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Mixed-mode oscillations (MMOs) are a complex dynamical behavior in which each cycle of oscil-
lation consists of one or more large amplitude spikes followed by one or more small amplitude peaks.
MMOs typically undergo period-adding bifurcations under parameter variation. We demonstrate
here, in a set of three identical, linearly coupled van der Pol oscillators, a novel scenario in which
MMOs exhibit a period-doubling sequence to chaos that preserves the MMO structure, as well as
period-adding bifurcations. We characterize the chaotic nature of the MMOs and attribute their
existence to a master-slave-like forcing of the inner oscillator by the outer two with a sufficient
phase difference between them. Simulations of a single non-autonomous oscillator forced by two
sine functions support this interpretation and suggest that the MMO-period doubling scenario may

be more general.

I. INTRODUCTION

Period-doubling (PD) and mixed-mode oscillations
(MMOs) are two of the major paradigms of nonlinear dy-
namics. In PD, as a parameter is varied, alternate, previ-
ously equal extrema of a periodic orbit assume different
values, thereby doubling the period of the oscillation and
ultimately leading to chaos. MMOs are periodic oscilla-
tions consisting of M large (LAOs) and n small (SAOs)
amplitude oscillations per cycle (M™). On varying a pa-
rameter, MMOs typically undergo period-adding bifur-
cations, e.g., from M"™ to M"*1 [1-4]. In this work, we
describe a novel bifurcation sequence, in which a single
type of MMO exhibits PD bifurcations leading to chaos
in its SAOs only, while its LAOs and its M™ structure
remain unchanged.

Mixed-mode oscillations have been studied in many
systems. For example chemical systems such as the
Belousov-Zhabotinsky reaction have been reported to
show MMOs [1, 5-10]. MMOs are also found in neural
systems [11-19] as well as in electrochemical systems [20—
24]. Some of these systems exhibit complex MMOs under
weak perturbations. Over long time intervals, the MMOs
occasionally produce bursts, thereby making the system
chaotic, in what the authors sometimes refer to as ”inter-
mittent chaotic MMOs”. In such cases, both the LAOs
and SAOs behave chaotically [25]. Studies performed
in developing inner hair cells have revealed that com-
plex MMOs oscillations can be produced [26, 27]. The
period-doubling to chaos is observed with additional pe-
riods added to the small amplitude oscillations until the
system shows mixed patterns as shown in label 4 of Fig.
3b in ref. [26]. The work we present here is different be-
cause the period doubling occurs with the whole MMOs
but it is apparent only by looking small amplitude os-
cillations of the whole MMOs. The MMOs structure is
maintained as the system goes to chaos.

* epstein@brandeis.edu

We analyze here a system of three van der Pol oscilla-
tors [28, 29] in Liénard form coupled linearly (see Fig. 1a)
through diffusion of the variable, w, which is analogous
to the recovery variable in the FitzHugh-Nagumo model
[30, 31]. The system evolves as shown in Eq. (1). With
this model, there is no direct link between the outer os-
cillators 1 and 3, though they interact indirectly through
the central oscillator 2. The system is invariant to ex-
change of oscillators 1 and 3,

dvl

e —hvi’ + avy — wi,
dw
—L =e(v — ©) + Dy(we —wy),

dt

d

2 _ —hvg’ + avy — wo,

dt
dws (1)
= e(va — @) + Dy (w3 — 2ws + wy),
dU3

e —hv3 + avs — ws,
dw
(T: = e(v3 — ) + Dy(wz — w3),

where 0 < € < 1, h,and a are nonnegative constants, ¢
determines the relative position of the w-nullcline with
respect to the v-nullcline for an uncoupled system and
D,, represents the coupling strength.

II. RESULTS
A. Fully coupled system

Numerical simulations of Eq. (1) show a variety of in-
teresting dynamics, keeping h, a, € and D,, constant, as
we vary . The dynamics of system (1) depends on the
value of ¢, i.e., on the relative position of the w-nullcline
with respect to the v-nullcline. The orbit diagram in Fig.
2a, shows four regions where different behaviors are ob-
served. In Region I, at low ¢, the three oscillators display



N B — ' 21
oo !
® Lo !
2 e g el o 11
2 Lokl il & I -1.3
SN L AN AR I s N
- bl ! X 0] v x
2 07 o i i
< P i = S -1.35-
g | i 1l !III! 1l |IF v i 1] 1 )
-1 : : : :: : rlh-IMIﬁnll;-_»-«x:!II:ii.:—x_:l?llih'iili:m::w}iIINhIl::...:,:kiiuhnii
e ps] Il 56" 77 8 or 1.4 . @
' ' ' ' _ B} B} -0.6683 -0.6682 -0.6681
-0.72 -0.7 -0.68 -0.66 -0.64 0.67 0.66 0.65
¢ ®
¢
(a) (b) (c)
-1 26 7 _13 - 3
-1.28 1 -1.305
o -1.3 o -1.305 1 o
132 ] -1.306 1
< 1.32 < :
-1.34 -1.31
= = = 13071
-1.36 1
-1.315 1
1981 : , : | b -1.308 i
-0.6681 -0.66806 -0.6681 -0.66809 -0.668099 -0.668097
¢ ® ¢
(d) (e) (f)

FIG. 2: Orbit diagram showing maximum amplitude of oscillations with varying . Parameters:
a =30, €=0.1335, h = 2.0 and D,, = 1.865 x 1073, Initial conditions:

(v, w1) = (—0.6242, —1.31378), (v2, wa) = (0.15636, 1.79106), and (vs, wz) = (0.97553, 1.14483). (a) All three
oscillators. (b) Oscillator 2. (¢) Expanded from Fig. 2b. (d) Expanded from Fig. 2c. (e) Expanded from Fig. 2d.
(f) Expanded from Fig. 2e. Blue: oscillator 1, red: oscillator 2, green: oscillator 3. In (a), where blue, red and green
overlap, only green is seen. Similarly, only green is seen where blue and green overlap. Black boxes labeled with
letters indicate region expanded in the following panel.

a homogeneous steady state followed by nearly harmonic transition to in-phase LAOs for two of the oscillators may
in-phase SAOs born through a supercritical Hopf bifurca- occur via a canard explosion, where an oscillator switches
tion as ¢ increases. By increasing ¢ further (Region IT),a  from SAOs to LAOs with an infinitesimal change in the



bifurcation parameter, while one of the oscillators main-
tains its SAOs. As ¢ increases, all oscillators transition to
in-phase LAOs before breaking symmetry, allowing one
of the oscillators to display SAOs. The oscillator with
the SAOs goes through triperiodic oscillations followed
by quasiperiodic oscillations and then chaos. We observe
two symmetry-breakings (SB), one involving oscillator 3
and the other with oscillator 2 (Region II of Fig. 2a). For
different initial conditions, either one oscillator undergoes
a reverse canard or no symmetry-breaking occurs. The
symmetry-breaking shown in Regions II of Fig. 2a, in
which identical coupled oscillators display chimera-like
behavior, with one showing nearly periodic LAOs and
the other aperiodic SAOs, resembles that seen in earlier
work [32, 33] on coupled Lengyel-Epstein oscillators and
with heterogeneous phase oscillators [34-36] where the
coupling strength, phase lags and other parameters used
in the studies were different and with nonlocal coupling.
In Regions I11I, all three oscillators exhibit in-phase LAOs,
oscillating with the same amplitude, period and phase.

Our focus in this work is on Region IV, which extends
from ¢ =~ -0.66830 to ¢ =~ -0.648264. In this region,
oscillator 2 begins to exhibit MMOs. We observe five
distinct MMO patterns, each of which displays a period-
doubling sequence to chaos as ¢ increases, as shown in
Fig. 2b. After each MMO pattern, a brief period of
chaotic mixed-pattern MMOs is observed before the sys-
tem transitions to the next pattern. For instance, after
the period-doubling to chaos in the 5 MMOs, we observe
a mixture of 5! and 6' MMOs before the 6! MMO region
begins (similar to the mixture of 6! and 7! MMOs in Fig.
4b). We focus here on the M MMOs, especially the 5!
patterns observed in Fig. 2b. The small maximum cor-
responds to nearly harmonic SAOs that occur near the
minimum of the cubic nullcline, while the large maxima
correspond to relaxation-type LAOs.

Figure 2b shows the orbit diagram for oscillator 2 for
—0.6688 < ¢ < —0.6500. For simplicity, we use Pe-
riod (uppercase P) for the period (number of maxima
per cycle) of the full MMOs and period (lowercase p)
for the period (number of distinct small amplitude max-
ima per cycle) of the small amplitude excursions. In
Figs. 2c¢ and 2d the period doubles through the sequence
1, 2, 4, 8, 16, ..., finally leading to chaos as ¢ increases,
while the corresponding Periods are 6, 12, 24, 48, 96, ...
and chaos for the MMOs. We explore this behavior fur-
ther by looking at the time series and phase portraits
during the period-doubling sequence.

In most MMOs studied to date, SAOs are more fre-
quent than LAOs, and parameter variation typically
leads to a sequence of n-period-adding bifurcations such
as 1', 12, 13, ... Here, as we vary ¢ from —0.6688 to
—0.6500, we find an M-period-adding sequence from 5'
to 91. On looking more closely at the 5! oscillations, we
observe PD in the amplitude of the SAOs as ¢ increases,
while the 5! structure and the amplitude of the LAOs
are maintained.

Figures 3a - 3f show time series and phase portraits ob-

tained for increasing ¢. At ¢ = —0.66830 (Figs. 3a, 3d
and 3g), oscillator 2 displays 5 MMOs with five succes-
sive LAOs followed by one small excursion, and this se-
quence repeats periodically, resulting in Period-6/period-
1 oscillations. Oscillators 1 and 3 display nearly period-
1 relaxation oscillations, though careful observation re-
veals that the phase difference between them shifts over
the course of an MMO, i.e., the interspike interval is not
constant. At slightly larger ¢, the orbit diagram in Fig.
2¢ shows a period-2 oscillation for the SAOs. Figures
3b and 3e show the time series and phase portraits at
¢ = —0.66820. The time series show period-2 SAOs and
the corresponding Period-12 MMOs. Although the num-
ber of LAOs remains unchanged, the MMO Period dou-
bles because of the alternation in the amplitude of the
SAOs. Figures 3c and 3f show period-4 (Period-24) be-
havior at ¢ = —0.66812. Figures 3g and 3h show 3D
plots of the Period-6 and Period-12 MMOs (see videos 1
and 2 in the Supplemental Material [37]). On increasing
o further, we observe additional period-doublings, up to
period-32, followed by a region of chaos, which we inves-
tigate in more detail below.

Beyond the 5' chaotic MMOs, at a slightly higher ¢
(see Fig. 2b), the number of LAOs per cycle increases.
We observe 6', 7', 8! and 9' MMOs, as shown in Figs.
4a, 4c, 4d and 4e, respectively.

Above about ¢ = —0.648264, oscillator 2 returns to
LAOs in-phase with oscillators 1 and 3 (Fig. 4f), and
this state persists as ¢ is increased for the range of ¢
studied in this work.

To characterize the chaotic nature of the SAOs, we
calculate next-amplitude (1D) maps and Lyapunov char-
acteristic exponents for the chaotic attractor. We use
the parameters and initial conditions in Fig. 2. The
next-amplitude maps plot the n + 1’st maximum of ws
against the nth maximum. Figure 5a shows a next-
amplitude map corresponding to a chaotic time series
with ¢ = —0.668059. The single point at the upper right-
hand corner corresponds to the five instances in each cy-
cle when an LAO is followed by another LAO. The line
of points at the upper left is generated by SAOs followed
by an LAO, and that at the lower right by LAOs that
are followed by an SAQO. For periodic MMOs of period-n
(Period-6n), each of the two lines would be replaced by
n points. It is somewhat more instructive to focus on
the SAOs alone, since this is where the PD and chaos
are clearly seen. The remaining plots in Fig. 5 show
maximum wg, p4e US. Mmaximum ws, ,, where n is cho-
sen so that the nth peak is an SAO. With this view, the
period-1 (Period-6) simple MMO seen in Figs. 3a and
3d, appears as a single point in Fig. 5b. Similarly, the
period-4 (Period-24) MMO gives four points (Fig. 5¢) in
the next-amplitude map. At ¢ = —0.668059, where the
amplitude of the SAOs is chaotic, the next-amplitude
map in Fig. 5d gives well-defined curves with four peaks
that occur around the same value of Max ws,n. Most
chaotic oscillators display quadratic maps with only a
single maximum. We do not have a full understanding of
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FIG. 3: Time series and phase portraits of oscillator 2 from numerical simulations. Parameters and initial
conditions: same as Fig 2. Top panel: time series; middle panel: phase portraits; bottom panel: 3D plot of
va, wa vs. time. (a, d, g) Period-6 MMOs at ¢ = —0.66830. (b, e, h) Period-12 MMOs at ¢ = —0.66820. (c, f)
Period-24 MMOs at ¢ = —0.66812.

the multipeak structure seen in Fig. 5d, but note that (a)
the qualitative appearance of the next-amplitude maps of
the chaotic MMOs repeatedly shifts between segmented
single-peak maps and multipeak maps like that in Fig. 5d
over narrow ranges of ¢; (b) the multipeak structure may
be a ”shadow” of the banded chaos seen for some values
of p; and (c) these maps show the behavior of a single
variable in a 6-dimensional space and thus constitute a
projection of a more complex object.

The spectrum of Lyapunov characteristic exponents
measures the degree of convergence or divergence of
nearby trajectories. For a chaotic attractor, we expect
one zero (or near-zero) exponent, corresponding to mo-
tion along the attractor, and one (or more) positive ex-
ponent(s) corresponding to the divergence of neighboring
trajectories characteristic of chaotic behavior. We calcu-
lated the spectrum of Lyapunov exponents, \;, for the
6-dimensional phase space of Eq. (1) using parameters
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FIG. 4: Time series of oscillator 2 obtained from numerical simulations. Parameters and initial conditions: same as
Fig. 2. (a) 6! period-1 (Period-7) MMOs at ¢ = —0.6659. (b) Combination of 6' and 7! MMOs at ¢ = —0.66455.
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FIG. 5: Next-amplitude maps for oscillator 2. Parameters and initial conditions: same as Fig. 2. (a) Chaos,
Wnt1 US. Wy with ¢ = —0.668059. (b) w46 vs. wy, showing period-1 (Period-6) with ¢ = —0.66830. (c)
Wnt6 VS. Wy showing period-4 (Period-24) at ¢ = —0.66812. (d) wp46 vs. w, displaying chaos ¢ = —0.668059.

from Fig. 5d with the method of ref. [38] and obtained,  0), Ay = —1.722 x 1073, X3 = —5.058 x 1073, \y =
A1 = 8120 x 1074, Ay = —2.400 x 107%(~ 0), A3 = —4.241, A5 = —4.246 and \g = —4.249. The lack of a
—4.106 x 1073, Ay = —1.972, A5 = —4.233 and )\ = positive Lyapunov exponent and the presence of a Lya-
—6.147. The spectrum of Lyapunov exponents with ¢ = punov exponent that is close to zero suggests that the
—0.69 (Region III of Fig. 2a) is A\; = —5.000 x 10~%(~  system evolves periodically in this regime.



A characteristic feature of chaotic systems is the pres-
ence of periodic windows separating chaotic bands in the
orbit diagram. For a class of maps including the logis-
tic map, these periodic windows occur in a universal se-
quence (the U-sequence) in the order 6, 5, 3, 2x 3, 5, 6
[39]. The periodic windows 6, 5, 3 correspond to large
windows after the initial chaotic oscillations, with the
2 x 3 window representing the first PD in the period-3
window [40]. The orbit diagrams shown in Figs. 2c - 2d,
are similar but more complex. Figures 2e-2f illustrate the
fractal-like structure that appears as the branches split
further and then recombine at large ¢, interrupted by
regions of simple periodic LAOs.

Another feature common to systems with a PD route
to chaos is a universal constant known as the Feigen-
baum constant (F ). For a class of systems that display
PD, the ratio of distances between successive bifurcation
points converges to the transcendental number 4.669...
[41]. We calculated the Feigenbaum constant for the 5!
PD-MMOs using Eq. (2) and obtained the results shown
in Table I. We limit the results to period-16 because
the exact location of the bifurcation becomes difficult to
determine for higher values of n.

Fy = lim P+l —Pn (2)

n—oo $0n+2 — SDTL-‘rl

TABLE I: Feigenbaum constants for Case 1
(Table A.1)

Period, n © Fn
1 -0.668264000
2 -0.668132000
4 -0.668104900 4.870848708
8 -0.668099400 4.927272727
16 -0.668098220 4.661016949

We also examined the effect of varying e, keeping all
other parameters and initial conditions in Fig. 2 constant
with ¢ = —0.668059. We found that by increasing ¢ in
the range 0.10645 < ¢ < 0.2169, we generated the same
sequence of period-doubling leading to chaos in the 5' —9*
MMOs that we found by varying ¢ at fixed € (Fig. A.3).
We also obtained 10 MMOs by varying ¢, a pattern that
we did not observe when varying ¢ at fixed e.

We studied the influence of the other parameters on
the dynamics as well. As shown in Table A.2 (Fig. A.3),
all the parameters show the signature MMOs. Vary-
ing h and D, gives PD-MMOs and period-adding bi-
furcations as the parameter decreases. The D,, sequence
shows 10" and 11! in addition to the 5! — 9" MMOs.

The results described thus far were obtained with a
single set of initial conditions. In an effort to assess the
robustness of the observed behavior, we explored a num-
ber of other initial conditions. The results are described
in detail in the Appendix. As shown in Table A.1 and

Fig. A.1, the PD-MMO route to chaos occurs for a va-
riety of initial conditions. In particular, it appears to be
necessary, though not sufficient, for oscillators 1 and 3
to have a significant initial phase difference in order for
this behavior to occur. If the two outer oscillators are
too close to one another initially, no MMOs arise. Sim-
ilarly, even for a wide separation of oscillators 1 and 3,
certain initial positions of oscillator 2 lead to simple in-
phase LAOs (cf. Cases 14 and 15 of Table A.1 and Fig.
A1)

B. Master-slave system

The above observations suggest that the forcing of the
central oscillator by the biphasic signal of the nearly an-
tiphase outer oscillators may play a crucial role. We
therefore studied a master-slave-like forced system, in
which the outer two oscillators 1 and 3 force the middle
oscillator, 2 by setting D,, = 0 in the second and sixth
equations of Eq. (1) as shown in Fig. 1b. With this
configuration, the outer oscillators are decoupled from
one another. This modified system showed a richer set
of MMOs with PD than those found in the fully cou-
pled system. For example, we observed 73, 7383, and 83
MMOs with PD sequences to chaos, as shown in Table II
and Fig. 7. Thus, we observed a single period-adding bi-
furcation from 73 to 8 MMOs. The orbit diagrams (see
Figures 6¢ - 6f) show these MMOs. The orbit diagram
in Fig. 6¢ begins with three small and one large maxi-
mum. The latter, which corresponds to the seven large
amplitude peaks, is outside the range of the figure. Each
of the three small maxima undergoes a PD sequence to
chaos, while the large maxima stay the same. We did
not observe this behavior with the full system. We de-
cided to explore this region further. Case 1 of Table II
shows 73 MMOs that correspond to the orbit diagram in
Fig. 6¢c. The time series (Fig. 7a), phase portraits (Fig.
7d) and 3D plots (Fig. 7g) display three small excur-
sions followed by seven large excursions, corresponding
to period-3 SAOs. As ¢ increases, we observe a 7383 pat-
tern, characterized by alternation of 72 and 8% MMOs, as
shown in the time series in Fig 7b. Because each period
consists of two MMOs with different amplitudes for the
small maxima (and different numbers of LAOs), these
MMOs contain six SAOs initially, followed by 12, 24, ...
during the PD sequence, eventually becoming chaotic as
@ increases. The orbit diagram for the SAOs in Fig. 6d
illustrates this behavior. Fig. 6f exhibits an 8 PD route
to chaos with decreasing ¢. Also, the number of LAOs
before a single SAO increased in the master-slave sce-
nario. Instead of the 5! —9' MMOs with PD seen in the
full system, the master-slave system displays 15' — 211
MMOs with PD (see Table II). We conclude that the
forcing of the central oscillator by the outer ones plays a
key role in inducing the MMO/PD behavior.

An 8% MMO (see Figs. 7c, 7f and 7i) with PD as ¢
increases was observed after the 7382 pattern as shown
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FIG. 6: Orbit diagrams showing maximum amplitude of oscillations with varying . Parameters and initial
conditions as with Fig. 2. (a) All three oscillators. (b) Oscillator 2. (c) 7> MMOs with increasing . (d) 7383
MMOs with increasing ¢. (e) 8 MMOs with increasing ¢. (f) 82 MMOs with decreasing ¢. (g) 15! MMOs with
increasing ¢. Figures 6¢ - 6g show only the small amplitude oscillations. Blue: oscillator 1, red: oscillator 2, green:
oscillator 3. Where the blue, red and green trajectories overlap, only green is seen. Similarly, only green is seen
where blue and green trajectories intersect.

TABLE II: Notable observations for MS system

Case Range of ¢ MMOs in Region IV PD

1 -0.67226 to -0.67160 73 Increasing
2 -0.67094 to - 0.67065 75,83 Increasing
3 -0.66976 to -0.66805 83 Increasing
4 -0.66580 to -0.66545 83 Decreasing
5 -0.66477 to -0.66440 15" Increasing
6 -0.66300 to -0.66240 167 Increasing
7 -0.66200 to -0.66180 16717! Increasing
8 -0.66120 to -0.66020 17! Increasing
9 -0.65983 to -0.65960 17118? Increasing
10 -0.65892 to -0.65800 181 Increasing
11 -0.65750 to -0.65720 18197 Increasing
12 -0.65640 to -0.65560 197 Increasing
13 -0.65479 to -0.65460 19207 Increasing
13 -0.65380 to -0.65280 201 Increasing
14 -0.65180 to -0.65160 201211 Increasing
15  -0.65060 to -0.64980 217 Increasing
16 -0.64930 < 1° -

in Case 3 of Table II. The orbit diagram 6e for this
MMO is similar to the one observed with the 73 MMOs.
The 73 and 8 MMOs constitute another period-adding
bifurcation not seen with the full reciprocally coupled

system.

At higher ¢, we observe a second PD sequence to chaos
involving the 82 MMOs. This PD, however, occurs with
decreasing ¢, as shown in the orbit diagram in Fig. 6f.

We also calculated the next-amplitude (1D) maps of
the 72 and 8% MMOs, as well as that of 7282 MMOs,
where the cycle contains both MMOs. Figure 8a shows
the map for period-3 8% MMOs, followed by doubling to
period-6, as shown in Fig. 8b. As the 8 MMOs become
chaotic, we observe a 1D map consisting of three disjoint
segments, shown in Fig. 8c.

On increasing ¢, we observe MMOs similar to those
seen in the full system, but with a higher number of large-
amplitude excursions before a single small excursion. For
example, the first pattern we observe after the 82 MMOs
consists of 151 MMOs (Figs. 6g and 9a). Various MMOs
(151 — 21! MMOs) with PD are seen, as shown in Ta-
ble II. During the transition from one type of MMO to
another, we observe MMOs consisting of a combination
of the previous and next MMOs. For example, in Table
II, we find 161171 MMOs (Case 7) between 161 MMOs
(Case 6) and 17 MMOs (Case 8). The same pattern is
seen with all the transitions. Figures 9a - 9f show some
of the time series for the 15* — 181 MMOs.
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FIG. 7: Time series and phase portraits of oscillator 2 from numerical simulations of the master-slave system.
Parameters and initial conditions are the same as Fig. 2. Top panel: time series; middle panel: phase portraits;
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C. Uncoupled forced system

To gain further insight into the occurrence of MMOs
and its relation to the initial phase separation between

the outer oscillators, we simplified the master-slave sys-
tem further, to a single van der Pol oscillator forced by

two sine functions with a phase difference 6, as shown in
the scheme in Fig. 1c and Eq. (3)
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dv
dt
dw
dt
dz
dt

= —hv® 4 av — w,

= Ww.

where A is the amplitude of the forcing, 6 is the phase
difference, w = 27 /T is the forcing frequency with period
T, and B is an offset. A, B, 6 and w are chosen to
make the perturbation resemble the effect of the outer
oscillators in the coupled system.

We numerically integrated Eq. (3), keeping
h, a, € and D,, at the same values used for both the
fully-coupled and the master-slave systems, and with
A =3.378 and B = 0.112. We first studied the behavior
of the system with § = /2.

We observe several scenarios similar to those seen in
the master-slave system. The orbit diagram in Fig. 10
contains three different regions as ¢ increases. In Region

e(v—y) +Dw<—2w+ g[sin(z) —|—sin(z+9)] —|—B), (3)

I, we obtain SAQOs, followed by Region IV, where we ob-
serve several MMOs as ¢ increases. At high values of ¢,
the system displays only LAOs. We focus on the MMOs.

As @ increases, before the system transitions to simple
LAOs, the oscillator goes through 5! MMOs that exhibit
PD to chaos, as shown in the orbit diagrams in Figs. 10b -
10c. We explore the time series, phase portraits and next-
amplitude (1D) maps of the forced system and compare
them to the fully coupled system and the master-slave
system.

For 6 < 7, as  increases, various MMOs appear, some
with simple periodicity in the SAOs similar to those ob-
served in the fully coupled system (e.g., 51 MMOs, as
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shown in Fig. 11), as well as others with complex peri-
odicity in the SAOs as shown in the time series, phase
portrait and next-amplitude (1D) map in Fig. C.5. Fig-
11c - 11d show the time se-
ries and the corresponding phase portraits with Period-6

ures 1la - 11b and Figs.

Purple: v-nullcline.

(period-1) and Period-12 (period-2), respectively. At ¢ =
—0.631735, the oscillator displays chaotic 5* MMOs (Fig.
11e). The next-amplitude (1D) maps show the period-
doubling from one to two and finally chaos, as shown in
Figs. 11f - 11h. The Lyapunov characteristic exponents



with parameters and initial conditions from Fig. 11h are
A1 = 1.1580 x 1073, Ay = —3.9199, A3 = 0.0000. The
system exhibits a U-sequence similar to those observed
with the fully coupled and master-slave systems.

Unlike the other systems we studied, where we found
multiple M MMOs with PD as well as period-adding bi-
furcations, here only the 5! MMOs show PD. Instead, we
found other MMOs with period-adding bifurcations with
SAOQs exhibiting multiperiodic/complex oscillations.

A surprising result, which differs from the behavior of
the autonomous coupled system, is that at § = 0, i.e.,
with forcing by a single sine wave, the system exhibits
51(52)2 PD-MMOs (see Table C.5 in Appendix C).

III. CONCLUSIONS

We have observed and characterized a novel PD route
to chaos, in which an MMO structure is preserved while
period-doubling leading to chaotic behavior occurs in the
SAOs. Features like the 1D map and the sequence of peri-
odic windows in the orbit diagram of the SAOs resemble
those found in previously studied chaotic systems. We
attribute this phenomenon to the forcing of the central
oscillator by the two outer oscillators with a sufficient
phase difference between them, modulated by the indi-
rect linkage of the outer oscillators via their coupling to
the central one. In Appendix D, we examine the effect of
the initial phase difference in more detail. We find that if
the initial phase difference between the central oscillator
and either of the outer oscillators is close to zero, PD-
MMOs occur only if the initial phase difference between
the outer oscillators is large (between about 0.2 and 0.8).
On the other hand, if the initial phase difference between
the central oscillator and one of the outer oscillators is
large, PD-MMOs arise even for tiny initial phase differ-
ences between the outer oscillators, as small as ~ 1074.
In the future we plan to explore the parameter space more
widely in search of other M™ patterns that give rise to
similar, or perhaps even more complex phenomena, as
well as to search for similar behavior in other model os-
cillators. The existence of PD-MMO behavior in a single
simply forced van der Pol oscillator suggests that the
phenomenon is likely to be quite general. Studies of non-
autonomous Bonhoeffer-van der Pol systems show that
a forced system can produce period-adding bifurcations
with complex nested mixed mode oscillations, including
chaotic ones [42] as well as other MMOs [43]. In those
investigations, which employed significantly lower ampli-
tudes and longer frequencies of forcing relative to the
autonomous LAOs than in our work, no period-doubling
was reported.

IV. NUMERICAL METHODS

Numerical simulations were carried out using MAT-
LAB ODE solver 113 for ODEs with absolute and rela-
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tive tolerances of 1 x 1072 and 1 x 1072, respectively.
Simulations were performed with a time span of 1 x 10°.
All analyses of results were done after eliminating initial
transients.
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Appendix A: Fully coupled system

We varied the initial conditions of the oscillators to
investigate their effect on the MMOs observed. Case 1
shown in Fig. A.la is the focus of this paper and has
been described in detail in the main text.

In Case 2 of Table A.1 and as shown in the phase
portrait in Fig. A.la, oscillator 2 begins close to the
minimum with oscillators 1 and 3 on or close to the max-
imum of the cubic v-nullcline. We note that the only
difference between Cases 1 and 2 is that the initial po-
sitions of oscillators 1 and 2 are switched. This switch
between the oscillators results in the elimination of three
of the MMOs with PD route to chaos found in Case 1
(51 —71), as shown in Figs. A.2a and A.2b. The 8! — 9!
MMOs with PD route to chaos are the only ones left, as
shown in Figs. A.2c and A.2d, respectively. Thus, only
two period-adding bifurcations remain with the switch in
the initial conditions.

For Case 3, we keep oscillator 1 near the minimum
(same location as Case 1) and switch the initial locations
of oscillators 2 and 3. We obtain the same MMOs seen
with Case 1.

Cases 1 — 3 involve permuting the oscillators’ initial
conditions. In Case 4 (Fig. A.1d), we examine a new set
of initial conditions. We place oscillators 2 and 3 close
to the minimum and oscillator 1 midway on the leftmost
branch. This arrangement results in all the MMOs seen
with Case 1. For Case 5 (Fig. A.le), oscillator 1 is close
to the minimum while oscillators 2 and 3 are placed on/or
close to the maximum of the cubic nullcline. Again, we
observe all MMOs with PD.

For Cases 6 and 7 (Figs. A.1f and A.lg), we place
oscillators 1 and 3 together at the same initial loca-
tion at or near an extremum of the cubic nullcline. In
both instances, the MMOs vanish, which suggests that
sufficient separation between the outer oscillators is re-
quired to generate MMOs. The orbit diagram in Fig.
A.2e shows that, as ¢ is increased, oscillator 3 under-
goes a symmetry-breaking and starts to oscillate with
small amplitude while the other two oscillators maintain
their large amplitude nearly in-phase oscillations. Dur-
ing this stage, oscillator 3 displays triperiodic SAOs, fol-
lowed by in-phase LAOs for all three oscillators and a



TABLE A.1: Observations made with different initial conditions
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Case Initial conditions MMOs in Region IV Oscillator 2 Comments
(v1,w1) = (-0.624209340312539 -1.31378200470845) Osc. 1 close to minimum
1 (v2,w2) = (0.1563555683989080 1.791056306867020) 6', 7', 8', 9 Right branch and Osc. 3 on
(v3,ws) = (0.9755267396515510 1.144833731651560) rightmost branch
(v1,w1) = (0.1563555683989080 1.791056306867020) Close to Oscs.* 1 and 3 on
2 (v2, w2) = (-0.624209340312539 -1.31378200470845) 8!, 9! the minimum the rightmost branch
(vs,ws) = (0 9755267396515510 1.144833731651560) of cubic nullcline of cubic nullcline
(v1,w1) = (-0.624209340312539 -1.31378200470845) Osc. 1 close to minimum
3 (ve,w2) = (0.9755267396515510 1.144833731651560)  5', 6, 7', 8', 9! Right branch and Osc. 3 on
(v3,ws3) = (0.1563555683989080 1.791056306867020) rightmost branch
(v1,w1) = (-1.26150618922426 0.227037058153444) Close to Osc. 1 on leftmost branch
4 (v2,ws) = (-0.712563911545149 -1.41430735700971) 5, 6', 7', 8, 9'  the minimum and Osc. 3 jumping to
(vs, ws) = (-0.00948127333826656 -1.39291991672867) of cubic nullcline the rightmost branch
(v1,w1) = (-0.735283410089882 -1.29726550687495) Oscs. 1 and 3 at
5 (v2,w2) = (0.949247645832642 1.14855231424957)  5', 6', 7', 8', 9'  Right branch opposites ends
(vs,ws) = (0.188699586139167 1.78261121012471) of the cubic nullcline
(v1,w1) = (-0.735283410089882 -1.29726550687495) Oscs. 1 and 3 together
6 (v2,w2) = (0.949247645832642 1.14855231424957) 1° Right branch and at or close to the
(vs,ws) = (-0.735283410089882 -1.29726550687495) minimum of cubic nullcline
(v1,w1) = (0.188699586139167 1.78261121012471) Oscs. 1 and 3 together
7 (v2,w2) = (0.949247645832642 1.14855231424957) 1° Right branch and close to the
(vs,ws3) = (0.188699586139167 1.78261121012471) maximum of cubic nullcline
(v1,w1) = (-0.735283410089882 -1.29726550687495) Close to Oscs. 1 and 2 together
8  (v2,w2) = (-0.735283410089882 -1.29726550687495)  5', 6', 7', 8, 9'  the minimum and at or close to the
(vs,ws) = (0.188699586139167 1.78261121012471) of cubic nullcline minimum of cubic nullcline
(v1,w1) = (-0.735283410089882 -1.29726550687495) Oscs. 2 and 3 together
9 (v2,w2) = (0.188699586139167 1.78261121012471)  5', 6', 7', 8", 9'  Right branch and close to the
(vs,ws) = (0.188699586139167 1.78261121012471) maximum of cubic nullcline
(v1,w1) = (-1.43816005927240 1.62755439706495) Oscs. 1 and 3 on extremes
10 (v2,w2) = (0.946935061495364 1.17197142977014) 5%, 6', 7', 8', 9'  Right branch of the leftmost branch
(vs,ws) = (-0.853464256410909 -1.31926341380611) of cubic nullcline
(v1,w1) = (-1.438160059272400 1.627554397064950) Close to Oscs. 1 and 3 on extremes
11 (ve,w2) = (-0.637628110091284 -1.39329060779399) 5%, 6', 7', 8, 9!  the minimum of the leftmost branch
(vs, ws) = (-0.853464256410909 -1.31926341380611) of cubic nullcline of cubic nullcline
(v1,w1) = (-1.43816005927240 1.62755439706495) Osc. 1 on top of extreme
12 (v2,w2) = (0.946935061495364 1.17197142977014) 5t 6%, 7t 8, 9! Right branch and osc. 3 midway of the
(vs,ws) = (-1.22523528881125 -0.00298801650949941) of the leftmost branch
(v1,w1) = (-1.43816005927240 1.62755439706495) Osc. 1 and 3 close to
13 (v2,w2) = (0.946935061495364 1.17197142977014) 1° Right branch each other and close to
(v3, w3) = (-1.39018633830603 1.19604888440157) top of extreme left branch
(v1,w1) = (0.839121121928404 1.45232550993826) Osc. 1 and 3 on extreme
14 (v2,w2) = (-1.39018633830603 1.19604888440157) 5', 6, 7', 8, 9t Left branch ends of rightmost branch
(vs,w3) = (1.38707481920313 -1.16194692466634) of cubic nullcline
(v1,w1) = (0.839121121928404 1.45232550993826) Close to Oscs. 1 and 3 on extreme
15 (ve,ws2) = (-0.637628110091284 -1.39329060779399) 6', 7', 8', 9! the minimum  ends of rightmost branch
(vs,ws) = (1.38707481920313 -1.16194692466634) of cubic nullcline of cubic nullcline
(v1,w1) = (1.38707481920313 -1.16194692466634) Close to Oscs. 1 and 3 on
16 (ve,w2) = (-0.637628110091284 -1.39329060779399) 5%, 6', 7', 8!, 9'  the minimum opposite ends of the

(v3,w3) = (-1.43816005927240 1.62755439706495)

of cubic nullcline

of cubic nullcline

2 QOscillators
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FIG. A.1: Phase portraits of all three oscillators showing their initial positions (large dots). Oscillator 1, blue;
oscillator 2, red; oscillator 3, green. Parameters: Parameters: a = 3.0, € = 0.1335, h = 2.0 and D,, = 1.865 x 1073
with ¢ = —0.6683. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6. (g) Case 7. (h) Case 8. (i)
Case 9. (j) Case 10. (k) Case 11. (1) Case 12. (m) Case 13. (n) Case 14. (o) Case 15. (p) Case 16. Purple:
v-nullcline and black: w-nullcline. Where blue and green trajectories intersect, only green is seen. Only red is visible
when red and blue trajectories overlap. Where red and green intersect, only green is seen.
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second symmetry-breaking with oscillator 2. Depending
on the initial conditions, the tri-periodic oscillation is fol-
lowed by multiperiodic oscillations and finally chaos, as
observed in our earlier work [32, 33]. As shown in Fig.
A.2e, there is only a single maximum in Region IV. Thus,
there are no MMOs in Cases 6 and 7. At larger ¢, all
three oscillators resume LAOs. In Case 8 (Fig. A.lh),
oscillators 1 and 2 start off together near the minimum of
the cubic nullcline with oscillator 3 at the opposite end.
In Case 9 (Fig. A.li), we have oscillators 2 and 3 ini-
tially together close to the nullcline maximum. In both
cases, we observe MMOs. Thus, initial separation be-
tween the central and outer oscillators does not appear
to be necessary for the appearance of MMOs.

In Cases 10 — 13 (Figs. A.1j-A.1m), we place the
two outer oscillators at various locations on the lefthand
branch of the cubic nullcline. Only Case 13 (Fig. A.1m),
where the outer oscillators are the closest together ini-
tially, fails to produce MMOs (see orbit diagram in Fig.
A.2f).

Next we examine Cases 14 — 15 with oscillators 1 and 3
well separated on the rightmost branch of the v-nullcline.
In Case 14 (Fig. A.1n), oscillator 2 is placed on the right-
hand branch, resulting in both PD MMOs and period-
adding MMOs. Case 15 (Fig. A.lo), with oscillator 2 at
the minimum of the nullcline, shows 6' — 9! MMOs with
PD (Figs. A.2g and A.2h).

Lastly, we place oscillators 1 and 3 at the upper left
and lower right of the cubic nullcline, respectively, with

oscillator 2 near the minimum as shown in Fig. A.lp
(Case 16). We observe all MMOs with PD sequence to
chaos.

We conclude that initial separation of the outer oscilla-
tors is necessary but not sufficient to produce MMOs and
PD. The appearance of these phenomena also requires an
appropriate initial phase relationship between the outer
oscillators and the central oscillator.

We studied the effects of varying all the parameters
in Eq. (1). Table A.2 shows some of our observations.
First, we vary ¢, keeping all other parameters constant,
as shown in the Table and with initial conditions of Case
1. Figures A.3a - A.3b show LAQOs for oscillators 1 and 3,
with oscillator 2 displaying PD MMOs as well as period-
adding bifurcations (5! — 10'). Figure A.3c shows the
PD seen with the 5% MMOs. The other MMO patterns
exhibit similar behavior.

Next we examined the effect of varying h between 0
and 5. We obtain MMOs with PD and period-adding
bifurcations (see Table A.2 and Figs. A.3d - A.3f) for
h in the range 1.884 < h < 2.019. The PD and period-
adding bifurcations occur as h decreases, as shown in Fig.
A3f.

The orbit diagrams in Figs. A.3g - A.3i (see Table
A.2) show the results of varying a. The system shows
MMOs in the range 2.9697 < a < 3.2031 with PD MMOs
(51 — 91) as a increases.

We studied the influence of the coupling strength on
the dynamics of the system (Figs. A.3j - A.31). MMOs
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FIG. A.3: Orbit diagrams showing maximum amplitude of oscillations with varying ¢, h, a, and D,, with initial
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oscillators varying . (b) Oscillator 2. (c) Blowup from Fig. A.3b for 5! MMOs. (d) All three oscillators varying h.
(e) Oscillator 2 from Fig. A.3d. (f) Oscillator 2 from Fig. A.3e. (g) All three oscillators varying a. (h) Oscillator 2
from Fig. A.3g. (i) MMOs from Fig. A.3h. (j) All three oscillators varying D,,. (k) Oscillator 2 from Fig.A.3j. (1)

MMOs from Fig. A.3k.



TABLE A.2: Results for parameter variation with initial conditions from Case 1

MMOs in Constant Period-adding
Parameter Range ] ) )
Region IV parameters bifurcations
e, 7 =2. =3.0
€ 0.10645 < & < 0.21690 51’ 61’ 7 1 h=20,a ’ _5 Increasing €
8%, 9%, 10 ¢ = —0.668059, D,, = 1.865 x 10
T ol 1 — _
h 1.8840 < h < 2.019 9.8, T, 6=30,e=013%, Decreasing
6", 5 ¢ = —0.668059, D,, = 1.865 x 10
e, 7 =20, e=0.1
a 2.9697 < a < 3.2031 5, 65 7, h=20,e=013%5 1 reasinga
8,9 ¢ = —0.668059, D,, = 1.865 x 10
11', 10, 9', 8! =2.0, a=3.0
D, (1232< D, <2.300)x 1078 + 2 1098 h=20, a=39, Decreasing D,
7, 6%, 5 e =0.1335, ¢ = —0.668059
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with PD and period-adding bifurcations occur for de-
creasing D,,. In addition to the 9! — 5' MMOs found
on varying the other parameters, varying D,, gives extra
MMOs with PD (11! and 10'), as shown in Table A.2
and Fig. A.3L

Figure A.4 shows observations made for Case 1. At
¢ = —0.69 (Region III) all three oscillators exhibit in-
phase LAOs as shown in Fig. A.4a. As ¢ increases in
Region IV, oscillator 2 displays 5 MMOs (see Fig. 2a)
while oscillators 1 and 3 exhibit out-of-phase LAOs as
shown in Fig. A.4b. After the PD sequence to chaos
and period-adding bifurcations, all three oscillators be-
gin out-of-phase singly periodic oscillations as shown in
Fig. A.4f. These out-of-phase singly periodic oscillations
continue for a significant range of ¢ (—0.648264 < ¢ <
—0.582085), after which all three oscillators transition to
in-phase LAOs.

Before transitioning to 6! MMOs, oscillator 2 shows
intermittent spiking, as shown in Figs. A.4c - A.4e.

Appendix B: Master-slave-like forced system

We calculated the Feigenbaum constant for some of
the Cases in Table II (main manuscript). The results for
Cases 3 and 5 are shown in Tables B.3 and B.4, respec-
tively.

TABLE B.3: Feigenbaum constants for MS Case 3
(Table IT main manuscript)

Period, n %) Fy
3 -0.6685896865
6 -0.6683050794
12 -0.6682499967 5.166905399
24 -0.6682387189 4.884170672
48 -0.6682364855 5.049610460
96 -0.6682360284 4.886020564

TABLE B.4: Feigenbaum constants for MS Case 5
(Table IT main manuscript)

Period, n © Fn
1 -0.6645505120
2 -0.6644937240
4 -0.6644845470 6.188078893
8 -0.6644825570 4.611557789
16 -0.6644821380 4.749403341
32 -0.6644820470 4.604395606
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Appendix C: Uncoupled forced system

In addition to the 5! MMOs with PD to chaos seen
at higher ¢, we obtain several MMOs where the SAOs
display complex periodicity with PD to chaos. We use
the term 4°°™P for the complex SAOs after four LAOs.

The time series (see insets of Figs. C.5a - C.5b) and
phase portraits in Figs. C.5c¢ - C.5d show period-1 and
period-2 of 4° MMOs with PD. At high values of ¢, the
oscillator displays chaos as shown in the phase portrait
and next-amplitude maps in Fig. C.5e and Fig. C.5h,
respectively.

We carried out numerical simulations to study the ef-
fect of the initial location of the oscillator on the MMOs.
We place the oscillator at different positions along the
cubic nullcline. At all initial locations, as long as the pa-
rameters are not changed, only 5 MMOs with PD are
seen in addition to the other complex MMOs that show
PD. We did not observe period-adding bifurcations.

Because the system is invariant to interchange of oscil-
lators 1 and 3, we need only consider the range 0 < 8 < 7.
As 0 increases beginning with § = 0, with ¢ used to
produce Fig. 11h (main manuscript), the system shows
MMOs before returning to LAOs at 6 ~ 2577/512 (Fig.
C.6a). The system exhibits four LAOs in the MMOs
with PD in the SAOs as shown in Figs. C.6b and C.6d.
The complexity in the SAOs in the PD increases with
increasing 6. The PD/MMOs of particular interest is the
5! MMO with PD. This occurs varying # before the sys-
tem transitions to LAOs as shown in Fig. C.6¢c. In Fig.
C.6c, there are two PD/MMOs. The first corresponds
to the 5' and the second to 151 PD MMOs. Between
257w /512 < 0 < 7, only LAOs are seen.

TABLE C.5: MMOs with PD from phase difference ()

Case 0 PD MMOs
3comp 4comp
1 /2 (5')°5%,
5t 21t
comp comp
2 0 1 23; 17 ;1 3 71 2\4
5(5°)°, 5°(57)°, 5°(57)
3comp 4comp
3 3m/4 ’ ’
™/ 15!, 10115
4 s -

We studied the behavior of the system varying ¢ at
four different values of . Table C.5 shows the various
observations made. Case 1, represents the sine forcing
presented in the main paper.

Case 2 is noteworthy, because there is no phase dif-
ference between the forcing terms, i.e., the oscillator is
forced by a single sine wave. This is similar to having
the outer two oscillators start with the same initial con-
ditions for the fully coupled system as shown in Cases
6 — 7, Table A.1. Here, however, we obtained two sets
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FIG. A.4: Time series showing other observations made with Case 1. Parameters:
a =30, e=0.1335, h = 2.0 and D,, = 1.865 x 1073, Initial conditions:

(v1, w1) = (—0.6242, —1.31378), (v2, wa) = (0.15636, 1.79106), and (vs, ws) = (0.97553, 1.14483). (a) In-phase
LAOs at ¢ = —0.6900. (b) Out-of-phase singly-periodic oscillations for oscillators 1 and 3 at ¢ = —0.66830. (c)
Intermittent spiking observed at ¢ = —0.668050. (d) Intermittent spiking observed at ¢ = —0.66770. (e)
Intermittent spiking at ¢ = —0.66750. (f) Out-of-phase oscillations for all three oscillators at ¢ = —0.648264. Blue:
oscillator 1, red: oscillator 2, green: oscillator 3. Where the blue, red and green trajectories overlap, only green is
seen. Similarly, only green is seen where blue and green trajectories intersect.

of MMOs with PD, one (3°°" and 4°°™P) with complex
SAOs, and the others containing combinations of 5! and
52 MMOs (Table C.5). It thus appears that simple si-
nusoidal forcing of a single autonomous oscillator with
the appropriate amplitude and frequency is sufficient to
generate PD-MMOs.

For Cases 3 and 4, we examined the system for changes
in the observations made choosing # > /2. In Case 3,
we investigated the system with § = 37/4. We obtained
15! as well as hybrid 10'15! PD MMOs. For § = =«
(antiphase sine forcing), the system shows only SAOs
and LAQOs. There are no MMOs or PD-MMOs, as shown
in Case 4, Table C.5.

Appendix D: Effects of initial phase of oscillators

For each set of parameters, in order to calculate the
initial phase of each oscillator, we pick the point on the
limit cycle of the uncoupled oscillator with the maximum
value of w and call it (vg, wp), defined to have phase
¢ = 0, as shown in Fig. D.7a. All the oscillators start
at a point that lies on the limit cycle of the uncoupled
oscillator, Eq. (D1).

z—v = —hv® +av —w,

' (D1)
R
dt 4

Starting at time ¢ = 0 at (vg, wp), the oscillator fol-
lows the limit cycle, with its position at time ¢ given by
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FIG. C.5: Numerical simulations of the uncoupled forced system. Parameters and initial conditions as in Fig. 10.
Top panel: time series; middle panel: phase portraits; bottom panel: next-amplitude (1D) maps. (a,c, f) period-1 of
4° MMOs at ¢ = —0.64440. (b, d, g) period-2 of 4> MMOs at ¢ = —0.64397. (e, h) Chaos at ¢ = —0.64385. Purple:

v-nullcline.

(v(t), w(t)). If the period of the uncoupled limit cycle
is T, then (v(t +T), w(t+T)) = (v(t), w(t)). Any
point (v,, W) picked on the limit cycle corresponds to
a unique point (v(t), w(t)) for 0 < ¢t < T and its phase
is calculated using Eq. (D2).

2ut)

t
b= T(O T
To assess the effects of varying the initial phases, we

ran simulations with the parameters in Fig. D.7. The
period of the uncoupled limit cycle was determined to

(D2)

be T ~ 71.55489 as shown in Fig. D.7b. We started
oscillator 1 at ¢1 9 = 0 throughout the study and varied
the initial positions of oscillators 2 and 3 as (ve,q, W2.4)
and (vs,q, Ws,q), respectively. The initial phase of each
oscillator, ¢; o (i = oscillators 1,2 or 3) was determined
from Eq. (D2).

Tables D.6-D.8 and Figs. D.8a-D.8c show the re-
sults obtained keeping the initial positions of oscillators
1 and 2 constant at a phase difference greater than 0.5
(¢p2,0 — ¢1,0 = 0.7608). This phase difference resulted in
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FIG. C.6: Orbit diagrams showing maximum of w for the parameter # in the uncoupled forced system. Parameters
and initial conditions as in Fig. 10 (main manuscript) with ¢ = —0.631735. (a) LAOs and MMOs as 6 is varied. (b)
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FIG. D.7: Illustration of the period of uncoupled oscillator used to calculate the initial phases of the oscillators.
Parameters: a = 3.0, h = 2.0, e = 0.1335 and ¢ = —0.668059. Initial conditions: (v, w) = (—0.735433, 1.808762).
(a) Phase portrait. (b) Time series. Purple: v-nullcline, brown: w-nullcline.
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FIG. D.8: 1D plot of effect of initial phase difference of oscillators with ¢3 varied. Parameters same as Fig. 2 initial
conditions varied. (a) ¢2 — ¢1 held constant at ¢a — ¢1 & 0.7608 (see Tables D.6 - D.8). (b) Expanded from Fig.
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TABLE D.6: Oscillators 1 and 2 kept constant, ¢2 o — ¢1,0 = 0.76081722, and varied oscillator 3

Initial ph MMOs i
Case Initial conditions nitial p etmse, ,OS m
Gi,a = 7 Region IV
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0
1 (v2,0, waa)=(—0.66521082, —1.4463757)  0.76081722 1°
(U3.0, W3.0) = (—0.73543367, 1.8087622) 0
(v1.0, wi0) = (—0.73543367, 1.8087622) 0
2 (vg,a, w2,a) = (—0.66521082, —1.4463757)  0.76081722 1°
(3,0, W3.0) = (—0.73567117, 1.8087615) 1.0309375 x 10~°
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0 S gl
3 (v2.0y waa)=(—0.66521082, —1.4463757) 0.76081722 ’
6 PD to chaos
(U3.0, W3.0) = (—0.73600866, 1.8087606) 2.4959578 x 10
= (—0.73543367, 1.8087622 0
(10, wi0) = ( ’ ) 7! showed p-1,
4 (va,0y Wae) = (—0.66521082, —1.4463757)  0.76081722 L
_ _5 8 showed p-1,2.
(U3,0, W3.0) = (—0.74095742, 1.8087461)  2.3982862 x 10
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0 gt
5  (v2,a, W2,a) = (—0.66521082, —1.4463757) 0.76081722 disol ’d Lo
1Splaye - .
(3.0, W3.a) = (—0.77327807, 1.8086264) 1.6462444 x 10~ prayed b=,
(vi,0, wi,0) = (—0.73543367, 1.8087622) 0 7! showed p-1,2,
6 (vs,a, Waa) = (—0.66521082, —1.4463757)  0.76081722 8' had PD
(V3,0, W3,0) = (—0.83020026, 1.8083070) 4.1465391 x 10™* sequence to chaos.
= (—0.73543367, 1.8087622 0
(w10, w10) = ’ ) 7', 8' with PD
7 (vaa, Waa) = (—0.66521082, —1.4463757)  0.76081722
_g5 sequence to chaos.
(U3,0, W3,0) = (—1.0530435, 1.8054960)  1.4772792 x 10
= (—0.7354 1. 22
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0 71 8 with PD
8 (Vs Waa) = (—0.66521082, —1.4463757) 0.76081722 enee to cha
sequence 08S.
(V3.0) Ws.0) = (—1.2096932, 1.7967280)  3.2341200 x 10~ 0
= (—0.73543367, 1.8087622 0
(w10, w10) = ’ ) 7', 8' with PD
9 (v2,0y Waa) = (—0.66521082, —1.4463757)  0.76081722
_3 sequence to chaos.
(Us.0, W3.0) = (—1.4104253, 1.7836032)  5.2038557 x 10
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0 7", 8" with PD
10 (va,a, wae) = (—0.66521082, —1.4463757)  0.76081722  sequence to chaos,
(V3,0, W3,0) = (—1.4439419, 1.7666513)  7.5281428 x 10™® 9! showed p-1.
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0 7', 8 with PD
11 (v2,a, wa,a) = (—0.66521082, —1.4463757) 0.76081722 sequence to chaos,
(V3,0, W3,0) = (—1.4495929, 1.7402246)  1.1073665 x 1072  9' showed p-1.
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0 7", 8" with PD
12 (v2,a, wa,a) = (—0.66521082, —1.4463757) 0.76081722 sequence to chaos,
Vs.ay W3.a) = (—1.4473132, 1.7111448)  1.4973740 x 1072 9" showed p-1,2,4.
(vs, o) = (
= (—0.73543367, 1. 22
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0 2ol with PD
13 (v2,a, w2a) = (~0.66521082, ~1.4463757) 076081722 ' LU
11 .
(V3,05 Ws.0) = (—1.4426890, 1.6665351)  2.0084244 x 1072 -
= (—0.73543367, 1.8087622 0
(w0, wi0) = ’ ) 7' — 9" with PD
14 (vaa, waa) = (—0.66521082, —1.4463757)  0.76081722
_o sequence to chaos.
(U3,0, W3,0) = (—1.4367779, 1.6107090)  2.8557478 x 10
= (—0.7354 1. 22
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0 2o with PD
15 (vaa, Waa) = (—0.66521082, —1.4463757)  0.76081722

(U3.0, W3.0) = (—1.4223418, 1.4769175)

4.6949618 x 1072

sequence to chaos.
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TABLE D.7: Continuation of Table D.6

24

Initial ph MMOs i
Case Initial conditions nitial p ?se, ,OS m
Gia = F Region IV
(v1.0, wi1,0) = (—0.73543367, 1.8087622) 0 7', 8" with PD
16 (vs.a, wWaa) = (—0.66521082, —1.4463757)  0.76081722 sequence to chaos,
(V3,0, W3,0) = (—1.4078884, 1.3465270)  6.5220803 x 10~2 9! showed p-1,2.
(v1.0, wi0) = (—0.73543367, 1.8087622) 0 7', 87 with PD
17 (v2,a, w2,a) = (—0.66521082, —1.4463757) 0.76081722 sequence to chaos,
(3.0, Ws,0) = (—1.3921840, 1.2088489)  8.4910542 x 102 No 9'.
(v1.0, w10) = (—0.73543367, 1.8087622) 0 7', 8" with PD
18 (2.0, wWaa) = (—0.66521082, —1.4463757)  0.76081722 sequence to chaos,
(V3.0, W3.0) = (—1.3761427, 1.0724684) 0.10484701 No 9'.
(vi.0, wi0) = (—0.73543367, 1.8087622) 0 7' with PD
19 (v2,a, wa,a) = (—0.66521082, —1.4463757) 0.76081722 sequence to chaos,
(3.0, W3.0) = (—1.3608116, 0.94609604) 0.12373419 8 had p-1,2,4. No 9*.
(v1.0, w10) = (—0.73543367, 1.8087622) 0 7', 9" with PD
20 (v2,4, w2,a) = (—0.66521082, —1.4463757) 0.76081722 sequence to chaos,
(3.0, Ws.0) = (—1.3486649, 0.84869818) 0.13858228 8! had p-1.
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0 5' — 7', 9" with
21 (v2,a, W2,a) = (—0.66521082, —1.4463757) 0.76081722 PD sequence to
(Vsa, Ws.a) = (—1.3311480, 0.71243563) 0.15981353 chaos, 8 had p-1.
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0 61,71, 9" with
22 (v2,a, W2,a) = (—0.66521082, —1.4463757) 0.76081722 PD sequence to
(V3.0, W3.0) = (—1.3109718, 0.56155319) 0.18400104 chaos, 8! had p-1.
= (—0.7354 1. 22
(v1.0, wi10) = (—0.73543367, 1.8087622) 0 51 _ o' with PD
23 (vma, Waa) = (—0.66521082, —1.4463757)  0.76081722 e fo chn
sequence 0s.
(Vs.0, Ws.0) = (—1.2954752, 0.45001601) 0.20238354 4
= (—0.7354 1. 22
(v1.0, wi.0) = (—0.73543367, 1.8087622) 0 &' _ gl with PD
24 (v, waa) = (—0.66521082, —1.4463757)  0.76081722
sequence to chaos.
(V3,05 W3.a) = (—1.2899349, 0.41104780) 0.20891417
= (—0.7354 1. 22
(v1.0, w10) = (—0.73543367, 1.8087622) 0 51 _ o' with PD
25 (vaa, Waa) = (—0.66521082, —1.4463757)  0.76081722
sequence to chaos.
(3.0, Ws.0) = (—1.2825189, 0.35962892) 0.21762167
= (—0.73543367, 1.8087622 0
(v1,0, wi0) = ( , ) 5! — 9! with PD
26 (va.0, Waa) = (—0.66521082, —1.4463757)  0.76081722
sequence to chaos.
(V.05 W3.0) = (—1.2787984, 0.33415114) 0.22197542
= (—0.7354 1. 22
(v1.0, w10) = (—0.73543367, 1.8087622) 0 5 o' with PD
27 (2.0, W) = (—0.66521082, —1.4463757)  0.76081722
sequence to chaos.
(3.0, Ws.0) = (—1.2713317, 0.28366069) 0.23068292
= (—0.7354 1.8087622
(v1.0, wi1,0) = (—0.73543367, 1.8087622) 0 51 o' with PD
28 (vm0, Waa) = (—0.66521082, —1.4463757)  0.76081722 ttence o chacs
uen 5.
(V3,05 W3.0) = (—1.2638306, 0.23379274) 0.23939042 d
= (—0.7354 1. 22
(v1.0, w10) = (—0.73543367, 1.8087622) 0 5 _ gl with PD
29 (o, Waa) = (—0.66521082, —1.4463757)  0.76081722
sequence to chaos.
(3.0, W3.0) = (—1.2449229, 0.11186542) 0.26115918
= (—0.7354 1. 22
(v1.0, wi10) = (—0.73543367, 1.8087622) 0 51 _ o' with PD
30 (vaa, Waa) = (—0.66521082, —1.4463757)  0.76081722 ence fo chn
sequence 0s.
(V3.0, W3.0) = (—1.0972651, —0.66313301) 0.42203680 d




TABLE D.8: Continuation of Table D.6

Case Initial conditions Initial ph?se, MMOS m
Gia = F Region IV
(vi.0, wio) = (—0.73543367, 1.8087622) 0 5 _ gl with PD
31 (vaa, Waa) = (—0.66521082, —1.4463757)  0.76081722
sequence to chaos.
(3.0, Ws.0) = (—0.83268550, —1.3617089)  0.66312506
(v1.0, w1,0) = (—0.73543367, 1.8087622) 0 S _ o' with PD
32 (vaa, Waa) = (—0.66521082, —1.4463757) 0.76081722
sequence to chaos.
(3.0, W3.0) = (—0.66521082, —1.4463757)  0.76081722
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0 6' — 9! with PD
33 (v2,a, W2,a) = (—0.66521082, —1.4463757) 0.76081722  sequence to chaos
(3.0, Ws.0) = (0.15026501, —1.3754568)  0.80544753 No 5.
(1.0, w10) = (—0.73543367, 1.8087622) 0 6" — 9 with PD
34 (v2,a, w2,a) = (—0.66521082, —1.4463757) 0.76081722  sequence to chaos,
(3.0, W3.0) = (0.73704220, —1.3398600)  0.80886316 no 5.
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0 5!, 6! with PD
35  (v2,a, W2,0) = (—0.66521082, —1.4463757) 0.76081722  sequence to chaos,
(3,0, W3,0) = (1.2102131, —1.2934938)  0.81178353 no 7t — 9%,
(1.0, wi0) = (—0.73543367, 1.8087622) 0 6" — 9" with PD
36 (v2,a, W2,a) = (—0.66521082, —1.4463757) 0.76081722  sequence to chaos
(U3.0, W,0) = (13830416, —1.1278747)  0.82036018 No 5.
(vi,0, wi,0) = (—0.73543367, 1.8087622) 0 6' — 9" with PD
37 (v2,a, W2,a) = (—0.66521082, —1.4463757) 0.76081722  sequence to chaos
(v3.0, W3.0) = (1.2563883, —0.15799757)  0.87135531 No 5.
(1.0, wi0) = (—0.73543367, 1.8087622) 0 77— 91 with PD
38  (v2,a, W2,a) = (—0.66521082, —1.4463757) 0.76081722  sequence to chaos
(3.0, Ws.0) = (0.70889380,1.6188803)  0.97957075 No 5'. 6 had p-2.
(v1.0, w1,0) = (—0.73543367, 1.8087622) 0 8%, 9" with PD
39 (vma, Waa) = (—0.66521082, —1.4463757) 0.76081722  sequence to chaos.
(v3,a, W3,a) = (—0.50940690, 1.8157851) 0.99930355 7! had p-1,2.
(v1.0, wi0) = (—0.73543367, 1.8087622) 0
40 (vaa, Woe) = (—0.66521082, —1.4463757)  0.76081722 10
(3.0, Ws.0) = (—0.73543367, 1.8087622) 1
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both PD-MMOs and period-adding bifurcations (5*—91).
The phase difference between the outer oscillators 1 and 3
before the onset of MMOs was relatively small as shown
in Case 3 (¢3,0 — P10 ~ 2.496 x 107°). We observed
both 7! and 8' MMOs without period-doubling sequence
to chaos. As the separation between the outer oscilla-
tors increased, additional periods were added until the
8! MMOs showed a doubling sequence to chaos as seen
in Case 6 with ¢35, — ¢1,0 ~ 4.417 x 1074, Cases 7 — 22
showed MMOs both with and without PD sequence to
chaos. The first appearance of all MMOs with PD is
found in Case 23 with ¢3,, — ¢1,0 = 0.2024. This behav-
ior continues for a significant range of the phase differ-
ence, until ¢3 o — @10 ~ 0.8054 in Case 33, where the
5 MMOs disappear. As the phase difference approaches
1 (Cases 33 — 39), the PD-MMOs slowly disappear until
they vanish at ¢34 — @10 = 1, Case 40.

Cases 8 and 9 of Table A.1 demonstrate that PD-
MMOs and period-adding bifurcations can occur when
the initial phases of the central oscillator and one of the
outer oscillators are the same. In Tables D.9-D.10, we
set ¢2.0 — ¢1,0 = 0 and varied ¢3,. Unlike Tables D.6-
D.8 where the oscillators display PD-MMOs with almost
zero initial phase difference between the outer oscilla-
tors, with ¢35, — ¢1,0 ~ 2.496 x 107% now the PD-
MMOs only appear at much larger initial phase differ-
ences, as shown in Table D.10 and Fig. D.8d, Case 24
with ¢3,oz — ¢110 = ¢37a — ¢2,0 ~ 0.2089. The phase differ-
ences between oscillators 1 and 3 are the same for Tables
D.6-D.8 and Tables D.9-D.11, with the only difference
being the phase difference between the outer oscillators
and the central oscillator.

We carried out a third study where we kept the initial
phase difference between the two outer oscillators con-



TABLE D.9: Oscillators 1 and 2 kept constant, ¢2 qipha — ¢1,0 = 0, and varied oscillator 3

Case Initial conditions Initial phe:se, MMOS m
Qi = 7 Region IV
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0
1 (v2,0, wao) = (—0.73543367, 1.8087622) 0 1°
(vs,0, wa,o) = (—0.73543367, 1.8087622) 0
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0
2 (v2,0, w2,0) = (—0.73543367, 1.8087622) 0 1°
(V3,0, W3,0) = (—0.73567117, 1.8087615) 1.0309375 x 10~°
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0
3 (v2,0, wao) = (—0.73543367, 1.8087622) 0 10
(V3,0, W3,0) = (—0.73600866, 1.8087606) 2.4959578 x 10~°
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0
4 (va, wao) = (—0.73543367, 1.8087622) 0 1°
(V3,0, W3,0) = (—0.74095742, 1.8087461) 2.3982862 x 107>
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0
5  (v2,0, wao) = (—0.73543367, 1.8087622) 0 1°
(V3,0, W3,0) = (—0.77327807, 1.8086264) 1.6462444 x 10~*
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0
6 (va2,0, wao) = (—0.73543367, 1.8087622) 0 10
(V3,0, Wa,0) = (—0.83020026, 1.8083070) 4.1465391 x 10~*
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0
7 (va,0, wao) = (—0.73543367, 1.8087622) 0 1°
(V3,0, W3,0) = (—1.0530435, 1.8054960) 1.4772792 x 1073
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0
8  (va2,0, wao) = (—0.73543367, 1.8087622) 0 10
(V3,0y Wa,0) = (—1.2996932, 1.7967280) 3.2341209 x 103
((v1,0, w1,0) = (—0.73543367, 1.8087622) 0
9 (v2,0, wa,0) = (—0.73543367, 1.8087622) 0 1°
(V3,0, W3,0) = (—1.4104253, 1.7836032) 5.2038557 x 1073
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0
10 (va,0, wa,0) = (—0.73543367, 1.8087622) 0 10
(V3,0y W3,0) = (—1.4439419, 1.7666513) 7.5281428 x 1073
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0
11 (va,0, wa,0) = (—0.73543367, 1.8087622) 0 1°
(V3,0, W3,00) = (—1.4495929, 1.7402246) 1.1073665 x 10~2
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0
12 (v2,0, w2o) = (—0.73543367, 1.8087622) 0 10
(V3,0, W3,0) = (—1.4473132, 1.7111448) 1.4973740 x 1072
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0
13 (va,0, wa,0) = (—0.73543367, 1.8087622) 0 10
(V3,05 Wa,a) = (—1.4426890, 1.6665351) 2.0984244 x 102
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0
14 (v20, wao) = (—0.73543367, 1.8087622) 0 1°
(V3,0, W3,0) = (—1.4367779, 1.6107090) 2.8557478 x 1072
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0
15 (va,0, wa,0) = (—0.73543367, 1.8087622) 0 10

(U3,0, W3.0) = (—1.4223418, 1.4769175)

4.6949618 x 1072
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TABLE D.10: Continuation of Table D.9

Case Initial conditions Initial phetxse, MMOS m
Gi,a = 7 Region IV
(v1.0, wi0) = (—0.73543367, 1.8087622) 0
16 (v2.0, wao) = (—0.73543367, 1.8087622) 0 1°
(Us,0, W3.0) = (—1.4078884, 1.3465270)  6.5220803 x 102
(v1,0, wi0) = (—0.73543367, 1.8087622) 0
17 (va,0, way0) = (—0.73543367, 1.8087622) 0 1°
(Us.0, W3.0) = (—1.3921840, 1.2088489)  8.4910542 x 102
(v1.0, wi0) = (—0.73543367, 1.8087622) 0
18 (v2.0, wao) = (—0.73543367, 1.8087622) 0 1°
(Us.0, W3.a) = (—1.3761427, 1.0724684) 0.10484701
(v1,0, wi0) = (—0.73543367, 1.8087622) 0
19 (va0, wao) = (—0.73543367, 1.8087622) 0 1°
(U3.0, W3.0) = (—1.3608116, 0.94609604) 0.12373419
(v1.0, wi0) = (—0.73543367, 1.8087622) 0
20 (2.0, wzo):( 0.73543367, 1.8087622) 0 1°
(V3.0, W3.0) = (—1.3486649, 0.84869818) 0.13858228
(v1.0, wi0) = (—0.73543367, 1.8087622) 0
21 (v20, wao) = (—0.73543367, 1.8087622) 0 1°
(V3.0, W a):( 1.3311480, 0.71243563) 0.15981353
(v1.0, wi0) = (—0.73543367, 1.8087622) 0
22 (vao, wgo):( 0.73543367, 1.8087622) 0 1°
(V3.0, W3.0) = (—1.3109718, 0.56155319) 0.18400104
(v1.0, wi0) = (—0.73543367, 1.8087622) 0
23 (v20, wao) = (—0.73543367, 1.8087622) 0 1°
(U3.0, W3.0) = (—1.2954752, 0.45001601) 0.20238354
(v1,0, wi0) = (—0.73543367, 1.8087622) 0 6" with PD
24 (v2,0, wa2,0) = (—0.73543367, 1.8087622) 0 sequence to chaos,
(V3.0, W3.0) = (—1.2899349, 0.41104780) 0.20891417 7" p-1.
(v1.0, wi0) = (—0.73543367, 1.8087622) 0 6', 7" with PD
25 (v20, wao) = (—0.73543367, 1.8087622) 0 sequence to chaos,
(V3,0, W a):( 1.2825189, 0.35962892) 0.21762167 8" p-1.
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0 6! — 8! with PD
26 (v2,0, wa2,0) = (—0.73543367, 1.8087622) 0 sequence to chaos,
(V3,0 W3,0) = (—1.2787984, 0.33415114) 0.22197542 no 5 and 9.
(v1.0, wi0) = (—0.73543367, 1.8087622) 0 6" — 8! with PD
27 (v2,0, w2 0) = (—0.73543367, 1.8087622) 0 sequence to chaos,
(v3,0, W3,0) = (—1.2713317, 0.28366069) 0.23068292 no 5%, 9! p-1,2.
(v1.0, wi0) = (—0.73543367, 1.8087622) 0 51 o' with PD
28 (v2.0, wao) = (—0.73543367, 1.8087622) 0
(3.0, Wa.a) = (—1.2638306, 0.23379274) 023030042  Scduence to chaos.
(v1.0, wi0) = (—0.73543367, 1.8087622) 0 S o' with PD
29 (vao, wgo):( 0.73543367, 1.8087622) 0
(3.0, W3.a) = (—1.2449229, 0.11186542) 0.26115015  Seauence to chaos.
(v1.0, wi0) = (—0.73543367, 1.8087622) 0 51 o' with PD
30 (v20, wao) = (—0.73543367, 1.8087622) 0
(5.0, Ws.a) = (—1.0072651, —0.66313301) 042203680  “cauence to chaos.
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TABLE D.11: Continuation of Table D.9

Case Initial conditions Initial phz:se, MMOS m
Qi,a = T Region IV
(v1.0, w1,0) = (—0.73543367, 1.8087622) 0 S _ ol with PD
31 (vao, wao) = (—0.73543367, 1.8087622) 0
sequence to chaos.
(v3,a, w3,a) = (—0.83268550, —1.3617089)  0.66312506
(v1.0, wi0) = (—0.73543367, 1.8087622) 0 S ol with PD
32 (vao, wao) = (—0.73543367, 1.8087622) 0
sequence to chaos.
(v3,a, W3,0) = (—0.66521082, —1.4463757) 0.76081722
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0 5! — 7! with PD
33 (v2,0, w2,0) = (—0.73543367, 1.8087622) 0 sequence to chaos,
(v3,a, w3,a) = (0.15026501, —1.3754568) 0.80544753 8! p-1, no 9.
(v1.0, wi0) = (—0.73543367, 1.8087622) 0 6" — 9 with PD
34 (v2,0, wa2,0) = (—0.73543367, 1.8087622) 0 sequence to chaos,
(U3.0, W3.0) = (0.73704220, —1.3398600)  0.80886316 no 5'.
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0 5!, 6 with PD
35  (v2,0, wa2,0) = (—0.73543367, 1.8087622) 0 sequence to chaos,
(V3,0, W3,0) = (1.2102131, —1.2934938) 0.81178353 no 7' — 9%
(v1.0, wi0) = (—0.73543367, 1.8087622) 0
36 (va0, wao) = (—0.73543367, 1.8087622) 0 1°
(Us.ay Ws,a) = (1.3839416, —1.1278747)  0.82036018
(v1.0, wi0) = (—0.73543367, 1.8087622) 0
37 (van, wao) = (—0.73543367, 1.8087622) 0 1°
(v3,a5 w3,a) = (1.2563883, —0.15799757) 0.87135531
(v1,0, wi,0) = (—0.73543367, 1.8087622) 0
38 (va0, wao) = (—0.73543367, 1.8087622) 0 1°
(v3,a, w3,a) = (0.70889380, 1.6188803) 0.97957075
(v1.0, wi0) = (—0.73543367, 1.8087622) 0
39 (va, wao) = (—0.73543367, 1.8087622) 0 1°
(v3,a, W3,a) = (—0.50940690, 1.8157851) 0.99930355
(v1,0, w1,0) = (—0.73543367, 1.8087622) 0
40 (va,0, way) = (—0.73543367, 1.8087622) 0 1°
(U3.0, W3.a) = (—0.73543367, 1.8087622) 1
stant and varied ¢29. With ¢34 — @1, = 0.7608 all phase difference between oscillator 1 and 2 is sufficiently

PD-MMOs (5! — 9') and period-adding bifurcations ap-
pear at ¢2 o — @1, ~ 0 for all Cases considered. The large
initial phase difference between the outer oscillators en-
sures that changing the initial phase of oscillator 2 does
not significantly influence the behavior of the system.
The above studies conducted varying the initial phase
of oscillator 3 (¢3,,) and keeping the initial phases of os-
cillators 1 and 2 (¢1,9, ¢2,o) constant suggest that if the

large, MMOs with and without PD occur over a broad
range of ¢3 o, as shown in Tables D.6-D.8, Figs. D.8a-
D.8c. However, if the initial phase difference between
oscillators 1 and 2 (any of the outer and the central os-
cillator) is close to zero, the PD-MMOs occur over a much
narrower range of ¢s ., as shown in Tables D.9-D.11, Fig.
D.&d.
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