent with the first boundary condition
at the cell border ũ(1) = 1, but it increases in magnitude
with r̃ and thus cannot satisfy the second, zero displace-
ment boundary condition at r̃ =∞ or at r̃ = R̃1.

B. Unbounded Cell

For an unbounded cell, the dimensionless displacement
ũ (r̃) depends only on the dimensionless strength A of the
nonlinearity and on the Poisson ratio ν. The behavior of
an unbounded cell in this nonlinear material model de-
pends very weakly on the Poisson ratio [27], thus we will
not consider this dependence here, and all the numerical
results we present below are for ν = 0.4. As shown in
Fig. 3a, for A = 0 the response is completely linear, and
the displacement decays according to the prediction of

linear elasticity, ũ (r̃) = 1/r̃2, or u(r) = u0 (R0/r)
2
. As

A increases, an increasingly larger region near the cell
responds nonlinearly, approaching the shear-less solution
ũ (r̃) = r̃, or u(r) = u0r/R0, while far enough from the
cell r̃ � 1, deformations decay and the matrix restores
its linear response, leading to a ũ ∝ 1/r̃2 decay of dis-
placements in the far field. The far-field behavior may
be written as u(r) = ueff (R0/r)

2
, or ũ (r̃) = ũeff/r̃

2,
where ũeff = ueff/u0 describes the amplification of the
effective displacement on the cell border as felt at long
distances. We will denote by R̃∗ ≡ R∗/R0 the posi-
tion of the maximum of ũ(r̃). This position roughly
divides space into the nonlinear near-field compression-
dominated regime at r̃ < R̃∗ and the linearly-elastic far-
field shear-dominated regime at r̃ > R̃∗.

C. Bounded Cell

To study matrix-mediated mechanical interaction be-
tween cells in a nonlinear medium, we employ the mean-
field geometrical setup presented in Sec. II, which we
have studied for a linear matrix in Sec. III. We now
numerically solve Eq. (51) with the boundary condition

ũ(R̃1) = 0. In this bounded geometry, the dimension-
less displacement solution ũ (r̃) depends not only on the
Poisson ratio ν and on the dimensionless nonlinearity A,
but also on the dimensionless distance R̃1 between cells.
We show in Fig. 3b numerical results for varying A and
R̃1.

The first thing to note in comparison to a linear
medium is the following: In the unbounded geometry,
the dimensionless nonlinearity A of the problem may
take arbitrarily large values. This means that for a given
material nonlinearity b, the displacement u0 on the cell
boundary can take any value. As seen in Fig. 3a, increas-
ing A causes an increase in the radius R̃∗ where ũ (r̃)
crosses over from the compression-only solution ũ = r̃
to the shear-only solution ũ = ũeff/r̃

2. However, for
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A= 0
A= 0.41
A= 1.55
A= 3.38
A= 3.98
A= 5.85
A= 9.16
A= 13
A= 15.9
A= 17.52
A= 22.5
A= 27.98
A= 28.97
A= 34.45
A= 35.8

FIG. 3. Normalized displacement ũ = u/u0 vs. normal-
ized radius r̃ = r/R0 in spherical nonlinear medium for
the (a) unbounded geometry and (b) geometry bounded at

R̃1 = R1/R0 = 10, 100, 250, 500, 1000. Colors mark the di-
mensionless strength A = bu2

0/R
2
0 of the nonlinearity, as indi-

cated in the legend. All results are for Poisson ratio ν = 0.4.
In both geometries, for increasing nonlinearity, the near-field
behavior tends toward the shear-less solution ũ = r̃ repre-
sented by the blue dotted line, and may be approximated by
Eq. (53), which is drawn in a black dashed line only for the
maximal A value for each case.

the bounded geometry, this crossover length R̃∗ clearly
cannot be larger than R̃1. This implies that for given
dimensionless cell-cell distance R̃1, there is a maximal
value Aa that the nonlinearity can reach. Thus for
given geometry specified by R0 and R1 and for given
material nonlinearity b, the displacement u0 on the cell
boundary can increase only up to some maximal value

ua = R0

√
Aa(R̃1)/b.

In our nonlinear model (39), for large strain the resis-
tance to shear becomes increasingly larger than the resis-
tance to compression. Hence, in mechanical equilibrium,
the shear component of the deformation tends to be min-
imal. For our spherical geometry, requiring Ĩ3 = 0 leads
to the solution ũ (r̃) = r̃, which is consistent with the
boundary condition ũ(1) = 1, but cannot be consistent

with the boundary condition ũ (∞) = 0 or ũ(R̃1) = 0.
An approximate solution to (51) that decays in the far

field is obtained by taking Ĩ3 = 1/A [27], which by sub-
stitution in (52) leads to

ũ (r̃) = r̃ −
√

3

4A
r̃ log r̃, (53)

1 2 3 4 5 6
100

102
(b)

101 102 103
2

3

4

5

6
(a)

100 102 104 106 108
100

105

(c)

FIG. 4. (a) Maximal possible cell contraction increases with
cell-cell distance according to Eq. (56). Numerical results for
b = 0.1, 0.5, 0.8, 1.1, 2, 5, 10 all collapse to a single curve, which
perfectly agrees with the theoretical prediction. (b) Position
of maximal displacement increases with dimensionless nonlin-
earity according to Eq. (59) both for the bounded and for the
unbounded geometries. (c) Effective far field displacement in-

creases with A and decreases with R̃1 following Eq. (61). In
all panels, theoretical prediction is marked by red dotted line.

which in turn also causes dĨ3/dr̃ to vanish. Figure 3
shows how well (53) agrees with the near-field behavior
of the displacement field, both for the bounded and for
the unbounded geometry.

We may approximate the maximal possible displace-
ment ua on the cell boundary by requiring that for Aa
the approximate near-field solution (53) reaches zero at

the distance R̃1. The justification for this is that for
u0 < ua, or correspondingly A < Aa, the displacement
field has room to cross over at larger distances to the
linear elasticity solution so that it will eventually satisfy
the boundary condition ũ(R̃1) = 0. For u0 > ua on the
other hand, the near-field solution (53) is still finite at
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R̃1 and the zero-displacement boundary condition there

may not be satisfied. Thus, setting ũ
(
R̃1

)
= 0 in (53),

we write

R̃1 −
√

3

4Aa
R̃1 log R̃1 = 0, (54)

from which we obtain the maximal dimensionless nonlin-
earity

Aa =
3

4
log2 R̃1. (55)

This lead to the maximal possible cell contraction

ũa =
ua
R0

=

√
3

4
γa log

R1

R0
, (56)

which scales linearly with the maximal shear strain γa,
and logarithmically with the dimensionless cell-cell dis-
tance. This simple theoretical prediction agrees remark-
ably well with our numerical results, as shown in Fig. 4a.
Note that at A = Aa, our approximate solution (53) be-
comes exact, as it satisfies the boundary conditions both
at r̃ = 1 and at r̃ = R̃1, see Fig. 3b. Before moving on to
discussing the interaction energy we also note that (56)
may be inverted to obtain the closest distance between
cells that contract by a given amount u0,

min(R1) = R0 exp

(√
4

3

u0/R0

γa

)
, (57)

or alternatively

min
(
R̃1

)
= exp

(√
4A

3

)
. (58)

D. Interaction Energy

To calculate the interaction energy for given cell size
R0, cell-cell distance R1, material nonlinearity b, and cell
contraction u0, we need to first numerically solve the
boundary value problem to get the displacement field
u(r) for the bounded and for the unbounded geome-
tries for any intermediate cell contraction 0 < w < u0.
Then, we use u and du/dr at R0 to evaluate the radial
stress (46) τ(w) = σrr(R0) on the cell surface. Finally,
we numerically integrate Eq. (1) to obtain the elastic en-
ergy stored in the medium for the bounded and for the
unbounded cases, and subtract them to get the interac-
tion energy.

1. Displacement Regulation

The numerical results of ∆E vs u0 for various values
of b and R1 are given in Fig. 5. For small u0, the mate-
rial responds linearly, thus the interaction energy grows

quadratically with u0, as predicted in a linear medium.
For increasing u0, the interaction energy grows more
rapidly and diverges at a finite contraction ua, which
depends on R1 and on b according to (56). We first note
that the dependence of ∆E on the material nonlinearity
b may be scaled out if we normalize ∆E by the interac-
tion energy (15) that we would get for these values of u0,
R0 and R1 in a linear medium. Figure 6 shows that after
this normalization, and by also scaling u0 by its maximal
possible value ua in the nonlinear case, we obtain collapse
of the results for different b values to master curves that
depend only on R̃1 = R1/R0.

To approximate the entire dependence on u0 as well as
the dependence on R̃1, we first note that the near-field
approximate solution (53) is maximal at

R̃∗ = exp

(√
4A

3
− 1

)
. (59)

This agrees very well with the position of the maximum
of ũ(r̃) as obtained from our numerical solution, both
for bounded and for unbounded geometries, see Fig. 4b.
Note that (53) has a local maximum at r̃ > 1 only for
A > 3/4, thus all the analysis that follows is relevant
only for dimensionless nonlinearity that is larger than this
level. Now, in the far field, we expect the solution (12) in
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10-10
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1010

(e)(e)(e)(e)(e)(e)(e)
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 b = 0.8
 b = 1.1
 b = 2
 b = 5
 b = 10
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100
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1010

(d)(d)(d)(d)(d)(d)(d)
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FIG. 5. Interaction energy vs. cell contraction for different
values of R1 and b. Interaction energy is scaled by µR0, and
cell displacement is scaled by R0. Black dashed lines are linear
elasticity behavior for b = 0.



11

a linear medium to hold, but with the displacement u0 on
the surface of the cell replaced by some larger, effective
displacement ueff . In dimensionless form this read

ũ (r̃) =
ũeff

R̃3
1 − 1

(
R̃3

1

r̃2
− r̃

)
. (60)

As has successfully been done for the unbounded geome-
try [27], also for our bounded geometry, the dimensionless
effective displacement may be obtained by matching the
near field solution (53) and the far field solution (60) at

R̃∗ (59). The crossover between these two solutions is
not sharp but exists over a certain crossover region, see
Fig. 7. Thus we allow for a dimensionless multiplicative
factor α between the two solutions at R̃∗. This leads to

ũeff =
ueff

u0
= α

√
3

4A

R̃3
1 − 1

R̃3
1

R̃3
∗
− 1

. (61)

For R̃1 � R̃∗ this reduces to ũeff = α
√

3/(4A)R̃3
∗. Note

that (61) cannot explain the divergence of ∆E as u0 ap-
proaches ua since it is not singular at the maximal cell
contraction Aa; it is just equal to

ũeff = α
R̃3

1 − 1

log R̃1 (e3 − 1)
. (62)

Figure 4c shows the agreement of (61) with the numerical
results, and identifies the value α ≈ 4.7 for all the values
of b and R̃1 considered.

The near field behavior of the displacement field is very
similar in the bounded and in the unbounded geometries,
and most of the differences between the two cases are in

10-3 10-2 10-1 100
100

103

106

109

1012

1015

FIG. 6. Scaled interaction energy behaves according to linear
elasticity (15) for small cell contraction (black dashed line).
As u0 approaches ua, the interaction energy grows according
to Eq. (63) (red dashed lines), until it diverges at u0 = ua

(blue dashed line). Results for different values of the material

nonlinearity b collapse to curves that depend only on R̃1.

the far field (see Fig. 3). Thus we assume that most of
the contribution to the difference in the elastic energy
stored in the medium between the two geometries comes
from the far field region. This enables us to approximate
the interaction energy as the difference in energies stored
in a linearly elastic medium displaced by ueff rather than
by u0 at the cell boundary. Thus we substitute ueff of
the bounded geometry in Eq. (15) for ∆E, and get

∆E = ∆Elin
3α2

4A

 R̃3
1 − 1

R̃3
1

R̃3
∗
− 1

2

, (63)

where ∆Elin is the interaction energy in a linear
medium (15). Figure 6 shows the impressive agreement
of this theoretical expression with the numerical results
up until very close to the divergence of ∆E at ua.

2. Stress Regulation

We now numerically evaluate the radial stress (46) on
the surface of the cell for the unbounded and for the
bounded geometries, and subtract the corresponding en-
ergies at given stress to obtain the interaction energy for
the situation in which the cell regulates the stress on
its surface regardless of its mechanical environment. For
simplicity, for cells in a nonlinear matrix we will assume
that the cell does not resist the deformation and that
all the active force applied by the cell is directed toward
generating stress in the matrix. Namely σc = 0 and
σ0 = −σm. When relating this to the linear elasticity
solution (20), this is obtained by setting Kc = 0.

100 102 104 106

100

105

 = 1
 = 4.742

FIG. 7. Crossover of ũ(r̃) from near-field behavior of Eq. (53)
(dashed black line) to far field ũ = ũeff/r̃

2 behavior. Matching

the two solutions at R̃∗ (green dashed line) underestimates
ũeff . Matching at a slightly larger distance (orange dashed
line) is obtained by taking α > 1 in Eq. (61). Results are
shown for A=35.7858.
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FIG. 8. Interaction energy with stress regulation in a nonlin-
ear medium. (a-c) Results for different values of R̃1 and b.
Dashed black lines are linear elasticity behavior (20). Inter-
action energy is scaled by µ/R3

0 and stress is scaled by µ. (d)
When normalizing the interaction energy by the linear pre-
diction and normalizing the stress by the typical stress µγa
where strain stiffening becomes dominant, results for all b and
R̃1 collapse to a single curve.

The reasoning explaining why for displacement regula-
tion the interaction energy is positive (repulsion) and for
stress regulation it is negative (attraction) is valid also
for cells in a strain stiffening matrix. Our numerical cal-
culations indeed result in positive interaction energy for
displacement regulation and negative interaction energy
for stress regulation. For displacement regulation we saw
that the divergence of the shear stress at a finite strain
γa (see Fig. 2a) causes the interaction energy to diverge
at a finite displacement ua. For stress regulation on the
other hand, at least from the point of view of the matrix
resistance, the active stress that the cell generates can be
arbitrarily large (see Fig. 2b).

When plotting in Fig. 8 the numerically obtained inter-
action energy vs. the regulated stress we see the linear-
elasticity ∆E ∝ −σ2

0 behavior (20) at low stress. This
is followed by a more complex crossover at intermediate
non-linearity, and eventually at extremely large stress the
interaction energy again scales as σ2

0 , enabling arbitrarily

large values of the stress, as expected. Interestingly, we
obtain the quadratic scaling ∆E ∝ σ2

0 not only in the
linear regime but also in the strongly nonlinear regime.
This may be explained from the fact that the nonlinear
dependence of ueff on u0 and of σ0 on ueff are reciprocal
such that σ0 ∝ ueff [27]. Combining this with the result
presented above that ∆E ∝ u2

eff leads to ∆E ∝ σ2
0 . Im-

pressively, when we scale the nonlinear interaction energy
by the linear result, and scale the stress by the typical
stress µγa where the strain stiffening becomes significant,
all the numerical results collapse to a single curve, as
shown in Fig. 8d for multiple values of R̃1 and b.

V. DISCUSSION

In this paper, we used a mean-field approach to study
matrix mediated interactions between contracting biolog-
ical cells in linear and in nonlinear elastic surroundings.
We showed how the regulatory behavior of the cell’s me-
chanical activity always gives rise to repulsion when dis-
placement is regulated and to attraction when stress is
regulated. For displacement regulation, the interaction
does not depend on the rigidity of the cell. For stress
regulation, it depends only on the bulk modulus of the
cell in spherically symmetric situations, while in cylin-
drical setups it depends also on its shear modulus. For a
nonlinear, shear stiffening matrix, the interaction energy
diverges at a finite displacement, while for stress regu-
lation the stress may be arbitrarily large. It is still not
entirely clear what is the regulatory mechanical activity
of live cells and what biological mechanism determines
it. There is much evidence for stress regulation, however
also some indications of situations in which displacement
is regulated [36–40, 47, 48].

For simplicity, we treated the cell as a passive, linearly
elastic solid. This is clearly a very crude description, and
the way that cells set their size, displacement and forces
include many further processes, see e.g. [49, 50]. How-
ever, we emphasize that for displacement regulation the
mechanical response of the cell is irrelevant for the inter-
action energy. Namely, no matter how complicated is the
response of the cell, if we consider the situation in which
cells regulate the displacement they generate, then the
inside of the cell behaves exactly the same regardless of
the distance to neighboring cells, and our results both for
a linearly elastic matrix and for a nonlinear matrix are
valid also beyond the simplified assumption that the cell
is a passive, linearly elastic solid. In the case of stress reg-
ulation, our analytical results for a linearly elastic matrix
rely on the linearity assumption for the cell, whereas for a
nonlinear matrix we assumed that the cell is much softer
than the matrix, and therefore its mechanical response
does not affect the interaction with other cells.

We focused our nonlinear material model for the extra-
cellular matrix on shear stiffening and included nonlin-
earity only in the resistance to shear. It would be inter-
esting to study the interactions and different regulatory
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behaviors that we consider also in models that take into
account the anisotropy of the matrix [28, 30, 52], that in-
clude also nonlinearity in the compressive response, and
in models that take into account the discrete fibrous na-
ture of the biopolymer gel comprising the extracellular
environment [31, 32, 35, 51–53]. We note that our mean-
field description of cell-cell interactions may also be em-
ployed in order to study the response to spatial variations
in matrix rigidity. Specifically, it would be interesting
to extend the analysis regarding durotaxis performed in
Ref. [29] also to cylindrical geometry and to nonlinear
media. Finally, our theoretical work could motivate ex-
perimental studies to investigate matrix-mediated inter-

actions between contractile force dipoles and to decipher
the regulatory behavior of live cells.
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