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Abstract

Collective motion is an innate ability of all living systems, which depends on physiological and

psychosocial factors in the case of humans. Such a collective organization is becoming of great

interest in collective motion in human crowds. Using a cellular automaton (CA) simulation model,

we demonstrate that emergency egress from a two-dimensional corridor with optimal stress leads

to less evacuation time and efficient mass evacuations. We study how three types of stress (i.e.,

mild stress, optimal stress and anxiety) described in the literature have a significant impact on

the collective dynamics. We found that low-stress levels could decrease the evacuation time in an

entire occupied room since agents choose alternative routes rather than the shortest path to the

exit and display cooperative behavior. Therefore, the combination of mild and optimal stress can

lead to efficient evacuations. Also, CA simulations may be used to find safer and more efficient

ways to conduct mass evacuation procedures.

I. INTRODUCTION

Collective motion is a common phenomenon that emerges in systems that involve living

entities, from large to microscopic [1–6]. Regardless of size, it depends on a combination

of external (e.g. exposure to a potentially threatening event) and internal drivers (e.g., the

response to stressful stimuli). Such a collective organization is an adaptive regulatory mech-

anism that allows better survival probability, better access to information and resources, and

better decision-making abilities [7, 8]. Although Biology plays a major role in the collective

movement of organisms, these dynamics can be easily understood due to local and non-local

interactions of particles [9]. Thus, they have been widely studied in fields as diverse as the

Physics of plasmas, fluids, and solids [10–13]. For example, the movement of a group of

animals, such as fish or birds [1, 2], can sometimes resemble the complex behavior displayed

by water going through a nozzle. Similar dynamics can be found in humans [3–6], with psy-

chological elements [14–16]. For example, Fig. 1(a) shows the complex motion of a crowded

situation at a massive social event (e.g., a music concert), where obstacles are also present.

Similarly, Fig. 1(b) displays the dynamic of a herd of sheep changing corrals. In these sys-

tems, the complex collective behavior results from the combination of individual abilities of

the constituent blocks or agents and the social, cultural, and psychological aspects of their
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interaction with neighboring individuals.

FIXED OBSTACLE

FIG. 1. (color online) Different situations of massive flows of agents: (a) Screenshot of a massive

evacuation after a music concert. If an obstacle exists, like in the screenshot, the movement of the

rest of the agents can become complex (i.e. not laminar) which can increase the overall level of

anxiety of the agents. (b) Movement of a herd of sheep changing corrals. We mark some particular

agents’ future movements to display some of the complex behavior that can appear. All these

pictures were taken from videos available in [17, 18].

Scientific research on the collective motion of organisms has dramatically benefited from

the contribution of physicists, computer scientists, and engineers, who have explored the

mechanistic basis of this phenomenon [19]. Depending on the researcher’s area of specialty,

there are mainly two ways to study this problem: one is to observe from the field of psychol-

ogy how a group of people behaves and try to draw conclusions. The other approach, which

we will implement in this publication, is to consider the essential elements of human behav-

ior to obtain conclusions from the macroscopic movements of a group of people. Beyond

questions such as why collective movement occurs and its ultimate function, interest remains

high in studying the ‘how’ of the movement because of its implications for mass emergency

planning and management [20–23]. Events triggering a mass evacuation procedure may in-

clude fires in crowded buildings, sports stadium crushes, air or train crashes, sinking ships,

terrorist attacks of any kind, and natural disasters. Similarly, amid the COVID-19 pan-

demic, the ’how’ of the movement becomes of utmost relevance. While countries try very

hard to return to some normality; efforts are still needed to keep social-distancing discipline.

Pedestrian dynamics might help determine some of the constraints imposed to create the

conditions for a safer transition back to normality.

Among others, individual-based models have used stochastic differential equations [24],
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difference equations [25–27], and cellular automaton (CA) [28, 29]. In previous work, we

used the approach by Varas et al. to study the fundamental features of crowd dynamics. Our

analysis’s major contribution is the inclusion of psychological effects, as they can produce

non-trivial collective phenomena in the resulting dynamics [29]. We did so by relying on the

model by social psychologists Robert Yerkes and John D. Dodson, an empirical model of

stress and performance, proposed in the early 20th century [30], and subsequently validated

by neuroimaging and neuroendocrine studies on stress physiology [31, 32]. Also known as the

Yerkes-Dodson Law (YDL), the model posits a marginally decreasing relationship between

stress and individual performance, which is well-represented by an inverted-U shape, as

shown in Figure 2. According to the YDL, elevated stress levels –represented in Fig. 2

as a comfort zone leading to optimal activity levels– can actually improve the individual

performance. Increasing arousal helps to focus motivation and attention on a particular

task (e.g., recognize cues or alarms, arrive at the exit, and identify that others obstruct it

to mention a few), but only up to a certain threshold. When stress becomes excessive and

reaches the point of anxiety or distress, performance starts to diminish, and too much anxiety

can impair someone’s ability to concentrate and choose the most efficient course of action.

At this point, performance is no longer optimal, while panic and ineffectiveness become

common responses. It follows that the individual behavior must have obvious consequences

for the collective motion during emergencies, where different agents express different stress

levels. How evacuees deal with stress in an emergency procedure is key to successfully

conducting the process in terms of egress time, safety, and even the number of victims.

Specific components of the evacuation time, such as the distribution of recognition time and

response time are highly determined by the individual’s skills to manage stress [33].

Despite major advances in computer-based simulations and data processing, experiments

in virtual environments of crowd dynamics have failed to account for some essential psy-

chosocial driving parameters in the collective behavior [33, 35, 36]. As Moussäıd et al. admit,

several case studies of specific emergency evacuations have revealed patterns of emergency

exiting that were not predicted by simulations based on analogies of particle and animal dy-

namics [37]. A deep understanding of moving crowds’ basic and robust behavior is pivotal to

develop effectively evacuation strategies [38], where the role of stress and social interactions

are included in the dynamics. Here, CA simulations in a two-dimensional corridor model

are used to examine egress behavior, and how the three types of stress (i.e., mild stress,
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FIG. 2. (color online) Schematic diagram of performance as a function of stress, showing two

general types of responses to stress, one before the optimal range of decisions, and another after

this point. Source: This model was taken from the works by [30, 34].

optimal stress and anxiety), previously distinguished in the literature for individuals affect

the management and efficiency of the evacuation process. This model naturally introduces

a quantitative analysis of the types of stress through the randomness level of individual

agents’ movements. Numerical simulations display different evacuation behaviors indepen-

dently of the specific numerical value of the stress. We hypothesize that both mild stress

and anxiety result in a person’s exiting response being ineffective, which compromises the

evacuation efficiency. However, optimal stress, or stress that is manageable leads to less

collective evacuation time and congestion at the exit. At any given time, we will have an

evolving distribution of agents’ stress that will affect in a non-trivial manner the collective

behavior of the exit dynamics. In addition, it is important to realize that it is not obvious

how to obtain real data, what to measure, and under what control conditions. The overall

behavior of one individual, a family or a big crowd may end up being quite different, and

there is a need to separate the individual behavioral complexities from the emergent collec-

tive dynamics. For example, the response of individuals may differ when participating in

an emergency training exercise and an equivalent real stressful situation. One possibility is

to use simulations to try to ascertain what are the relevant variables that we should try to

measure and pursue, how effective parametrizations could be tested, and how comparison

with different simulations could eventually be made. We should remember that at the end,

we would like to have simulations that are able to parametrize in an effective manner, the

individual’s behavior, and collective interactions so that they can be applied in different
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contexts such as the design of building and school, evacuation of events, public transport,

how to guarantee social distance in open and close spaces, among others. Hence, this is the

road we are taking in this manuscript.

We organize the paper as follows: In the next section, we introduce our model and

describe the methodology for implementing it while analytically deriving expressions for

simple scenarios that will guide the discussion. Afterward, we present the results. The

manuscript is closed with a summary, where we draw the main conclusions and project

future instances for our work.

II. METHODS

We model the agents’ dynamic with CA simulations. A detailed review can be found in

Ref. [39]. CA are mathematical idealizations of physical systems in which space and time

are discrete and physical quantities take on a finite set of discrete values. This proposal

intends to use the CA originally put forward by Von Neumann in 1963 [40] and applied

to different idealizations of the physical reality, such as traffic problems [41–44], large-scale

pedestrian movements [45], fluvial evolution [46], growth interface in solids [47], or facial

recognition [48], among many others. The approach can represent physical systems to the

point that is successfully used today in the German state of North-Rhine Westphalia [49].

In our simulations, the discrete variables will be the time step, the agents’ position, and

decisions taken by each of them in a given time step. Here, for simplicity, we will consider

a fixed room of size Lx ×Ly discretized into unit cells that are either empty or occupied by

only one agent. According to closeness to the door, a single floor field (FF) strength has

been assigned to each cell using the strategy suggested in Ref. [28]. Lower values correspond

to cells closer to the exit, and thus this static FF indicates to the pedestrian the way to the

exit. We allow movements in the diagonal, vertical, and horizontal directions along the grid,

producing non-trivial dynamics that do not typically occur when restricting the movement

only in the horizontal and vertical directions. The relative cost of moving to a diagonal

nearest neighbor cell instead of moving to a vertical or horizontal nearest neighbor cell is

λ = 1.5. We chose this specific value of λ to make comparisons with previous results, simplify

the visualization of the floor field, and preserve the original spirit of the CA, which is to

make coarse grain parametrizations, and from there, obtain results that could be compared
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with experiments. In any case, we performed the same calculations for three different values

of λ (1.25,
√

2, 1.5). The results do not vary much when λ varies around the
√

2 value.

Finally, more than representing an exact Euclidean distance, in this CA model, the value

of λ is related to the relative importance of the motion along the grid or to the diagonals

(is a parametrization of the agents’ interaction). What is relevant (at least for values close

to λ =
√

2) is not only to be able to move along the diagonal. Also, that the interaction is

beyond the nearest neighbors’.

As we introduce stress into the dynamics, the movement choices will change according

to the agent’s stress level. All agents can choose only one of their eight nearest cells to

move. Inspired by our recent model [29], we define three possible movement intentions,

depending on the stress level. Under mild stress, the agent searches for the lowest value of

floor field among the eight neighboring cells. If the cell is empty, it tries to move to that

cell. Under optimal stress, the agent looks, among the eight nearest neighbors, for the cells

with a lower value than its own. If one of these cells is free, the agent tries to move to

the one with the lowest available value. Last, under anxiety, the agent searches all eight

neighboring cells, regardless of their value. Then it randomly chooses one of the empty cells

and tries to move to it, regardless of the floor field value. If the agent finally moves to the

chosen cell in this time step, its stress is reduced by one; otherwise, its stress increases.

These definitions of possible movements complicate the available possibilities that agents

have and, in high-density situations, compact the occupation of agents around the door by

having more places to move. The model resembles an inverse U-shaped relation between

arousal and performance, observed in both human and animal models [50–52], and denoting

a high resemblance to the Yerkes–Dodson curve [31].

This implementation of the movement allows not only along the horizontal and vertical

directions, but also along the diagonals, give rise to new two-dimensional evacuation dy-

namics. The agents are allowed to use only one cell at a given time, and our program will

move all agents in the room until they have all left the room. Then, the program measures

the number of steps it takes for a group of agents to act above. On an average of 1000

simulations, we will call this the elapsed simulation time 〈T 〉. The rules of movement are

not trivial to obtain since they must show the observed path followed by the agents in a

precise way. It is expected that the agent’s dynamics should be affected by some psycho-

logical aspects, which we can incorporate, for example, through the agent’s level of anxiety
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described by some dynamic levels, which can constrain the decisions of movement.

Therefore, in our simulations, each agent specifies where it will move according to its stress

level. Thus, one or more agents could try to move to the same position simultaneously. In

such a case, we will define a collision of intentions between the agents. Hence, the number

of collisions C will be a relevant feature in our simulations that we aim to extract from

our analysis. The collisions of intentions should help characterize the emergent collective

phenomena, unpredictability, and unexpected Brownian-type behavior in specific regimes

that occur in the system. When two or more agents want to move to the same cell, we

will say that they are in a conflicting movement of pedestrians, which we solve by randomly

allowing one of the agents’ movement, reducing its stress by one. The remaining agents do

not move during the iteration and increase their stress value by one.

We aware that there are many strategies for simulating pedestrian flows, such as those

described in terms of force-based models, and in particular limits. We want to note that

the agents in our CA are self-propelled, and therefore, the collisions between them are the

interactions. In addition, our simulations include nearest and next-to nearest interactions

(8 neighboring cells) with the possibility of moving along diagonals. In addition, we could

increase the size of the interacting neighborhood of an agent (beyond the eight neighboring

cells that it looks to produce a motion intention) and complicate the cell selection process to

make it more similar to the discretization of force-based models. Hence, compared to force-

based models, our cell size corresponds to the effective length of the repulsive potential, and

the range of interaction is at least to the next closest neighbor. Of course, different authors

could apply other strategies, but here we tried to balance simplicity in the dynamics with

an interpretation of the stress for the agents. Thus, even under our simplifying assumptions,

the stress makes a difference in the collective dynamics. Therefore, the interactions in our

CA model reflect influential social forces and not necessarily real forces. Also, it suggests

that this is a road to chase, and there is much research to do if we want to eventually

understand and simulate how crowds move [53, 54].

III. RESULTS

Each individual has a time-varying level of stress that starts at zero and grows or lowers by

one step each iteration so that we define threshold values for the separation of the three types
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of stress for each individual so that we set threshold values to determine these categories for

each individual, namely, UI between mild stress and optimal stress, and UII between optimal

stress and anxiety, respectively. Therefore, we define three stress stages, namely, stage I

(mild stress), where 0 < stress ≤ UI; stage II (optimum stress), where UI < stress ≤ UII;

and stage III (anxiety), where stress > UII. As an illustration of the results, we start with

the upper case of the filled room, and an uniform separation of different thresholds UI = d

and UII = 2d.

We consider an average of 1000 simulations of pedestrians, initially placed at random

positions that try to exit the room. We pay attention to the average evacuation time, the

percentage of agents on a given stress stage, and the number of collisions of movement

intentions.

In Fig. 3 we display how these measures vary with d. For 1/d = 1, it takes a single

clock-tick for an agent to change its stress type, particularly if the agent does not move. We

notice that 〈T 〉 changes as we vary d, and reaching a minimum value at around 1/d ≈ 10−2.

Looking at Figs. 3(a)-(b), we note that at 1/d ≈ 10−3 the dynamic is driven by agents that

are mainly in mild stress, that is, those that do not try to move until the site of minimal

value of FF becomes available. The minimum exit time occurs for a given combination

of agents with stress of type I and II, and none of type III. This particular result in our

simulation is remarkable since it extends previous results for the individual to the collective

dynamics, in which a certain amount of stress can make the system more efficient. As we

further increase 1/d towards 10−1, the fraction of agents with anxiety increases, which is also

reflected in the evacuation time. Finally, when 1/d ≈ 1, the dynamic is driven mainly by

agents in the third stress stage, and the evacuation time is the greatest. We want to point

out that all the described results are computed for the same value of λ = 3/2 and agents

having an initial stress equal to zero. We have repeated these calculations for agents having

random initial stress taken from a uniform distribution between zero stress and UII + 1 (at

the start of the 3rd stress stage), and we have obtained very similar results to those shown

in this manuscript.

In Fig. 3(c), we show the behavior of the average number collisions of intentions. The

probability of losing an attempt to move is always greater than or equal to the probability of

winning since many agents may want to move to the same cell, but just one of them finally

does it. We expect this behavior to be dominant close to the exit, suggesting that introducing
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FIG. 3. (color online) These are results for a fully occupied room (ρ = 1). In panel (a), with

a solid blue line, we show the change of 1/〈T 〉 as d varies. In panel (b), we show the relative

fraction of agents in each stress stage. In this panel, with a solid red line, we show the behavior

of type or stage I (mild stress); with a dashed green line, we show the behavior of type or stage

(optimal stress), and with a dotted blue line, we show the behavior of type or stage III (anxiety).

The optimal evacuation time happens when 1/d ∼ 10−2. At this value, we have a combination of

agents in the first as second stress stages. The longest evacuation time occurs when most agents

are in the third stress stage, denoted by the dotted blue line. In panel (c), with a solid red line,

we show the normalized number of total collisions and the average of “won” (green dashed line)

and “lost” (blue dotted line) collisions. C0 ≈ 8 × 106 normalizes this plot. In all panels, we also

present the standard deviations over the 1000 simulations for these measures. Here, Lx = 18 and

Ly = 14.

some strategy to control the agent’s stress may reduce the collisions of intention. In our
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analysis, introducing a bias for an agent choosing not to move or by putting proper obstacles

is expected to lead to a similar result, as by definition, the number of losing collisions should

diminish. We wish to explore these in a future manuscript. We want to point out that all

these results described in detail do not vary either the initial values of the stress or the value

of λ. We have repeated all these calculations for a random distribution of the initial stresses,

and we have obtained the same quantitative results.

Now let us examine how the exit time changes as we vary the initial density. In this case,

the agents are initially placed randomly in the room to average over an ensemble of initial

conditions (and dynamical resolution of conflicts). To observe the dynamics, we select ρ and

1/d and plot T d→∞ρ /〈T 〉, where T d→∞ρ corresponds to the evacuation time for each density

ρ when d→∞ (everyone has mild stress).

FIG. 4. (color online) Evacuation time as a function of threshold distance d and agent density. We

also show the relation of d with ρ (pink line) through the optimal evacuation time curve. Here, in

pink points, we show the maximum value for each density.

As expected, Fig. 4 shows that it takes more time to evacuate the room for high densities

and small values of d. We also note that for ρ = 1, this result is consistent with Fig. 3(a).

However, we also note an optimal region of minimal evacuation time (maximal flux), relates

to mid densities (for a given mixture of agents with different stress types), which resembles

the fundamental diagram of Ref. [55]. That suggests that this is a robust result associated
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with a broad class of self-propelled particles. We note that the optimal exit time dependence

that relates d with ρ is non-trivial. Therefore, it deserves some study. To understand the

transitions, and particularly the dependence of the optimal exit time as we change the

densities, we select three different densities (ρ ∈ [0.75, 0.5, 0.25]), which corresponds to

N ∈ [189, 126, 53] agents, respectively. In Fig. 5, we display the average evacuation time,

the stress level of the agents, and the average number of collisions.

FIG. 5. (color online) In the rows, we show the average evacuation time (top row), average

relative number of agents in a given stress stage (middle row), and normalized number of collisions

(bottom row); for ρ = 0.75 (first column), ρ = 0.5 (second column), and ρ = 0.25 (third column),

respectively. In solid lines (panels (a), (b), and (c)) we show the average evacuation time for each

selected density. Panels (g), (h), and (i) are normalized by C0 ≈ 1.3 × 106, C0 ≈ 2.5 × 105, and

C0 ≈ 2×104, respectively. All the line styles in (d)-(i) follows the convention explained in detail on

Fig. 3, and we also present the standard deviations over the 1000 simulations for these measures.
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We note that the overall evacuation time decreases as we decrease the density, mainly

due to two factors: a lower share of agents entering the third stress stage since there is a

small number of agents within the room and the collisions of intentions also decrease. The

evacuation times for the first two densities (Figs.5(a)-(b)) are similar, while in the diluted

case (Fig.5(c)) the evacuation times are remarkably lower. We note that the exit time has

an optimal value in all situations, when there is a similar number of agents in the first two

stress stages (mild and optimal), and none in the third one (anxiety).

Comparing these plots with those corresponding to the full room (ρ = 1, Fig. 3(a))

and higher thresholds (1/d ∈ [10−3, 10−2]), we found that the agents do not move towards

the second and third stress stages, so the evacuation times remain constant. However,

when the distance between stress thresholds diminishes (1/d ∈ [10−2, 10−1]), the agents

can move towards stages of greater stress, diversifying the evacuation paths and lowering

the evacuation times. Finally, in the last range (1/d ∈ [10−1, 100]), as the number of agents

spending time in the third stress stage begins to rise, the evacuation time increases, reaching

its maximum at this density. For the second selected density (ρ = 0.75, Fig. 5(b)), at very

high thresholds (1/d ∈ [10−3, 10−2]), we observe the same behavior already described for

higher densities. Next, when the distance between thresholds begins to diminish (1/d ∈
[10−2, 10−1]) and recalling that the amount of empty spaces is greater than the previous cases,

the agents cannot reach the anxiety stage. However, the standard deviation is much higher

since the available choices of movements also increase. Therefore, by selecting previously

inaccessible paths, the evacuation time diminishes compared to the higher density situations.

For this same threshold range, when the agents are going to stress, stage III starts to

decrease, and the evacuation time increases. It also reaches its maximum at this density.

For the third selected density (ρ = 0.5, Fig. 5(c)), the dynamic evolves in the same way

already observed for higher anxiety thresholds (1/d ∈ [10−3, 10−2]), where the agents do

not reach the second and third stress stages, due to the availability of free spaces. Again,

the minimal evacuation time occurs for an appropriate combination of agents experiencing

mild and optimum stress. We found that the standard deviation raises due to the increased

number of accessible paths to the exit. Finally, when the initial density is low, the number

of agents reaching the high anxiety level is also low (about 20%).

We have also implemented non-uniform distributions of initial stress. For example, we

have taken an initial distribution that resembles a Gaussian profile. For simplicity, we set its
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center at zero stress, and its deviation equal to UI (we only accept positive stress values). We

performed evacuation simulations for ρ ∈ [1, 0.75, 0.5], as shown in Fig. 6. The results are

qualitatively similar to those observed above, namely, that the evacuation time reaches an

optimal value when we reduce the relative number of agents in the stress state one so that a

relatively large number of agents have the flexibility to move to cells that are not necessarily

the ones with the lowest floor field in their neighborhood. Of course, there are collective

issues, as it becomes difficult to predict the evacuation time solely from the relative number

of agents at each of the stress stages. Similarly, the optimal dop, for which the evacuation

time is minimal and the minimum of the evacuation time decrease with density. In addition,

the minimum value of the evacuation time also decreases with ρ. However, we note from

Fig. 6 that the value of dop increases when agents have random initial stress taken from

the Gaussian-like distribution, showing that the initial stress level can strongly affect the

evacuation time.

Therefore, we have improved the code to display our simulations, and we produced a new

version of Fig. 7. In this enhanced version of the code, we now show the tracked agent’s

stress level, and we display agents’ stress levels before and after movement. Now, in the

lower-left corner of the tracked agent, we display the agent’s stress level when it arrived at

the cell, and in the upper right corner is the stress level when the agent leaves the cell.

The notation from the marked agent (specifically in Fig. 7(d), Fig. 7(e) and Fig. 7(f))

shows in the upper part of the cell the number of movements that the specified agent made,

and in the lower part in which clock tick the agent moved. Also, the line’s color shows what

state of stress the agent was in (green if mild stress, yellow if optimal stress, and red if

anxiety). The color of the tracked agent shows the level of the stress when the agent arrived

in the cell (lower-left corner) and also displays the level of the stress when the agent arrived

in the cell (upper-right corner). Finally, we note that all this information is rewritten by the

software when an agent revisits a space inside the simulation area (see the agent of Fig. 7(f),

between movements 25 and 31). In this interval, the agent revisited these two spaces more

than once since it was in anxiety.

We now describe in detail the temporal evolution of a specific agents’ stress level. For

example, in Fig. 7(d), we track an agent who starts with a low level of stress. In Table I we

show in detail each level of stress for all the dynamics of this specific agent.

With the help of Table I and Fig. 7(d), we can explain in a better way our implementation
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FIG. 6. (color online) Results for 1/〈T 〉, percentage in a given stress stage, and normalized collisions

for agents having random initial stress taken from a Gaussian distribution. In the rows, we show

the average evacuation time (top row), average relative number of agents in a given stress stage

(middle row), and normalized number of collisions (bottom row); for ρ = 1 (first column), ρ = 0.75

(second column), and ρ = 0.5 (third column), respectively. Plots (g), (h), and (i) are normalized by

C0 ≈ 8.2×106, C0 ≈ 1.3×106, and C0 ≈ 2.5×105, respectively. All the color lines in (d)-(i) follows

the convention of Fig. 3, and we also present the standard deviations over the 1000 simulations for

these measures. Compared with an uniform initial stress equal to zero (for example, Fig. 5), we

observe a different kind of dynamics, that will be analyzed in detail in a future manuscript.

of different stress levels. The agent started in a mild stress situation and kept its position

for two iterations. Since UI = 5, when the agent made the first movement was in a mild

stress situation. That is why we display the corresponding rectangle in Fig 7(d) with a green

rectangle. Therefore, the agent’s next movement was made by following the mild stress rules

15



TABLE I. (color online). Detail of the level of stress for agent 83.

Timestep Movement? Stress counter Stress Level

1 No 1 Mild

2 Yes 0 Mild

3 No 1 Mild

4 No 2 Mild

5 No 3 Mild

6 No 4 Mild

7 No 5 Mild

8 No 6 Optimal

9 Yes 5 Mild

10 No 6 Optimal

11 Yes 5 Mild

12 No 6 Optimal

13 Yes 5 Optimal

14 Yes 4 Mild

are given before, since its stress counter was equal to 1. Afterward, we see that it maintained

the position by seven clock ticks, so the optimal stress dominated its following movement

rules. Then it managed to make only one movement (the third one), and after that, it

remained in its position for five additional clock ticks due to collisions with other agents

(losing against them) or inaccessible open cells. The agent could move at the eleventh and

thirteenth ticks to exit the simulation in its fifth movement.

The screenshots also highlight two agents’ trajectories, namely, agents with Ids 80 and

96 (from left to right panels in Fig. 7(d)), respectively. We choose them because they spend

a relevant part of their trajectory in a particular stress level. From Figs. 7(d)-(f) we can

conclude that the agents’ collisions are essential when the agents approach the door. For

example, from Fig. 7(f), we can see that between movements 34 and 35 of the selected agent,

seven ticks passed since the door was too crowded and other agents occupy all the tiles.

Finally, we can conclude from Fig. 7(f) that the dynamics for the agents, particularly those

with high-stress levels, may follow Brownian types of motions. This observation deserves
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future study, for it may provide a way to estimate simulation and effective simulation stress

level distributions from observations of trajectories of individuals in high-density situations.

FIG. 7. (color online) In this figure, we show screenshots of three different selected trajectories.

In the first row, we plot the initial states of the system, and in the second row, the final state of

the system at the time each agent exits, along with the trajectory followed by each agent. We

selected these agents to display a combination of mild and optimal stress during the trajectory.

The agent’s top index of the agent’s trajectory numbers the agent’s movements, while the bottom

index numbers the system’s time steps. Also, in the rectangle associated with the tracked agent,

we display the agent’s stress level, represented by color, in the lower-left side when it arrived at

the cell, and on the upper right side, the stress level when the agent leaves the cell. We have used

the following color code convention: if the agent is in the first stage (mild stress), we use the green

color. If the agent is in the second stage (optimum stress), we use the yellow color; lastly, we use

the red color if the agent is in the third stage (anxiety). See Supplemental Material at [URL will

be inserted by publisher] for further details on the trajectories.

To produce the above trajectories and overall behavior with density, we expect that the

number of collisions should increase rapidly. In Fig. 8 we display the average number of

collisions as a function of density for d = 1. We note that the number of collisions and
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the relative distribution of agent stress become relevant measures that determine the overall

dynamics, and one must consider as we consider more realistic pedestrian flows.

FIG. 8. (color online) The average number of collisions for the complete range of densities and

d = 1. These simulations were conducted with agents that have zero initial stress. Average number

of collisions for the complete range of densities and d = 1. These simulations were carried out with

agents that have zero initial stress.

IV. CONCLUSIONS

Here we present a model for a group of persons exiting a room without obstacles. In

our computer simulations, we implemented a CA using a FF to drive the agents’ decisions,

which are also affected by their stress level and collisions. Following accepted distinctions of

individuals stress, we included three types of agent response depending on the stress type:

mild stress, optimum stress, and anxiety. The relative distribution of agents in these three

stress stages produce different collective responses; such that for a similar number of agents

in the 1st and second stress stages, and none in the 3rd one, we obtain the lowest exit time.

This result extends the accepted efficiency from the individual level to the collective behavior.

Also, we tracked all the agent’s intentions, and they are collisions of intentions. Particularly

relevant is the notorious difference that the type of stress induces the agent’s trajectories

when there are enough interactions. This last conclusion is an exciting observation that
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deserves more attention in future studies, as it may allow us to relate with the trajectories

of individuals in real situations.

Our results with an initially full room show that the dynamics are driven by the relative

distribution of agents in the different stress stages, suggesting that this ingredient is an

essential aspect that must be considered in evacuation processes. We have assumed that

as the agent moves, its anxiety lowers by a fixed amount. In a future study, we plan to

challenge this assumption to observe the evacuation time impact.

Although this work extends our recent studies on evacuation times, and particularly as

going from 1D to 2D pedestrian flows where there are more movement choices, the results

with and without stress are not a direct test of behavior in natural evacuations. Therefore,

care should be taken when extrapolating from our findings. However, they provide helpful

evidence into the role that different types of stress play in crucial human decision-making,

which may help develop more realistic agent-based simulations in the future.

Similarly, it could be of interest to extend this type of analysis to other studies where

stress and collisions may become relevant, such as counter flows or multilevel evacuations.

The inclusion of psychological stress features into our CA model provides reliable simulations

of human evacuation dynamics that can be use to emulate and predict real-world emergency

egress from a two-dimensional corridor. We introduce new statistical descriptors for transient

states, such as the number of collisions and intentions, to study the collective behavior.
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Cellular automaton model for evacuation process with obstacles, Physica A 382, 631 (2007).

[29] M. Ramirez, F. Torres, B. A. Toledo, M. Coello, P. Correa-Burrows, J. Rogan, and J. A.

Valdivia, Unpredictability in pedestrian flow: The impact of stochasticity and anxiety in the

event of an emergency, Physica A 531, 121742 (2019).

[30] D. J. Yerkes, The relation of strength of stimulus to rapidity of habit formation, J. Comput.

Neurol. Physiol. 18, 459 (1908).

[31] S. Lupien, F. Maheu, M. Tu, A. Fiocco, and T. Schramek, The effects of stress and stress

hormones on human cognition: Implications for the field of brain and cognition, Brain and

Cognition 65, 209 (2007).

[32] J. Adrian, N. Bode, M. Amos, M. Baratchi, M. Beermann, M. Boltes, A. Corbetta, G. Deze-

21

https://www.youtube.com/watch?v=ehAMLJMiijQ
https://www.youtube.com/watch?v=tDQw21ntR64
https://doi.org/https://doi.org/10.1016/j.bandc.2007.02.007
https://doi.org/https://doi.org/10.1016/j.bandc.2007.02.007


cache, J. Drury, Z. Fu, R. Geraerts, S. Gwynne, G. Hofinger, A. Hunt, T. Kanters, A. Kneidl,
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