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When dealing with spreading processes on networks it can be of the utmost importance to test the
reliability of data and identify potential unobserved spreading paths. In this paper we address these
problems and propose methods for hidden layer identification and reconstruction. We also explore
the interplay between difficulty of the task and the structure of the multilayer network describing the
whole system where the spreading process occurs. Our methods stem from an exact expression for
the likelihood of a cascade in the Susceptible-Infected model on an arbitrary graph. We then show
that by imploring statistical properties of unimodal distributions and simple heuristics describing
joint likelihood of a series of cascades one can obtain an estimate of both existence of a hidden layer
and its content with success rates far exceeding those of a null model. We conduct our analyses on
both synthetic and real-world networks providing evidence for the viability of the approach presented.

I. INTRODUCTION

Real-world complex systems can often be described by
interconnected structures known as multilayer networks
[1–4]. Transportation, social or economic networks, to
name just a few general examples, can have various types
of connections, see Fig. 1 for an example depiction of such
a system. Each such type of a connection in a network can
be represented as a specific sub-system or sub-network.
Railway, flights and bus connections can all be described
with a network but to have a full description of the trans-
portation system, they need to be joined and described
with a multilayer network. In reality, obtaining full infor-
mation which would allow to create a complete multilayer
network is rarely possible. Moreover, in some cases, even
the knowledge about all existing layers is limited. As a
result, researchers often have to deal with uncertainty
which arise from dealing with partial information about
connectivity in analysed system. This specifically con-
cerns one of the fundamental problems in network science,
the spreading processes on networks [5–11] but is also of
significance for opinion dynamics [12–15].
In the following article we focus on the problem of

detecting hidden layers based on observations of a dy-
namical processes on graphs. By dynamical process we
mean a realisation of a spreading process described by
a model of the susceptible-infected-recovered (SIR) type.
Note that such models can describe not only infections,
but also spreading of information, opinions or failures.
Furthermore, we assume that the observation of such a
process is limited to the states of the nodes, without the
knowledge of the actual spreading path. In the rest of
the text we will refer to a single spreading realisation as a
cascade. We also propose and explore methods for finding
missing connections of different types. Finally, we analyse
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potential limitations and difficulties as well as beneficial
settings, i.e. when solving the problem is easier, for these
methods.

The problem of detecting hidden layers has appeared
recently in the literature in a non-markovian setting [16]
and on quantum graphs [17]. It is also closely related to
the problem of network reconstruction which was exten-
sively analysed in the past [18–22] and also in a partial
observation setting [23–25]. Our setting is a bit simpler
in some regards but at the same time still fairly realistic
and thus should still be viable for real-world problems.
We feel that our simplifications are justified since solving
the general problem was proved to be limited [19] and
previous papers often approached only limited cases any-
way, such as very short cascades [26]. This is not to say
that successful approximations are not possible [18], how-
ever, the goal of this paper is to investigate the challenges
associated with detecting hidden layers in interconnected
networks in the context of spreading processes.

Reader should not confuse the problem of finding hid-
den layers based on observed spreading with extensively
analysed branch of network science called link prediction,
where the hidden connections are estimated using only
the network structure. A seminal paper in this direction
is [27]. An extension, including multilayer networks, can
be found in [28].

The paper is structured as follows: in the next section
we describe all the methods used in the analysis, starting
with tools which allow for detecting hidden layers and then
proposing methods for identifying unobserved connections.
In the third section we analyse both synthetic and real
world networks and show how our methods work under
different structural circumstances. Finally, we discuss all
the results and present our conclusions in the last section.
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FIG. 1. Visualisation of the multilayer network representing the Aarhus data [29]. We utilise this network as a real world
example of possible application of our methods. It is quite natural to imagine we know only one of the layers presented here and
would like to infer the existence and possibly structure of others. Note that co-author and leisure layers have lower connections’
density in comparison with others. Thus we do not use them as visible layers in our analyses as that makes the task of detecting
hidden connections potentially much easier.

II. METHODS

In our analysis we focus on one of the simplest spreading
model – the Susceptible Infected (SI) model [30]. We use it
in a network version where the dynamics can be described
as follows: for each node i, which is in the infected state
I at time t, each of its neighbors j (in susceptible state
S) will become infected at time t+ 1 with probability β.
This model was used because of its simplicity on one hand
and the mechanism of multiple infection opportunities (in
comparison with, e.g. an Independent Cascade model) on
the other. The latter makes the combinatorial analysis
much more difficult, as we will see in further sections.
The former is reflected by an easy to derive likelihood of
any observed spreading, including a multilayer scenario,
assuming that the full knowledge about connectivity is
available. We are well aware that for specific applications
other, often more complex, models may be better suited
for the problem. Our approach, however, can effectively
be used for other spreading description. As an example,
we provide the full derivation and results also for the
Independent Cascade model (see Appendix A). Note that
SI and IC are limiting versions of the SIR model, which
means that the presented results give limits for the whole
family of SIR models.

Let us denote a multilayer graph with G and let the
probability of infection (spreading) on each layer j be
equal to βj . We will refer to a single spreading dynamics
as a cascade and denote it with Σc. A single cascade can
be described by a set of infection times τ ci for each node i.
We will also assume that a cascade ends at time tmax and
if a given node was not infected at all, its infection time
will be equal to tmax. In other words, if node’s i activation
times is equal to tmax, it was either activated at tmax

or later – this will be more clear once the likelihood is
derived. The set of all available cascades will be denoted
with Σ.

A. Cascade likelihood for the Susceptible-Infected
model

As mentioned before, the likelihood of a given set of
cascades, for a specific and fully known multilayer network
can be derived, similarly as it was done in [23]. In short,
the probability of a given data-set can be written as a
product over cascades, which are independent, and nodes,
because the problem can be considered locally:

P (Σ|G, {βj}) =
∏
i∈V

∏
c∈C

Pi(τ
c
i |Σc, G, {βj}), (1)

where V is the set of nodes in graph G. Note that we
can use our knowledge about the activation times of each
node and compute the probability of node i not being
activated by its neighbor k (from layer j) before τ ci − 1

under cascade c, which is equal to
∏τc

i −2
t=0 (1 − βj1τc

k≤t),
where 1x is the indicator function (it is equal to 1 when
x is true). Similarly, the probability of the same node not
being activated by its neighbor exactly at time τ ci − 1 is
equal to (1−βj1τc

k≤τ
c
i −1). Have in mind that τ ci = tmax is

equivalent to node i not being activated at all. Then each
element of the product in Eq. (1), being the probability of
node activation under a specific cascade, can be computed
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as follows:

Pi(τ
c
i |Σc, G, {βj}) =

( τc
i −2∏
t=0

∏
j

∏
k∈∂ji

(1− βj1τc
k≤t)

)

×

(
1−

∏
j

∏
k∈∂ji

(1− βj1τc
k≤τ

c
i −1)1τc

i <tmax

)
,

(2)

where ∂ji is the set of neighbors of node i in layer j. If we
know one or more layers of the network, we can use the
above equation to compute the probability of observed
dynamics, assuming that there are no other propagation
channels. As seen from Eq. (1), adding more cascades
reduces the likelihood. Nevertheless increased statistics
of cascades makes it easier to find hidden edges, as it is
shown in Fig. 8.

B. Detecting the existence of a hidden layer

An unobserved layer of propagation may lead to a situ-
ation where nodes become active despite not interacting,
on the observed network, with any other active node.
Such a situation leads to the probability described by
Eq. (1) being equal to zero. In such a case, one can be
sure that there exist spreading paths that are not present
in the observed layers. In reality, different layers share
certain similarities and may be strongly correlated which
would decrease the probability of observing a forbidden
activation – in other words, it is less likely that an activa-
tion, which occur through a hidden connection, will have
a zero probability. Real-life social networks are a good
example of this because of a significant overlap between
connections on different social media platforms. Moreover,
social connectivity is characterised by high clustering [31]
which increases the probability of observed neighborhood
being active, even though the activation came through an
unobserved edge. To address such a situation and still be
able to evaluate whether a given set of cascades indicates
existence of an unobserved layer or not, we assume a
single layer model and utilise the Vysochanskij–Petunin
inequality (VP) [32] to evaluate whether a given cascade
could be generated by such a model.
We expect that cascades, which involved spreading

through unobserved edges, have significantly lower like-
lihood than those in the assumed null model. Assum-
ing that the likelihood distribution is unimodal, we can
quantify how distant the value of an observed cascade
likelihood is from the value expected from the single-layer
model using the VP inequality. It states that if X is a
random variable with a unimodal distribution (mean µ,
finite and positive variance σ) and λ >

√
8/3, then:

Pr(|X − µ| ≥ λσ) ≤ 4

9λ2
,

which after normalisation X̃ = |X−µ|
σ gives:

Pr
(
X̃ ≥ λ

)
≤ 4

9λ2
.

Inserting λ = x̃:

Pr
(
X̃ ≥ x̃

)
≤ 4

9x̃2
,

which means that an upper bound of probability of ob-
taining a result x̃ or greater from a normalized unimodal
distribution describing X̃ is:

p(x̃) = min

(
4

9x̃2
, 1

)
(3)

for x̃ >
√

8/3. In our case, x is the likelihood of a cascade
given by Eq. (1), X is a random variable describing
the likelihood values for an assumed single layer model.
After performing simulations, we calculate µ and σ, and
normalise the x value obtaining x̃.

In our experience the distributions, which describe X in
the single-layer case are unimodal and x̃ >

√
8/3 with a

sufficient observation time (tmax), thus the assumptions of
the VP hold, however, as we are the ones producing these
distributions then it is trivial to inspect whether that is
the case before proceeding with the rest of our method. In
the event, it is not true an alternative theorem, analogous
to the VP inequality (e.g. the Chebyshev’s inequality
[33]), can be introduced or even more general approaches
such as bootstrapping [34] can be used to determine the
confidence level of the observation.
In the paper, we use p(x̃) to measure how surprising

given cascades are, assuming they were generated by an SI
process with known β simulated on a visible layer of the
network. We validate our approach in the next section,
using simulations and synthetic networks.

C. Detecting the hidden edges

In the previous section, we shown how one can discard
the possibility that observed cascades were generated by
the given network. Once the existence of the hidden layer
is established, the same data can be used to estimate the
topology of a hidden layer(s). This requires assuming
some topology (given visible layer and estimated hidden
layer) and βhidden to simulate the process again and cal-
culate new likelihoods. We will try to find the topology
by finding cases of node activation that could not be ex-
plained by the assumed single layer model. Then for each
such activation we identify the set of potential hidden
edges. The details of the procedure are as follows:

1. Let J c(t) = {i ∈ N : τ ci ≤ t} be a set of nodes
that are infected in a simulation step t of cascade
c. N represents the set of nodes in graph G and
τ ci is the activation time of node i in cascade c.
∆J c(t) = {i ∈ N : τ ci = t} will be a set of nodes
that became infected in a simulation step t of cascade
c.

2. Using above notation we can introduce a set of nodes
that became infected in simulation step t of cascade
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c but were not a neighbor of any node infected at
t− 1:

Uc(t) = ∆J c(t) \
⋃

m∈J c(t−1)

∂m,

where ∂m is the known neighborhood of node m.

3. If the likelihood of a cascade is zero then there is at
least one hidden edge in a set:

E(i, c) =

{
(i, k) : k ∈ J c(τ ci − 1), i ∈

tmax⋃
t=1

Uc(t)

}
.

Likelihood of such an edge being the one that was
activated to infect i is unknown and difficult to
find. However we can say heuristically that said
likelihood is:

P c(i, k) ∼ (1− βhidden)|τ
c
i −τ

c
k |.

4. Then we must unify the candidates amongst the
cascades. Namely if an edge (a, b) was detected in
c = 1 but not in c = 2 we need to associate it with
the likelihood of not being detected which is similarly
non-trivial. Also similarly we can say whatever that
likelihood is it must be ∼ (1− βhidden)|τ

c
i −τ

c
k |

5. Finally, for each edge e we multiply its likelihoods,
therefore obtaining a joint likelihood J :

J(e) =
∏
c

P c(e).

6. Edges that maximise J are most likely the hidden
edges we seek.

In order to evaluate the quality of our approach, we
will use two metrics:

Sensitivity - the ratio between true-positives and all
positives. In our case it is the fraction of hidden edges that
were detected. As we simulate our systems many times,
we take the mean of the sensitivity across all simulations.
α - Credible Set Size (α-CSS) - a measure introduced

in [35]. It represents the number of candidates one must
investigate in order to have α level of certainty of finding
the sought entity. In practice one computes the rank,
i.e., the position, of the entity one wishes to find, in the
list of the candidates, which is in a descending order, in
accordance to a given measure said entity should maximise.
This is repeated many times in order to get a distribution
of that rank, and finally, one takes a quantile q = α of
that distribution, thus acquiring the α-CSS value. In our
case the measure is the joint likelihood J described above
in point 5., and there are multiple entities – edges – thus
we have taken the liberty of adapting said measure such
that we take the highest recorded rank amongst the hidden
edges and follow the rest as usual. I.e., we compute J
for the appropriate edges (see the procedure description
1.-6. above), order these edges by their J(e) (highest to
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FIG. 2. The ratio of edges required to check in order to
have 95% certainty, according to the null model, of testing all
hidden edges, as a function of number of hidden edges. The
plot is done for a network with N = 100 nodes, but the shape
of the curve scales with the size of the network.

lowest), find the position of the actual hidden edges (their
rank), take the highest recorded rank, repeat 104 times,
take the quantile q = 0.95 of these ranks.
A null model would naturally be random guessing.

There are
(
N
2

)
edges to check in a system with N nodes.

So for instance, with N = 100 that is:
(
100
2

)
= 4950 in

which case 95% certainty of finding 1 hidden link requires
checking 0.95 × 4950 = 4703 (rounded up) edges. In
general the number r of links required to check in order
to have α certainty, according to the null model, can be
obtained from:(

r
k

)((N
2 )
k

) =
r!

(r − k)!

((
N
2

)
− k
)

!(
N
2

)
!

= α, (4)

where k is the number of hidden edges and N is the
number of nodes. Fig. 2 presents the normalised r̄ =

2r
N(N−1) as a function of k in the case of N = 100 nodes.
As we show later on our method requires substantially less
edges to be checked. Since Eq. (4) requires to be solved
numerically, we also derive an asymptotic approximation,
which can be find in the Appendix B, and from which we
can see that r̄ ∼ k

√
α.

III. EXPERIMENTS

We use both real and synthetic data in our experiments.
In the latter case we build networks that are realistic
and not trivial in the sense that we do not want the
occurrence of an activation not explained by the visible
network to be likely. To achieve that, we need a way
to control the correlation between different layers of the
network – where by correlation we mean the percentage of
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overlapping edges. Therefore we propose our own models
for generating multilayer networks. As for the cascades,
these are in both cases generated using the SI model
dynamics. As an initial condition for each cascade we
randomly pick a node and change its state into infected.
Each cascade is generate independently.

A. Synthetic Networks

In the first setting, we generate a two-layer network us-
ing Barabási-Albert algorithm [36]. There are two param-
eters, which need to be selected – mhidden and mobserved,
which represent the number of edges added at each step of
the algorithm, for hidden and observed layers respectively.
The two layers are independent but both have power-law
degree distribution, which is believed to resemble real
social networks [37] (although lately it is seen more as an
idealised approximation [38]). Since lack of correlation
makes the problem of detecting hidden layers much easier
we also propose another setting. We take a square lattice
as the first layer and then apply a rewiring procedure
similar to the one introduced by Watts and Strogatz [39]
to produce another layer. We start with a square lattice
as an equivalent of real relationships (affected by distance)
but we also explore scale-free network as a starting layer.
The correlation between the two layers is parameterised
by p – the probability of each node being rewired to
any random (other) node. In all described settings we
keep the spreading probability of observed layer equal
to βobserved = 0.5. For the hidden layer, this probability
takes the values of βhidden = 0.3 and βhidden = 0.7.
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FIG. 3. The percentage of log-likelihoods resulting with −∞
as a function of the probability of rewiring p. We investi-
gate two different cases of networks: a square lattice and the
Barabási-Albert network for different lengths of cascades. The
simulations were made for networks of size N = 100 with
periodic boundary conditions in the lattice case. The inset
zooms in on the curves obtained for tmax > 2.

When it comes to detecting hidden layers using any

two-layer network with independent layers results with
majority of cascades giving likelihood equal to 0. This
is a result of many non-overlapping connections, which
activate nodes in a way, which would be impossible for
the visible layer. Therefore the problem becomes trivial
for such setting. The only interesting case is the model
with rewiring as there the correlations between layers
can be large. Fig. 3 shows the percentage of cascades
resulting with likelihood equal to zero as a function of
rewiring probability. The higher the rewiring probability,
the more independent are the networks (with rewiring
probability of 1 being the fully independent case). We test
it for local networks (represented by a square lattice) and
when there are many long connections (like in the case of
a scale-free Barabási-Albert network). As expected the
problem is easier for short cascades and quickly becomes
more difficult when the length of cascades grows. Note
that even a very small rewiring probability results in a
drastic change of the discussed percentage. It practically
means that detecting an unknown transmission channel is
fairly simple with our approach. A much more challenging
task, however, is to find the actual unknown connections.
We shall focus on that in further experiments but first let
us discuss the case when there is no prohibited dynamics
and if we can investigate the likelihood of such observed
data.

If the probability of known cascades is positive we can
compare it with the empirical distribution of cascades
simulated on the observed network. This allows us to use
the Vysochanskij–Petunin inequality and decide whether
the observed data was generated by process run a graph
with an additional (hidden from us) layer. As seen in
Fig. 4 using a typical significance level of 0.05 allows to
successfully reject the hypothesis about a single layer in
significant number of cases (or even all of them). Low
tmax and βhidden especially in the case of local networks
like the square lattice decrease the effectiveness of the test
but apart from the extreme case (lattice with tmax = 5
and βhidden = 0.3) our proposed approach is an efficient
tool for detecting hidden layers.
Once we know that there is a hidden layer affecting

dynamics we aim at finding its edges. Tables I and II
below show the results of applying our method to both
lattice and Barabási-Albert networks with hidden layers
produced by rewiring (with probability p = 0.01). When
comparing the two settings one can observe a certain
interplay between sensitivity and α-CSS. For lattice based
network the sensitivity is significantly higher than in
Barabási-Albert case but at the same time scale-free case
is characterised by a much lower α-CSS for both α = 0.5
and α = 0.95. In other words, it is easier to correctly
identify hidden edges when we have a locally connected
network (lattice) but at the same time a scale-free network
requires a smaller set to find all hidden edges (despite
reaching a lower sensitivity level). Note that in both cases
the observed 0.5-CSS and 0.95-CSS are significantly lower
than for the null model where, depending on the number
of rewired links, they would be larger than 2475 and 4703
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FIG. 4. Histograms of p(x̃) – the probability that the system has only one layer (see Eq. (3)) – for various combinations of tmax

and βhidden. Plots on the left are generated for square lattice with rewiring, while the ones on the right are generated for BA
network with rewiring. Parameters for all the networks are as follows: βobserved = 0.5, N = 100, p = 0.01 and m = 3 (in case of
BA networks). Each histogram was made with 104 realisations. (a) tmax = 5, βhidden = 0.3, (b) tmax = 5, βhidden = 0.7, (c)
tmax = 10, βhidden = 0.3, (d) tmax = 10, βhidden = 0.7, (e) tmax = 5, βhidden = 0.3, (f) tmax = 5, βhidden = 0.7, (g) tmax = 10,
βhidden = 0.3, (h) tmax = 10, βhidden = 0.7,
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FIG. 5. Distribution of ranks of hidden edges with medians as vertical lines. Left: lattice with rewiring (N = 100, tmax = 10,
p = 0.01). Right: BA network with rewiring (N = 100, tmax = 10, m = 3, p = 0.01). Results obtained with 104 realisations per
scenario where each scenario had 10 independent cascades from different sources. These results are for those realisations where
all hidden edges were detected. Solid lines show a Gaussian kernel density estimate.

respectively (see Eq. (4) for N = 100 and k = 1 – the
higher the k, the more links need to be checked for the
null-model). Full distribution of ranks from which the
α-CSS was computed is shown for both networks at Fig.
5.

As already discussed when the layers are not correlated
it is easy to identify that there is a hidden spreading

channel. Nevertheless, finding the actual unobserved
links may still be challenging. Both Fig. 6 and 7 show
that density of the observed network is an important
factor. From the sensitivity perspective it is better to
have a denser observed network. Unfortunately the 0.95-
CSS also grows with the density of known connections,
making it more demanding to find all the connections.
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βhidden βobserved sensitivity 0.5-CSS 0.95-CSS
0.3 0.5 0.81 108 322
0.7 0.5 0.85 162 422

TABLE I. Sensitivity and α-CSS for a square lattice with
rewiring (N = 100, tmax = 10, p = 0.01). Results obtained
for 104 realisations per scenario where each scenario had 10
independent cascades with randomly selected sources.

βhidden βobserved sensitivity 0.5-CSS 0.95-CSS
0.3 0.5 0.53 19 87
0.7 0.5 0.69 30 116

TABLE II. Sensitivity and α-CSS for a Barabási-Albert net-
work with rewiring (N = 100, tmax = 10, m = 3, p = 0.01).
Results obtained for 104 realisations per scenario where each
scenario had 10 independent cascades with randomly selected
sources.

Additionally, although the effect is weaker, it is beneficial
for both measures if the hidden layer is sparser. This
aligns with intuition since more hidden connections can
make the observed dynamics much more complex and
unsurprisingly having more data about the cascades also
makes the task easier. The actual dependence between
the number of cascades and the sensitivity is shown in Fig.
8. For a relatively big BA network we need around 30-40
cascades to reach a fairly satisfactory sensitivity level of
around 0.8. Depending on the specifics of the problem
such amounts of data may be considered a lot (e.g., in
epidemic spreading) or easily available (e.g. information
spreading on social media). In the next subsection we
will see that scaling for real-life networks.

B. Real World Networks

On top of synthetic networks we also use real-world
data to build a multilayer network and empirically test
our methods. For that purpose we choose the data col-
lected among employees of the Department of Computer
Science at Aarhus University [29]. It is a multilayer net-
work consisting of Facebook friendships, co-authorships,
work, leisure (repeated leisure activities) and a lunch
layer (regularly eating lunch together). Its full structure
is presented on Fig. 1 with each layer being shown as a
separate network. The whole network has 61 nodes and
620 edges in total.
Main results for the Aarhus data are shown in Tables

III, IV and V, which use respectively facebook, work and
lunch layers as the visible parts of the graph. We omitted
the other two possible cases because of their low density
of connections. We treat remaining hidden layers as one,
aggregated layer as it does not matter how many layers
exactly there are in our detection method. Sensitivity and
CSS values are consistent with synthetic results in the
sense that they both grow with the density of the visible
layer. It is also apparent that our approach far exceeds the
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FIG. 6. The sensitivity as a function of mhidden and mobserved

for two layer Barabási-Albert network with βhidden = 0.7,
βobserved = 0.5 and tmax = 10 after 10 (top) and 100 (bottom)
cascades. The results are averaged over 20 independent runs.

performance of the null model. Independently of which
layer will be chosen as the visible one, random guessing
would require us to check all possible

(
61
2

)
= 1830 links,

see Eq. (4) and Appendix B, with k ∈ {159, 160, 229} for
work, lunch, facebook as the visible layer respectively. Our
method, on the other hand, needs significantly less than
that. Here, k is the number of unique edges in the whole
graph (353) minus the number of edges in the visible layer.
Note that in order to account for the fact that our method
does not always find all the links, i.e., sensitivity < 1,
one can adjust Eq. (4) such that one multiplies k by the
expected sensitivity. That, however, barely changes the
result, i.e., null model requires maybe one or two edges
less than all possible at best. Moreover, our method gets
more successful the more cascades we can observe. A more
detailed dependence between sensitivity and the number
of cascades is shown in Fig. 8, where different colors
represent different observed layers. In Fig. 9 we show
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FIG. 7. The 0.95-CSS as a function of mhidden and mobserved

for two layer Barabási-Albert network N = 1000 with
βhidden = 0.7, βobserved = 0.5 and tmax = 10 after 10 (top) and
100 (bottom) cascades. The results are from 20 independent
runs.

the distributions of ranks for the work layer as the visible
network and when comparing them with the synthetic
experiments the two distributions for βhidden = 0.3 and
βhidden = 0.7 are much more symmetric and separated.
The distributions of the other two analysed visible layers
are qualitatively similar further supporting the merit of
our approach (see Appendix C).

βhidden βobserved sensitivity 0.5-CSS 0.95-CSS
0.3 0.5 0.92 1398 1437
0.7 0.5 0.91 1424 1475

TABLE III. Sensitivity and α-CSS for the Aarhus data, with
the facebook layer as the observed network. Results obtained
for 10 cascades with tmax = 10. Results from 104 simulations
per βhidden.

20 40 60 80 100
No. of cascades

0.4

0.5

0.6

0.7

0.8

0.9

1.0

se
ns

iti
vi

ty

lunch
facebook
work
BA

FIG. 8. The sensitivity as a function of number of cascades
for a) two layer Barabási-Albert network with m = 4 for both
layers, βhidden = 0.7, βobserved = 0.5, N = 1000 and tmax = 10
(red line); b) Aarhus data with different layers as the observed
network (lunch – blue line, facebook – yellow line and work
– green line). The results are averaged over 20 independent
runs and the error bars represent one standard deviation.
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FIG. 9. Distribution of ranks of hidden edges, with medians
as vertical lines, for the Aarhus data, with the work layer as
the observed network. Results obtained for 10 cascades with
tmax = 10, βobserved = 0.5 and two values of βhidden – 0.3 and
0.7. Results from 104 simulations per βhidden. Solid lines show
a Gaussian kernel density estimate.

βhidden βobserved sensitivity 0.5-CSS 0.95-CSS
0.3 0.5 0.42 387 515
0.7 0.5 0.58 583 729

TABLE IV. Sensitivity and α-CSS for the Aarhus data, with
the work layer as the observed network. Results obtained for
10 cascades with tmax = 10. Results from 104 simulations per
βhidden.
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βhidden βobserved sensitivity 0.5-CSS 0.95-CSS
0.3 0.5 0.71 732 838
0.7 0.5 0.78 841 966

TABLE V. Sensitivity and α-CSS for the Aarhus data, with
the lunch layer as the observed network. Results obtained for
10 cascades with tmax = 10. Results from 104 simulations per
βhidden.

IV. DISCUSSION

Spreading processes on networks are a valuable tool
when describing real-life global diffusion processes, like
epidemics, information spreading, cascading failures etc.
These processes may have several spreading channels and
rarely do we know, or are even aware, of all of them. It
is therefore crucial to identify whether observed spread-
ing was in fact generated only by the observed network.
Furthermore, should one confirm the existence of an unob-
served spreading path, finding these hidden connections
can be of the utmost importance.
In this paper we focused on identifying both the exis-

tence and the structure of a hidden spreading layer by
observing a diffusion process unraveling on a graph. We
provide methods for i) determining whether a hidden layer
exists and ii) estimating what links are present in that
layer. Our approach is based on an exact formula for
the likelihoods of an observed cascade given knowledge
of the system’s topology. Using said likelihood and the
fact its distribution can be assumed to be unimodal we
established a practical and effective way of discerning the
existence of a hidden layer. Furthermore using a series
of heuristics we obtain an algorithm for estimating the
joint likelihood of given (hidden) edge taking part in the
observed cascade therefore providing a tool for assessing
which nodes are most likely to exchange information via
channel we do not know of that is vastly superior to ran-
dom guessing. In short, a typical situation where our
approach could be used is when we observe a single net-
work and a spreading process described by a known model
and we suspect that there are hidden layers through which
the spread may progress. Note that the observed network
can already have multiple layers and the hidden part can
also consist of more than one layer. Finally, one could
also use our method in a setting where only one layer
exist, but at the same time some links are not observed.

Data from synthetic and empirical networks alike con-
firm that uncovering the hidden spreading channel is a
relatively simple task with our approach - especially when
the layers are uncorrelated. It is, however, more difficult
to identify specific hidden connections. Despite the gen-
eral similarities there are some quantitative differences
between the results obtained with synthetic and real data.
One of the most significant differences is how βhidden
relates to the distribution of ranks of hidden edges, influ-
encing the difficulty of hidden connections reconstruction.

This effect is much stronger in real world networks than
in synthetic ones. It can, however, be explained by the
difference in density between hidden and observed net-
works. In the corresponding plots for synthetic data (see
Fig. 5) both layers have the same density. Here the
hidden layer is denser (it is a sum of four hidden layers)
and so changing the hidden spreading probability affects
majority of connections.
An important factor in being able to successfully re-

cover the hidden connections turns out to be the density
of both the hidden and the observed transmission lay-
ers. Specifically, we observe that the denser the hidden
layer the harder it is to find the exact connections. An
interesting interplay takes place when it comes to the
density of the observed layer. On one hand the sensitivity
decreases with the density of observed layer, on the other
hand, the α-CSS is also decreasing with the density. This
observation, confirmed by both synthetic and real data,
means that as the number of connections on a visible
layer increases, we are able to identify less hidden edges
on average but we need to take into account a smaller
set of potential edges in order to find all of the hidden
connections.
It should be pointed out that we only focus on the

hidden connections which are not overlapping with the
observed ones. This means that for correlated layers
there might be only few unknown connections whereas
the overlapping edges are also influencing the dynamics.
Focusing on the more general picture and including the
overlapping connections is an interesting subject for future
research. Another research direction would be to focus on
further improving the hidden connections identification
algorithms. These improvements should include both the
effectiveness and scalability of proposed methods. The
latter is specifically important since real world networks
are often quite substantial in size. From the perspective
of empirical data it would also be useful to have a way of
handling a scenario where different layers have different
values of β which may or may not be known. Finally,
a more radical generalisations like including temporal
networks could also prove to be an interesting research
problem. While we do hope to address some of the above
topics in the near future we feel that methods presented
here already provide effective and practical tools for real
world applications.
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Appendix A: Independent-Cascade model

As mentioned in the main text, our methodology can
easily be applied to different spreading processes. One
example of such process is the IC model. The factorised
form of the likelihood, in case of the IC model, is the
same as for the Susceptible-Infected model

P (Σ|G, {βj}) =
∏
i∈V

∏
c∈C

Pi(τ
c
i |Σc, G, {βj}). (A1)

The form of the local probability, however, is different

Pi(τ
c
i |Σc, G, {βj}) =

(∏
j

∏
k∈∂ji

(1− βj1τc
k≤τ

c
i −2)

)

×

(
1−

∏
j

∏
k∈∂ji

(1− βj1τc
k=τ

c
i −1)1τc

i <tmax

)
,

(A2)

which is only valid for τ ci > 0, otherwise it is equal to
1. The plots equivalent to Fig. 3 and Fig. 5 in the
case of the IC model are shown respectively in Fig. 11
and Fig. 12. Note that these results do not deviate
significantly from the SI simulations. This is interesting
for two reasons. First, one could easily produce artificial
examples where either IC or SI would be very easier to
recover. On one hand it should be easier for IC model to
spot any forbidden dynamics, because of the restrictive
condition regarding only one time step where spreading is
possible for a single node. SI, on the other hand, ensures
more statistics, because of the opposite situation (nodes
can spread at any time once they are infected). Second,
since these are limiting versions of the SIR model, all
other variations (where recovery probability is between 0
and +∞) will also produce similar results. This makes

the shown results much more universal, than just for the
two analysed models.
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FIG. 10. Comparison of numerical solution of Eq. (4) and the
approximation (B3) for N = 100. The curve represents the
fraction of edges required to check by the null model in order
to have 95% certainty of testing all hidden edges.

Appendix B: Null model

In the main text we use Eq. (4) as our null model,
however, that form must (for the most part) be solved
numerically for r with a set α. Here we present an ap-
proximation that gives a closed form for r and provides
an excellent match to numerical computations (and is of
course much easier and faster to compute).

Let us recall the aforementioned formula:

α =

(
r
k

)((N
2 )
k

) =
r!

(r − k)!

((
N
2

)
− k
)

!(
N
2

)
!

. (B1)

Denote
(
N
2

)
as ξ, then

α =
r!

(r − k!)

(ξ − k)!

ξ!

=
(r − 1)(r − 2) . . . (r − k)!

(r − k!)

(ξ − k)!

(ξ − 1)(ξ − 2) . . . (ξ − k)!

=
(r − 1)(r − 2) . . . (r − k + 1)

(ξ − 1)(ξ − 2) . . . (ξ − k + 1)
∼
(
r

ξ

)k
.

(B2)
We can therefore conclude that

r ∼ 1

2
N(N − 1) k

√
α. (B3)

This leads to:

r̄ =
2r

N(N − 1)
∼ k
√
α. (B4)

The comparison of this result to the numerical solution is
shown in Fig. 10.
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FIG. 11. The percentage of log-likelihoods resulting with −∞ as a function of the probability of rewiring p. Simulations were
conducted using two different spreading models - Susceptible Infected (presented in main text) and Independent Cascades for
comparison. We investigate two different cases of networks: a square lattice (right) and the the Barabási-Albert network (left)
for different lengths of cascades. The simulations were made for networks of size N = 100 with periodic boundary conditions in
the lattice case.
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FIG. 12. Distribution of ranks of hidden edges with medians as vertical lines. Simulations were conducted using the Independent
Cascade model for comparison against the results from the main text (which show results for the Susceptible Infected model).
Right: lattice with rewiring (N = 100, tmax = 10, p = 0.01). Left: BA network with rewiring (N = 100, tmax = 10, m = 3,
p = 0.01). Results obtained with 104 realisations per scenario where each scenario had 10 independent cascades from different
sources. These results are for those realisations where all hidden edges were detected. Solid lines show a Gaussian kernel density
estimate.

Appendix C: Distributions of ranks for Aarhus data

We analyse three scenarios for the Aarhus data (de-
scribed in the main text). For each one of them we use
different layer as the visible one and project all the other
layers to one hidden network. The distributions of ranks
obtained by applying our approach to the lunch and face-
book as observed layer scenarios, are shown in Fig. 13.
The third scenario is shown in Fig. 9, in the main text.

Appendix D: Layer detection dependence on β and
system size

We test how our layer detection scheme holds for dif-
ferent infection rates and system sizes. By conducting
analogous experiments to those presented in Fig. 4 we
can show the mean and standard deviation of p(x̃) from
Eq. (3) as a function of these variables. We set the visible
infection rate βvisible = 0.5, tmax = 10, and simulate 104

times per data point.
In Fig. 14 we show results for a BA graph (m = 3)

and a square lattice with the infection rate of the hidden
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FIG. 13. Distribution of ranks of hidden edges, with medians as vertical lines, for the Aarhus data, with the lunch (left) and
facebook (right) layer as the observed network. Results obtained for 10 cascades with tmax = 10, βobserved = 0.5 and two values
of βhidden – 0.3 and 0.7. Results from 104 simulations per βhidden. Solid lines show a Gaussian kernel density estimate.

layer βhidden ∈ [0.1, 1.0]. When βhidden is small we see
a wide spread of the p(x̃) values which is not surprising
as the probability of a hidden edge being the preferred
connection is also small. As the hidden infection rate rises
both the expected value and the variance diminish quickly
showing that if the hidden layer is significant enough to
cause an effect in the whole system then our method will
detect it.

In Fig. 15 we show how the size of the network, N ∈
[50, 500], affects the p(x̃). On the left we present results
for BA (m = 3) and on the right for a square lattice. In
both cases we choose βhidden = 0.1 as this is the “worst
case” scenario from the previous plot. The blue line shows
the mean and one standard deviation of p(x̃) while the

red shows the ratio of infinite log-likelihoods. For the BA
graph the statistic is still sufficient in the tested range,
however, for the lattice it is not. On the left we can see
that as the size increases the mean and variance diminish
which is due to the fact that the larger the graph the
more potentially “forbidden” links are possible, and thus
the detection of the hidden layer becomes easier. On the
right the blue curve shows some wild values and that is
because of how quickly the red curve rises up to virtually
being equal 1. By the time we reach N = 500 only an
order of 30 realisations out of 104 are finite, rendering
the blue curve a bit misrepresentative as the statistic is
insufficient and biased towards cascades very similar to
those generated by a single layer model. We show it here
for the sake of completeness.
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FIG. 15. Mean probability that the system has only one layer as a function of the system size (blue) - see Eq. 3 and Fig. 4.
The hidden layer infection rate - βhidden = 0.1. The colour bands represent one standard deviation. Results for two graphs
are presented - BA (m = 3, left) and a square lattice (right) βvisible = 0.5, and tmax = 10. Each point is the results of 104

simulations. The red curves (Y-axis values on the right side of the plots) represent the ratio of infinite (−∞) log-likelihoods
detected in the data (see Fig. 3). The wide spread and increasing behaviour for the lattice is the result of a very high infinite
log-likelihoods ratio - by the time we reach N = 500 only an order of 30 realisations out of 104 are finite.
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