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From social networks to biological networks, different types of interactions among the same set
of nodes characterize distinct layers, which are termed multilayer networks. Within a multilayer
network, some layers, confirmed through different experiments, could be structurally similar and
interdependent. In this paper, we propose a maximum a posteriori based method to study and
reconstruct the structure of a target layer in a multilayer network. Nodes within the target layer
are characterized by vectors, which are employed to compute edge weights. Further, to detect struc-
turally similar layers, we propose a novel method for comparing networks based on the eigenvector
centrality. Using similar layers, we obtain the parameters of the conjugate prior. With this maxi-
mum a posteriori algorithm, we can reconstruct the target layer and predict missing links. We test
the method on two real multilayer networks, and the results show that the maximum a posteriori
estimation is promising in reconstructing the target layer even when a large number of links is
missing.

I. INTRODUCTION

Network science has been widely used in different
areas, such as information diffusion, infectious disease
spread, and gene co-expression analysis. Through net-
work analysis, one can study the relations among nodes,
and the robustness of a system [1, 2]. For example, epi-
demiologists can predict the number of people infected
by COVID-19 through epidemic analysis. Then, they
can provide advice to policymakers at an early stage to
curb the spreading of the disease [3]. By constructing co-
expression networks, biologists can discover crucial genes
(nodes) by simply choosing genes with high degree cen-
tralities, closeness centralities, or eigenvector centralities.
In a typical protein network, five to seven layers are con-
sidered to represent different types of molecular interac-
tions [4, 5], including proteolysis, genetic interaction, co-
expression, etc. Such multilayer networks are obtained
through biological experiments, which could be expen-
sive and time-consuming. A layer can be particularly
important but also incomplete, with many missing links.
A critical research goal is to reconstruct this important
layer, called the target layer, without performing the ex-
pensive experiments, but by exploiting all information
embedded in the other layers. In other words, we can
estimate the target layer through existing layers [6–10].
After constructing the target layer, researchers can de-
vote restricted resources to the detection of edges with
high probabilities.

Various methods have been proposed to reconstruct
networks and predict missing links, and most of them
are based on generative models [6–8, 11–25]. A genera-
tive model reconstructs the network topology by fitting
a stochastic network model [8, 14, 15, 26], and uses a
maximum-likelihood estimation (MLE) algorithm to find
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the optimal parameters that can describe the network.
In [14, 15], the authors presented a degree-correlated
stochastic block model to reconstruct a single layer net-
work. Edges are computed through the tensor product of
node vectors, and the entries of the node vectors are the
degrees of the nodes in each community. Authors in pa-
per [8] extended the single layer stochastic block model to
multilayer networks and used it to predict missing links
and detect overlapping communities. The authors tried
all the layer combinations to find the layers that can im-
prove the maximum likelihood. However, when there are
many layers, it is burdensome to try all the layer com-
binations to find the interdependent layers. The authors
validated the algorithm through two real multilayer net-
works by hiding 20% of links and non-links.

In multilayer networks, there could be structurally sim-
ilar layers. Therefore, it is possible to take advantage of
similar layers to help reconstruct the target layer. We
propose comparing the target layer with the remaining
layers if the target layer is partially known. In the lit-
erature, multiple methods have been proposed to com-
pare networks [27–31]. The authors in [28, 29] present
a method called DeltaCon. The DeltaCon method com-
pares the affinity scores of every pair of nodes in two
networks. The method is very sensitive to changes in the
number of edges, and the removal of edges results in a
significant change in the distance. Papers [30, 31] review
and compare some network-comparing methods, includ-
ing vertex/edge overlapping, vertex/edge vector similar-
ity, and the SimHash algorithm. The vertex/edge over-
lapping method applies the rule that two graphs are sim-
ilar if they share many vertices and edges. According
to the analysis in [30], the drawbacks of this method are
that it is not sensitive to changes in high-quality vertices,
topology, and properties of networks. The vertex/edge
vector similarity method compares the node/edge weight
vectors of two networks. The drawback of this method
is that it is not sensitive to changes in the topology and
other properties of networks. To take advantage of the
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features of networks, the SimHash algorithm is intro-
duced to compare networks. The PageRank [32] together
with edges are used as network features in SimHash al-
gorithm to compare web page networks.

In this paper, we propose a maximum a posteriori
(MAP) based-method for target layer reconstruction as
well as for link prediction. The MLE algorithm and
entropy-related approaches must depend on the known
information of the target layer. Consequently, the recon-
struction is significantly affected by the available infor-
mation of the target layer. In the MAP algorithm, the
layers that are similar to the target layer will be consid-
ered to compute the parameters of the conjugate prior.
Experimental results show that the MAP algorithm pro-
vides more consistent results than the MLE method. The
first contribution of this paper is to discover an incom-
plete target layer by computing its edges through a dot
product of node vectors. The optimal entries of node
vectors are obtained by maximizing the posterior proba-
bilities of the stochastic model. In our experiments, we
find that the model accuracy can be improved if we in-
crease the dimension of node vectors, but the return is di-
minishing for large vector dimensions. Another contribu-
tion is that we introduce the eigenvector centrality-based
SimHash algorithm to detect structurally similar layers
(interdependent layers). The eigenvector centralities of
nodes are extracted as network features, which allow us
to recover the structure of networks, as shown in the
experimental results. In this work, we assume that the
number of edges between any pair of nodes follows Pois-
son distribution [8, 14]. Hence, the Gamma distribution
will be the conjugate prior for the Poisson distribution
[33]. We compute the parameters of the conjugate prior
through the adjacency matrices of similar layers, and the
contributions of the similar layers are weighted by their
similarities. The number of edges between each pair of
nodes is calculated as the dot product of the node vec-
tors. In our experiments, we show that similar layers are
critical in improving the robustness of link predictions.

The paper is organized as follows. In section two, we
first introduce the MAP method on target layer recon-
struction. Next, we propose the eigenvector centrality-
based SimHash algorithm to find structurally similar lay-
ers. Then, we propose the process for identifying parame-
ters of the conjugate prior under different circumstances.
In section three, we first evaluate the eigenvector cen-
trality based SimHash algorithm on two real multilayer
networks. Then, we evaluate the MAP algorithm-based
target layer reconstruction on the two real networks and
compare the differences between the MLE algorithm and
the MAP algorithm. We conclude the paper in section
four.

II. LAYER RECONSTRUCTION IN
MULTILAYER NETWORKS

A. Maximum a posteriori based stochastic model

In this section, we define the stochastic model for both
directed and undirected multilayer networks. The adja-
cency matrix of the target layer is denoted by A. The
goal of this reconstruction is to estimate A, given a par-
tial knowledge of the target layer and of other layers in
the multilayer network. To reconstruct the target layer, a
set of parameters is needed to describe the model, which
we denote as θ. Based on Bayes theorem, the posterior
probability of θ is

P (θ | A) =
P (A | θ)P (θ)

P (A)
, (1)

where P (θ | A) is the posterior probability of θ, P ( A | θ)
is the likelihood ofA under θ, P (θ) is the prior probability
of θ and P (A) is the marginal likelihood that contains all
the information of the network. Since P (A) is a constant,
P (θ | A) is proportional to the product of P (A | θ) and
P (θ). Therefore, we have

P (θ | A) ∝ P (A | θ)P (θ). (2)

For any pair of nodes in the network, we use Eij to de-
note the expected number of links (which could be frac-
tional) between node i and node j. In unweighted net-
works, the entries of the adjacency matrix are denoted
by 0 or 1. Here, since the entries Eij are real numbers,
we can interpret network A as a weighted network.

Before we substitute any parameters into expression
(2), we make the following assumptions. The links in the
target layer are independent and identically distributed.
In other words, the number of edges between node i and
node j does not affect the relation between node i and
node k. Further, we assume the number of links between
any pair of nodes is extracted from a Poisson distribu-

tion, i.e., P (Aij | Eij) =
e−Eij (Eij)

Aij

Aij !
. We can rewrite

expression (2) after substituting Eij and Aij as

P (θ | A) ∝
∏
i,j

e−Eij (Eij)
Aij

Aij !
P (Eij). (3)

In the MLE algorithm, the prior probability P (Eij)
can be neglected since it is a constant. In the MAP
algorithm, we need to specify the prior distribution of
P (Eij). The conjugate prior distribution for the Poisson
distribution is the Gamma distribution

P (Eij) =
β
αij

ij

Γ(αij)
E
αij−1
ij e−βijEij

∝ Eαij−1
ij e−βijEij , (4)

where αij , βij and Γ(αij) are the shape parameter, the
scale parameter, and the Gamma function of the Gamma
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distribution, respectively. In section II C, we introduce
a procedure to determine αij and βij through the lay-
ers with high similarities. Substituting the conjugate
Gamma distribution into expression (3), we have

P (θ | A) ∝
∏
i,j

e−(β+1)Eij (Eij)
Aij+α−1. (5)

Note that we have left out constant terms.
The problem now has been simplified to finding the pa-

rameters Eij that can maximize the posterior probability.
However, an expression for Eij has not been specified. In
this work, we compute the links through node vectors.
The nodes in the target layer are represented by vectors.
The expected number of links Eij can be computed by

Eij =

K∑
z=1

siztjz, (6)

where siz and tjz are respectively the zth entry of node
i’s vector and node j’s vector. Here, we use s and t to de-
note source and target nodes. K is the dimension of the
vector. Some MLE related works use tensor factorization
to decompose the links, and the dimension of the tensor
is interpreted as the number of overlapping communi-
ties. As a result, there should be an optimal number of
communities that can maximize the estimation accuracy.
However, this cannot be rigorously achieved and the ten-
sor factorization can be simplified to the dot product
according to our analysis in appendix A.

Expression (5) is still intractable after substituting Eij
with equation (6). We take the logarithmic form of ex-
pression (5), which gives

L(θ | A) =
∑
i,j

[(Aij + αij − 1) logEij − (βij + 1)Eij ]

=
∑
i,j

[(Aij + αij − 1) log

K∑
z

siztjz

− (βij + 1)

K∑
z

siztjz], (7)

where L(θ | A) is the log posterior.
To find the maximized posterior for expression (7), we

apply the Jensen’s inequality log x ≥ log x, which gives

log

K∑
z

siztjz = log

K∑
z

qijz
siztjz
qijz

≥
K∑
z

qijz log
siztjz
qijz

=

K∑
z

qijz(log siztjz − log qijz). (8)

The equality is satisfied when

qijz =
siztjz∑
z siztjz

. (9)

After substituting expression (8) and equation (9) into
equation (7), equation (7) can be simplified to

L(θ | D) =
∑
i,j,z

[(Aij + αij − 1)qijz log siztjz

− (βij + 1)siztjz]. (10)

Taking the derivative of equation (10) and equating to
zero, we obtain the values of siz and tiz, the optimal node
vectors that maximize the posterior probability:

siz =

∑
j(Aij + αij − 1)qijz∑

j(βij + 1)tjz
, (11)

tjz =

∑
i(Aij + αij − 1)qijz∑

i(βij + 1)siz
. (12)

The procedure to obtain the optimized siz and tjz is to
assign random initial values for siz and tjz, then update
equation (9), (11), and (12) iteratively until equation (7)
converges. However, before applying the above iteration,
we need to identify αij and βij , which are introduced in
section II B and section II C.

B. Similarity and layer comparison

In section II A, we have detailed the procedure to com-
pute the optimal node vectors by maximizing the poste-
rior probability. The parameters αij and βij for the prior
distribution are required to perform the posterior prob-
ability maximization. We propose to compute αij and
βij through the layers of the multilayer network that are
similar to the target layer. Keep in mind that there are
missing links in the target layer, and the percentage of
missing links is not known at all. Therefore, the primary
factor for an effective network-comparing method is that
the method must not be significantly affected by the per-
centage of missing links.

Networks can be characterized by multiple types of
centralities, such as, degree centrality, eigenvector cen-
trality, closeness centrality. The degree centrality mea-
sures the importance of a node by capturing the number
of links the node has, while the eigenvector centrality
can be regarded as an extension of degree centrality in
which node’s importance is also affected by its neighbors’
importance. The closeness centrality of a node is the av-
erage length of shortest paths between the node and all
other nodes. One or more of the centralities can describe
the features of a network. To compare the target layer
with the other layers, we can compare the features of the
layers. For our purpose, the eigenvector centrality is se-
lected as the network feature, and is used in the SimHash
algorithm to compute similarities.

The SimHash algorithm works as follows [30, 31]. The
feature of a network can be expressed as a set of token-
value pairs {(vi : wi)}, where vi is a node and wi is its
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measure under the feature, for example its eigenvector
centrality. Note that the target layer and the layer to be
compared have the same set of tokens. In cryptography,
any messages can be encrypted to a unique binary num-
ber (digest). Similarly, we can represent each token with
a unique binary number with φ bits (2φ > the number
of vi). For each binary number (digest), we map every
1 to wi, and 0 to −wi. Thus, each token is mapped to
a weighted digest with φ digits. To obtain the weighted
digest of the network, we sum up all the weighted di-
gests of the tokens. Note that there is no carry in the
summation.

To measure the similarities between the target layer
and the other layers, we can compare the digests of the
layers. A simple way to compare the digests is to convert
the weighted digests to binary digests. The binary digest
of a network can be obtained by setting positive digits
to 1 and negative digits to 0. The similarity between the
target layer m and any other layer r can be measured by

µm,r = 1− Hamming(Hd
m, H

d
r )

φ
, (13)

where µm,r is the similarity between layer m and r, Hd
m

is the binary digest of the target layer, and Hd
r is the

binary digest of the layer to be compared, respectively.
An alternative way to obtain the similarities is by com-

puting the Pearson correlation coefficient of the weighted
digests.

The estimation results based on the Pearson correla-
tion are shown in appendix B. In this work, we measure
the similarity between the target layer and the other lay-
ers through the binary-based digests. The influence of
the bit number is discussed in appendix C.

C. Identify the parameters of the Gamma
distribution prior

Finally, we introduce the procedure to determine the
parameters αij and βij of the conjugate prior. We discuss
this problem in two cases.

In the first case, we assume the structure of the target
layer is partially known, i.e., the entries of the adjacency
matrix are partially known. In this case, we apply the
layer comparison method introduced above, and the L′

layers with highest similarities are considered to identify
the parameters of conjugate priors. The parameters of
the Gamma distribution prior are computed asαij = max(

∑L′

r=1 µm,rA
r
ij , 1)

βij = max(
∑L′

r=1 µm,r,
∑L′

r=1 µm,r∑L′
r=1 µm,rAr

ij

),
(14)

where m denotes the target layer, µm,r is the similarity
between the target layer m and any layer r. Arij is the
adjacency matrix of layer r in L′. In equations (11) and
(12), since Aij could be zero, if αij is less than one, we
obtain a negative sij . Thus, we need to limit the range

of αij . If
∑L′

r=1 µm,rA
r
ij ∈ (0, 1) , we set αij = 1, and set

βij to
∑L′

r=1 µm,r∑L′
r=1 µm,rAr

ij

to maintain the means of the Gamma

distribution prior unchanged. If
∑L′

r=1 µm,rA
r
ij = 0, we

will set αij = 1, and set βij equal to a large number to
ensure the MAP algorithm converges.

A special case is the structure of the target layer is
not known at all. In this case, the comparison between
the target layer and the other layers is not feasible. In
this case, an alternative and heuristic way to compute
the parameters of conjugate prior can be based on the
functionally similar layers. If available, we can use addi-
tional published networks and data as a new multilayer
network, in which layers are functionally similar. There-
after, we can apply the proposed MAP algorithm to com-
pute the parameters of conjugate prior through this new
multilayer network. The similarities between the target
layer and the functionally layers cannot be determined
through any network comparison algorithm. Thus, we
assume the similarities are all ones. We assign the pa-
rameters of the Gamma distribution as{

αij =
∑L′

r=1A
r
ij

βij = L′.
(15)

Similarly, if
∑L
r=1A

r
ij < 1, we will set αij = 1, and set βij

to a large number to make the MAP algorithm converge.
In this scenario, we do not have any structural infor-

mation regarding the target layer. If we set Aij = 0 in
equations (11) and (12), this equivalent to assuming zero
presences of all the edges in the target layer. To avoid
this issue, we take the entries of Aij as the ratio of αij
and βij , i.e., Aij = αij/βij . The entries are assigned as
the average presences over the other layers.

III. EXPERIMENTAL VALIDATION

In this section, we evaluate the method introduced in
section II. First, the SimHash algorithm is applied on two
real networks, in which different percentages of links are
removed uniformly at random. Second, the effectiveness
of the MAP algorithm for the two real multilayer net-
works is evaluated, and the MAP algorithm is compared
to the MLE algorithm.

The first real network we use to evaluate our proposed
MAP algorithm is the FAO (Food and Agriculture Or-
ganization) trade network [34]. The FAO multilayer net-
work is composed of 364 layers, and each layer represents
a product trading among 214 countries. A link is detected
between two nodes in a layer if there is trading of the cor-
responding product between the two countries. We show
three layers of the FAO network in Fig. 1 through the
KiNG software [35]. Since the layers in the FAO net-
work are not ordered in any particular way, in the exper-
iments, we only perform the evaluation by assuming that
the target layer is one of the the first nine layers of the
FAO network. Note that all the 363 remaining layers are
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always used in our experiments for detecting the similar
layers.

The second real network (HVR network) we use to
evaluate the proposed MAP algorithm has nine layers
and 307 nodes [36], which represent malaria parasite
genes. The nine layers correspond to nine highly variable
regions on the genes themselves. An edge is detected if
two genes share an exact match of significant length in
the highly variable region. We show three layers of the
HVR network in Fig. 1.

FIG. 1. Three layers of the FAO (a) network and HVR
(b) network. Nodes in different layers share the same plane
coordinates.

A. Numerical results on layer comparison

The evaluation of the SimHash algorithm is performed
on both the FAO network and the HVR network. The bi-
nary digest of each layer is obtained through the SimHash
algorithm based on the eigenvetor centrality of the nodes.
The similarity of any two layers can be computed through
equation (13). In Fig. 2, each layer is respectively set as
the target layer, and the similarities between the target
layer and all the other layers are shown in interquartile
ranges (IQR). For the FAO network, we only show the
results of the first nine layers as target layers, and each
IQR bar contains 363 similarity values. The similarities
obtained through the SimHash algorithm are between 0
and 1. A zero similarity means the two layers have totally
opposite eigenvector centrality distribution, while for 0.5
similarity the two layers are independent. A similarity
approaching one means the two layers are similar. In
the FAO network, the similarities are between 0.5 and 1,
which indicates there are no layers with totally opposite
eigenvector centrality distribution. In the HVR network,
most of the layers are independent, since the similarities
are all less than 0.8, except layer 7 and layer 9.

The network-comparing method must be able to dis-
cover structurally similar layers even if there are missing
links in the network. To this end, we uniformly at ran-
dom remove 20%, 40%, 60% and 80% of edges from the
target layer to generate incomplete networks and com-
pare the incomplete networks with the target network.
In Fig. 3(a), each layer of the FAO network (first nine
layers) and HVR network is set as target network respec-
tively, and we randomly remove 20%, 40%, 60% and 80%
of edges from the target layer. The similarities between
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FIG. 2. Layer comparison of the FAO network (a) and HVR
network (b). (a) shows the similarities between the target
layer and all the other 363 layers in the FAO network. (b)
shows the similarities between the target layer and the other
eight layers in the HVR network. Note that each similarity
value is averaged over 10 runs.

the incomplete networks with removed edges and the tar-
get layer are computed. From the top panels, we observe
that the similarities are greater than 0.8 even with 80%
of edges randomly removed.

There are always differences between the target layer
and similar layers. In the second experiment, we show
that missing links in the target layers do not affect the
similarity significantly between the target layer and its
similar layers. For each of the target layers, we choose
five most similar layers from all the other layers, we then
randomly remove 20%, 40%, 60% and 80% of edges from
the target layer to generate incomplete networks. The in-
complete networks are compared to the five similar lay-
ers, and we can obtain five similarities for different re-
moval percentages. In the bottom panels, we show the
average of the five similarities. The results for the first
nine layers of the FAO network are shown in Fig. 3(c).
We observe that the similarities decrease slightly even
when 80% of edges are randomly removed. For the HVR
network, where the layers are heterogeneous, though we
randomly remove different percentages of links, the sim-
ilarities are still maintained at low levels.
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FIG. 3. Eigenvector centrality-based SimHash algorithm.
Panel (a) shows the comparison between the first nine lay-
ers of the FAO network and their incomplete counterparts,
where 20%, 40%, 60% and 80% edges are removed uniformly
at random from the target layer. Panel (b) shows the same
experiment on the HVR network. Panel (c) compares the
reduced networks (the first nine layers of the FAO network)
with the five most similar layers. The mean of the similari-
ties is shown in the panel. Similarly, 20%, 40%, 60% and 80%
edges are removed uniformly at random from the target layer.
Panel (d) shows the same experiment on the HVR network.
Note that each similarity value is averaged over 10 runs.

B. Validation of layer reconstruction and link
prediction

The MAP method we have introduced in this work
has the goal of layer reconstruction and missing link es-
timation. The similarity between the target layer and
other layers can be obtained through the SimHash algo-
rithm as introduced above. In this part, we show the
effectiveness of the MAP algorithm, and compare the
differences between the MAP algorithm and the MLE
algorithm performance. Other methods such as entropy-
based approaches, are equivalent to the MLE algorithm
and are discussed in appendix D.

Here, we use the receiver-operator characteristic
(ROC) curve and the area under the curve (AUC) to
evaluate the effectiveness of our method. The model is
perfect when the AUC is approaching one, and 0.5 means
the model guesses the edge weights randomly.

a. The dimension of node vectors. The dimension of
node vectors is a critical factor for the MAP algorithm.
In experiments, we find that there is no such number of
communities [37–41] that can maximize the estimation
accuracy. For both the FAO network and HVR network,
we remove 40% of edges from the target layer to gen-
erate incomplete networks. The five layers with highest
SimHash similarities are used to compute the parameters
of the conjugate prior. The target layer is reconstructed
through both the MLE algorithm and the MAP algo-
rithm. In Fig. 4, we can observe an increased estimation
accuracy with respect to the increment of the number of
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FIG. 4. AUC vs. the dimension of node vectors. Panel (a)
shows the MLE method on the first nine layers of the FAO
network, where each layer is set as the target layer respec-
tively. Panel (b) shows the results of MAP method when the
five layers with highest similarities are adopted to compute
the parameters of the conjugate prior. Panel (c) shows the
results of the MLE method on the HVR network. Panel (d) is
the results of MAP method on the HVR network. Note that
the results are averaged over 10 runs of cross-validations.

dimensions, though the gain diminishes for dimensions
greater than 40. In the following experiments, we use
a dimension of 50 which balances running time and es-
timation accuracy. Apart from the dimension of node
vectors, the estimation accuracy is also affected by the
number of similar layers. The influence of the number of
similar layers on the estimation accuracy is analyzed in
appendix E.

b. Comparison between the MLE algorithm and the
MAP algorithm. Both the MLE algorithm and the
MAP algorithm have their own benefits and disadvan-
tages. The major difference between the MAP and MLE
methods is that the MAP method can incorporate prior
information (other similar layers), while the MLE relies
on the available information of the target layer solely.
The comparison between the MLE algorithm and the
MAP algorithm is performed on both the FAO network
(first nine layers) and the HVR network. The two algo-
rithms are implemented on incomplete layers, which are
generated by randomly removing 20%, 40%, 60%, 80%
and 100% of edges from the two networks. In Fig. 5(a)
and Fig. 6(a), we can see that the estimation based on
the MLE algorithm is significantly affected by the miss-
ing links. However, the robustness of the estimation is
greatly improved after we adopt structurally similar lay-
ers to reconstruct the target layer, as shown in Fig. 5(b).
On the contrary, the estimation accuracy deteriorates if
we adopt layers with heterogeneous structures to recon-
struct the target layer, which is shown in Fig. 6(b).

Intuitively, the MLE method reconstructs the target
layer through the known information of the target layer
itself. As a result, the estimation accuracy is related to
the available information, i.e., the percentage of known
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FIG. 5. Comparison of the MLE and MAP methods on the
FAO network. Panel (a) shows results of the MLE method.
Panel (b) shows the results of the MAP method. Results are
averaged over 10 runs of cross-validations.

links. In the MAP algorithm, the estimation is not only
affected by the known information of the target layer but
also the similar layers. In real applications, if the percent
of missing links is less than 20%, it is recommended to
use the MLE algorithm, since it provides more accurate
results than the MAP algorithm. Conversely, the MAP
algorithm is the better choice if researchers are unaware
of the percentage of missing links.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we present a novel MAP estimation-
based algorithm for target layer reconstruction in multi-
layer networks. In multilayer networks, some layers are
structurally similar; thus, we can take advantage of the
similar layers to reconstruct the target layer. In sec-
tion II, we first derive the maximum a posteriori esti-
mation for target layer reconstruction in multilayer net-
work. Second, the eigenvector centrality-based SimHash
algorithm is introduced to detect structurally similar lay-
ers. The SimHash algorithm compares network features,
thus it is not affected by the missing links. Third, we in-
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FIG. 6. Comparison of the MLE and MAP methods on the
HVR network. Panel (a) shows results of the MLE method.
Panel (b) shows the results of the MAP method. Results are
averaged over 10 runs of cross-validations.

troduce two scenarios to obtain the parameters of the
Gamma conjugate prior. In the first case, where the
target layer is partially known, the SimHash algorithm
is adopted to detect structurally similar layers. In the
second case, where the target layer is not known at all,
functionally similar layers is used to compute the param-
eters of the conjugate prior. In section III, we first show
that the eigenvector centrality-based SimHash algorithm
is able to return consistent similarity levels for different
percentages of missing links. Then, we show that the
estimation accuracy can be improved by increasing the
number of dimensions of node vectors, and the gain is
diminishing for dimensions greater than 40 for the two
networks. We find that with a great number of similar
layers, we can obtain more consistent estimation results.
Finally, the MLE method and MAP method are com-
pared on two real networks. The experimental results
suggest that if there are less than 20% of missing links,
the MLE method has better performance. However, if
the percentage of missing links is 40% or more, the MAP
method returns results that are more consistent.

However, there are still some limitations to the MAP
method we present. The first limitation is that the
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missing links in the target layer are required to be re-
moved uniformly at random. The similarities are ob-
tained through network feature comparison, which means
the structure of the target layer needs to be maintained.
Targeted removal of links will change the structure of the
network. The second limitation concerns the unknown
relation between the vector dimension and network size.
In our numerical experiments, we test multiple dimen-
sions and adopt a dimension of 50, which balances run-
ning time and estimation accuracy.

Recent results in [42–45] present some methods to es-
timate the eigenvector centralities based on nodal data
without requiring the network structure. Recall that
SimHash algorithm is based on the eigenvector central-
ity obtained from the target layer. Therefore, estimating
eigenvector centrality without constructing network is a
good alternative for future work.

The MAP algorithm we present to reconstruct a tar-
get layer in a multilayer network shows promising results
when we can identify the similarities between the target
layer and other layers. The experimental results show
that the estimations of our MAP method are less likely
to be affected by missing links, which is not known in
real applications. Therefore, our MAP method can be
used to direct experiments, especially when there is no
information about the target layer.
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Appendix A: tensor factorization

In [8, 14, 15], nodes are factorized by membership vec-
tors. The dimension of membership vectors is interpreted
as the number of overlapping communities. In addition,
each edge is computed through the tensor product of the
membership vectors. The number of communities is ob-
tained by maximizing the likelihood. Vectorization is also
used in some natural language processing algorithms [46–
50] in which words are embedded as vectors to preserve
their relations to contexts. However, the dimension of
word vectors does not have any semantic meaning, rather
the choice of the vector dimension is first affected by the
data set size. According to [47, 50], larger dimensions can
improve model accuracy, but the gain diminishes for vec-
tors larger than 200 dimensions. The choice of dimension
is also related to the available resources, and it is better
to reduce the dimension as long as the choice does not
affect the estimation accuracy substantially. In fact, the
tensor factorization can be simplified to dot product, we
prove this point as follows.

We assume the number of edges between any two nodes
is the tensor product of two node vectors and the con-
trol matrix, i.e., Eij =

∑
siktjlwkl. wkl (k is not equal

to l) is the parameter that controls the edges from any
source node i (in community k) to any target node j (in
community l). Then, we have

Eij =
∑

siktjlwkl

= siktjkwkk + siktjlwkl + siltjlwll

+ (
∑

simtjnwmn − siktjkwkk − siktjlwkl − siltjlwll).
(A1)

In equation A1, we denote the sum of the first three
terms as Eklij . Then, we can incorporate wkk into sik,
and denote it as s′ik = sikwkk. Similarly, s′il = silwll.
Therefore, we have

Eklij = s′iktjk + s′iktjl
wkl
wkk

+ s′iltjl

= s′iktjk + (s′ik
wkl
wkk

+ s′il)tjl. (A2)

Since nodes between different communities are loosely
connected, we have wkl < wkk, and we assume ε =
wkl/wkk . Then, equation A2 can be written as

Eklij = s′iktjk + (εs′ik + s′il)tjl

= s′iktjk + s′′iltjl, (A3)

where s′′il = εs′ik + s′il. For every inter-community edge
originating from node i in community k, we can incor-
porate it into community l by incrementing εsik to s′il.
Edges can be factorized through the dot product of node
vectors. Therefore, the tensor factorization is equivalent
to the dot product.

Appendix B: Estimation based on the Pearson
correlation

With the SimHash algorithm, the weighted digest of
each layer can be obtained. The similarity between any
two layers can be measured by computing the Pearson
correlation of the weighted digests. In Fig. 7, we show
the estimation results based on the Pearson correlation
coefficient. We observe that the estimation is as con-
sistent as the results based on the Hamming distance.
Therefore, the correlation can be an alternative for the
Hamming distance.

Appendix C: The choice of the number of bits

The choice of φ affects the resolution and the consis-
tency of the similarity. If the number of tokens is large,
it is recommended to employ large φ. In our work, the
sizes of the two networks are not too large, so we adopt
φ = 512 bits. In Fig. 8, we validate this choice on the
FAO network. We set each of the first nine layers of
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FIG. 7. The estimation results based on the Pearson corre-
lation of the weighted digest.

the FAO network as the target network (original net-
work), and randomly remove 20%, 40%, 60% and 80% of
edges from the target network to generate incomplete
networks. We then compare the incomplete networks
with the original network. In the experiments, we adopt
φ = 16, 64, 256, and 512 digits, respectively. We can
observe that the similarities obtained with 256 digits are
close to that obtained with 512 digits, while the simi-
larities obtained with 16 and 64 digits vary remarkably.

1 2 3 4 5 6 7 8 9
layer

0.75

0.80

0.85

0.90

0.95

1.00

si
m

ila
rit

y

(a)

16 bits
64 bits
256 bits
512 bits

1 2 3 4 5 6 7 8 9
layer

0.75

0.80

0.85

0.90

0.95

1.00

si
m

ila
rit

y

(b)

16 bits
64 bits
256 bits
512 bits

1 2 3 4 5 6 7 8 9
layer

0.75

0.80

0.85

0.90

0.95

1.00

si
m

ila
rit

y

(c)

16 bits
64 bits
256 bits
512 bits

1 2 3 4 5 6 7 8 9
layer

0.75

0.80

0.85

0.90

0.95

1.00

si
m

ila
rit

y

(d)

16 bits
64 bits
256 bits
512 bits

FIG. 8. Comparison of varying the number of digits (based
on the Hamming distance). The four panels show the results
based on 20% (a), 40% (b), 60% (c), and 80% (d) of edges
randomly removed.

Appendix D: Comparison between the MLE
algorithm and entropy-based approaches

In section III B, we compared the MAP algorithm
with the MLE algorithm. In fact, the entropy-based ap-
proaches are equivalent to the MLE algorithm. In the

following, we prove that the MLE algorithm is equiva-
lent to the entropy-based approaches.

Given a network G, we assume the number of nodes is
fixed, and the edge weights are variables. Thus, we can
define the entropy of a network in terms of edge weights
as

H(G) = −
∑
G

∑
u

pU (u) log pU (u)

=
∑
G

∑
u

pU (u) log
1

pU (u)
, (D1)

where U is any edge in the network G, u is the weight
of edge U . pU (u) is the precise probability of edge U
with weight u. We assume for any edge U , it can take
nU values. If the nU values follow uniform distribution,
then we have pU (u) = 1

nU
. In this case, the network has

the largest entropy, which means the network is totally
uncertain. On the other hand, for any edge U , if there is
a value us with pU (us) = 1, the entropy of the network
will be zero, which indicates all the edge weights in the
network are known.

In our problem, the goal is to find a model to recon-
struct the target layer, thus, we need a set of parameters
to describe the model. If the model is close to the true
network, the entropy of the model is minimized. Hence,
the problem is transformed to finding the parameters of a
model with minimum entropy, i.e., reducing uncertainty.

Equation D1 can be written in expectation form

H(p) =
∑
G

EU∼pU (u)(log
1

pU (u)
). (D2)

Consider the Kullback-Leibler divergence (KL diver-
gence). We assume θ is the parameter set that can de-
scribe the model, the probability of edge U with weight
u is qU (u; θ). Thus, the relative entropy is

Dkl(p||q) =
∑
G

∑
u

pU (u) log
pU (u)

qU (u; θ)

=
∑
G

EU∼pU (u)(log
pU (u)

qU (u; θ)
)

=
∑
G

EU∼pU (u)(log
1

qU (u; θ)
)

−
∑
G

EU∼pU (u)(log
1

pU (u)
). (D3)

The second term in the right-hand side is equation D2
and the first term in the right-hand side is the cross en-
tropy, which is

H(p, q) =
∑
G

EU∼pU (u) log
1

qU (u; θ)
. (D4)

Recall that our problem is to reconstruct the target
layer and equation D2 is the entropy of the target layer.
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Equation D2 is determined by the data (network) solely.
Thus, the problem can be simplified to minimizing the
cross entropy, i.e., minimizing equation D4.

Then, we consider the MLE method. The MLE al-
gorithm is to find the parameter set θ that most likely
fit a given set of data (network) D. We skip some in-
termediate steps and use the logarithm form directly as
following

θ = argmaxθP (G | θ)

= argmaxθ
∑
G

∑
u

log pU (u; θ). (D5)

pU (u; θ) is the model with parameter set θ to describe
the true data D. We assume that edge U can take nU
values and the nU values follow the uniform distribu-
tion, then we have pUMLE(u) = 1

nU
. Introducing pUMLE to

equation D5 does not change the results, we have

θ = argmaxθ
∑
G

∑
u

1

nU
log pU (u; θ)

= argmaxθ
∑
G

Eu∼pUMLE(u)(log pU (u; θ)). (D6)

Our goal is still to find a set of parameters that can re-
construct the layer. Then, we can generalize this problem
by replacing pUMLE(u) with pU (u), and replacing pU (u; θ)
with qU (u; θ). The replacements can be regarded as tak-
ing real data (network) into equation D7. We have

θ = argmaxθ
∑
G

Eu∼pU (u) log qU (u; θ)

= argmaxθ
∑
G

−Eu∼pU (u) log qU (u; θ)

= argmaxθ
∑
G

Eu∼pU (u) log
1

qU (u; θ)
. (D7)

Thus, the MLE algorithm is equivalent to minimizing
the cross entropy.

Appendix E: The number of similar layers on the
estimation accuracy

If more similar layers are employed to compute the pa-
rameters of the conjugate prior, the influence of similar
layers on the reconstruction will be promoted. Conse-
quently, the influence of the known part of the target
layer will be down weighted. On the contrary, if we trust
the known part of the target layer, we can employ less
similar layers to compute the parameters of the conjugate
prior. The experimental results are shown in Fig. 9, top
3, 5, 10, and 20 similar layers are adopted to compute the
parameters of the conjugate prior. We observe that the
estimation based on 10 and 20 similar layers are robust
with respect to the missing links, while the estimation
based on three and five similar layers are influenced by
the missing links significantly.
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FIG. 9. The number of similar layers on the estimation
results. 20% (a), 40% (b), 60% (c), and 80% (d) of edges are
randomly removed from the target layer. Different numbers
of similar layers are used to compute the parameters of the
conjugate prior. The experiments are conducted on the first
nine layers of the FAO network. Each AUC is averaged over
10 runs of cross-validations.

[1] Q. Yang, D. Gruenbacher, J. L. Heier Stamm, G. L.
Brase, S. A. DeLoach, D. E. Amrine, and C. Scoglio,
Physica A. 526, 120856 (2019).

[2] Q. Yang, D. Gruenbacher, J. L. Heier Stamm, G. L.
Brase, S. A. DeLoach, D. E. Amrine, and C. Scoglio,
PLoS ONE 15, e0240819 (2020).

[3] D. M. Gysi, . D. Valle, M. Zitnik, A. Ameli, X. Gan,
O. Varol, H. Sanchez, R. M. Baron, D. Ghiassian, J.
Loscalzo et al., arXiv:2004.07229.

[4] S. Boccaletti, G. Bianconi, R. Criado, CI. del Genio,
J. Gmez-Gardees, and M. Romance, Phys Rep. 544, 1
(2014).

[5] M. Kivela, A. Arenas, M. Barthelemy, JP. Gleeson, Y.
Moreno, and MA. Porter, J Complex Networks. 2, 203

(2014)
[6] R. Guimera and M. Sales-Pardo, Proc. Natl. Acad. Sci.

U.S.A. 106, 22073 (2009).
[7] S. Boccaletti, G. Bianconi, R. Criado, C. del Genio,

J. Gomez-Gardenes, M. Romance, I. Sendina-Nadal, Z.
Wang, and M. Zanin, Phys. Rep. 544, 1 (2014).

[8] C. De Bacco, E. A. Power, D. B. Larremore, and C.
Moore, Phys. Rev. E 95, 042317 (2017).

[9] S. van Dam, U. Vosa, A. van der Graaf, L. Franke, and
J. P. de Magalhaes, Briefings in bioinformatics, 19, 575
(2018).

[10] F. Liesecke, J. O. De Craene, S. Besseau, V. Courdavault,
M. Clastre, V. Vergs, N. Papon, N. Giglioli-Guivarch, G.
Glvarec, O. Pichon et al., Sci rep. 9, 14431 (2019)

https://doi.org/10.1016/j.physa.2019.04.092
https://doi.org/10.1371/journal.pone.0240819
https://arxiv.org/abs/2004.07229
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1103/PhysRevE.95.042317
https://doi.org/10.1093/bib/bbw139
https://doi.org/10.1093/bib/bbw139
https://doi.org/10.1038/s41598-019-50885-8


11

[11] B. Alfredo, I. Alessandro, and M. A. Paola, J. R. Soc.
Interface 16, 20180844 (2019).

[12] X. Han, Z. Shen, W. X. Wang, and Z. Di, Phys. Rev.
Lett. 114, 028701 (2015).

[13] B. Prasse and P. Van Mieghem, arXiv:1807.08630
[14] B. Karrer and M. E. Newman, Phys. Rev. E 83, 016107

(2011)
[15] B. Ball, B. Karrer, and M. E. Newman, Phys. Rev. E 84,

036103 (2011)
[16] M. E. Newman, Nature Phys. 14, 6 (2018).
[17] T. P. Peixoto, Phys. Rev. Lett. 123, 128301 (2019).
[18] T. P. Peixoto, Phys. Rev. X 8, 041011 (2018).
[19] M. E. Newman and E. A. Leicht, Proc. Natl. Acad. Sci.

USA 104, 9564 (2007).
[20] M. E. Newman, Phys. Rev. E 98, 062321 (2018).
[21] P. Van Mieghem and Q. Liu, Phys. Rev. E 100, 022317

(2019).
[22] T. P. Peixoto, arXiv:1705.10225.
[23] F. Parisi, G. Caldarelli, and T. Squartini, Appl. Netw.

Sci. 3, 17 (2018)
[24] L. Yin, H. Zheng,T. Bian, and Y. Deng, Physica A. 482,

15 (2017)
[25] A. Kumar, S.S. Singh, K. Singh, and B. Biswas, Physica

A. 553, 1 (2020)
[26] T. P. Peixoto, Phys. Rev. E 97, 012306 (2018).
[27] E. Costenbader and T.W.Valente, Social networks, 25, 4

(2003).
[28] D. Koutra, N.Shah, J. T. Vogelstein, B. Gallagher, and

C. Faloutsos, ACM Trans. Knowl. Discov. Data 10, 28
(2016).

[29] M. Tantardini, F. Ieva, L. Tajoli, and C. Piccardi, Sci
Rep 9, 17557 (2019).

[30] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, J.
Internet Serv. Appl. 1, 1 (2010).

[31] M. Charikar, In Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing.(ACM, New
York, 2002), pp:380388.

[32] L. Page, S. Brin, R. Motwani, and T. Winograd, Stanford
InfoLab. (1999)

[33] M. C. K. Wu, F. Deniz, R. J. Prenger, and J. L. Gallant,
arXiv:1811.01043

[34] M. De Domenico, V. Nicosia, A. Arenas, and V. Latora,
Nature comms. 6, 6864 (2015).

[35] V. B. Chen, I. W. Davis, and D. C. Richardson, Protein
Sci. 18, 2403 (2009).

[36] D. B. Larremore, A. Clauset, and C. O. Buckee, PLoS
Comput Biol. 9, e1003268 (2013).

[37] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E.
Lefebvre, J. Stat. Mech. P10008 (2008).

[38] S. Fortunato and D. Hric, Phys. Rep. 659, 1 (2016).
[39] M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).
[40] M. Girvan and M. E. Newman, Proc. Natl. Acad. Sci.

USA 99, 7821 (2002).
[41] A. Clauset, C. Moore, and M. E. Newman, Nature 453,

98 (2008)
[42] T. M. Roddenberry and S. Segarra, 2020 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2020

[43] T. M. Roddenberry and S. Segarra, arXiv:2005.00659
[44] N. Ruggeri and C. De Bacco, Appl Netw Sci 5, 81 (2020)
[45] N. Ruggeri and C. De Bacco, In International Conference

on Complex Networks and Their Applications (2019)
[46] J. Devlin, M. Chang, K. Lee, and K. Toutanova,

ArXiv:1810.04805
[47] J. Pennington, R. Socher, and C.D. Manning, confer-

ence on empirical methods in natural language processing
(EMNLP). (2014)

[48] M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C.
Clark, K. Lee, and L. Zettlemoyer, ArXiv:1802.05365

[49] R, Xin, ArXiv:1411.2738
[50] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J.

Dean, ArXiv:1310.4546

https://doi.org/10.1098/rsif.2018.0844
https://doi.org/10.1098/rsif.2018.0844
https://doi.org/10.1103/PhysRevLett.114.028701
https://doi.org/10.1103/PhysRevLett.114.028701
https://arxiv.org/abs/1807.08630
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1103/PhysRevE.84.036103
https://doi.org/10.1103/PhysRevE.84.036103
https://doi.org/10.1038/s41567-018-0076-1
https://doi.org/10.1103/PhysRevLett.123.128301
https://doi.org/10.1103/PhysRevX.8.041011
https://doi.org/10.1073/pnas.0610537104
https://doi.org/10.1073/pnas.0610537104
https://doi.org/10.1103/PhysRevE.98.062321
https://doi.org/10.1103/PhysRevE.100.022317
https://doi.org/10.1103/PhysRevE.100.022317
https://arxiv.org/abs/1705.10225
https://doi.org/10.1007/s41109-018-0073-4
https://doi.org/10.1007/s41109-018-0073-4
https://doi.org/10.1016/j.physa.2017.04.106
https://doi.org/10.1016/j.physa.2017.04.106
https://doi.org/10.1016/j.physa.2020.124289
https://doi.org/10.1016/j.physa.2020.124289
https://doi.org/10.1103/PhysRevE.97.012306
https://doi.org/10.1016/S0378-8733(03)00012-1
https://doi.org/10.1016/S0378-8733(03)00012-1
https://doi.org/10.1145/2824443
https://doi.org/10.1145/2824443
https://doi.org/10.1038/s41598-019-53708-y
https://doi.org/10.1038/s41598-019-53708-y
https://doi.org/10.1007/s13174-010-0003-x
https://doi.org/10.1007/s13174-010-0003-x
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
https://arxiv.org/abs/1811.01043
https://doi.org/10.1038/ncomms7864
https://doi.org/10.1002/pro.250
https://doi.org/10.1002/pro.250
https://doi.org/10.1371/journal.pcbi.1003268
https://doi.org/10.1371/journal.pcbi.1003268
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1038/nature06830
https://doi.org/10.1038/nature06830
doi: 10.1109/ICASSP40776.2020.9053090
doi: 10.1109/ICASSP40776.2020.9053090
doi: 10.1109/ICASSP40776.2020.9053090
https://arxiv.org/abs/2005.00659
https://doi.org/10.1007/s41109-020-00324-9
https://doi.org/10.1007/978-3-030-36687-2_8
https://doi.org/10.1007/978-3-030-36687-2_8
http://arxiv.org/abs/1810.04805
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1411.2738
https://arxiv.org/abs/1310.4546

	Layer reconstruction and missing link prediction of multilayer network with a maximum a posteriori estimation
	Abstract
	Introduction
	layer reconstruction in multilayer networks
	Maximum a posteriori based stochastic model
	Similarity and layer comparison
	Identify the parameters of the Gamma distribution prior

	experimental validation
	Numerical results on layer comparison
	Validation of layer reconstruction and link prediction

	Conclusion and future works
	Acknowledgments
	tensor factorization
	Estimation based on the Pearson correlation
	The choice of the number of bits
	Comparison between the MLE algorithm and entropy-based approaches
	The number of similar layers on the estimation accuracy
	References


