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Proposed is a phenomenological modeling framework that is capable of reproducing the diverse
experimental observations of the nonlinear, combustion wave propagation in a rotating detonation
engine (RDE), specifically the nucleation and formation of combustion pulses, the soliton-like in-
teractions between these combustion fronts, and the fundamental, underlying Hopf bifurcation to
time-periodic modulation of the waves. In this framework, the mode-locked structures are classified
as autosolitons, or stably-propagating nonlinear waves where the local physics of nonlinearity, gain,
and dissipation exactly balance. We find that the global dominant balance physics in the RDE
combustion chamber are dissipative and multi-scale in nature: the fast combustion physics provide
the energy input to form the fundamental mode-locked autosoliton state, while the slow physics of
exhaust and propellant recovery shape the waveform and dictate the number of autosolitons. In this
manner, the global multi-scale balance physics give rise to the stable structures - not exclusively
the frontal dynamics prescribed by classical detonation theory. Experimental observations and nu-
merical models of the RDE combustion chamber are in strong qualitative agreement. Moreover,
numerical continuation (computational bifurcation tracking) of the RDE analog system indicates
that a Hopf bifurcation of the steadily propagating pulse train leads to the fundamental instability
of the RDE, or time-periodic modulation of the waves. Along branches of Hopf orbits in parame-
ter space exist a continuum of wave-pair interactions that exhibit solitonic interactions of varying

strength.

I. INTRODUCTION

Combustion instabilities are a universal phenomenon
in aerospace propulsion systems. In rockets, combustion
chambers can exhibit coupling between combustor ge-
ometry, propellant injection, and local heat release [1-5]
which can lead to instabilities that are capable of induc-
ing mechanical failure [6], constituting a major risk to the
propulsion system. Historically, to abet this risk, signif-
icant resources have been devoted to engineer systems
that damp or limit the mechanisms responsible for the
formation of these instabilities. These engineering tasks
are not trivial: the physical processes responsible for the
instabilities are highly nonlinear and intricately coupled.
Consequently, the physics exploration of these behaviors
is often constrained to hardware-specific studies. In the
Rotating Detonation Engine (RDE), such instabilities are
amplified such that they saturate, potentially forming
stable traveling detonation waves. However, the RDE
is not immune to developing its own unique behaviors.
These include mode-locking of waves, bifurcations of the
number of waves, or periodic modulation of the waves.
Koch et al. [7] recently proposed a mathematical model
capable of reproducing the diverse, experimentally ob-
served mode-locking dynamics of the RDE. Here, we nu-
merically investigate this model to characterize the fun-
damental dominant, multiscale balances which drive the
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instabilities and bifurcation structure of rotating deto-
nation waves, showing that the mode-locked states, or
autosolitons, are solitonic in how they interact and that
the Hopf bifurcation is the fundamental, canonical insta-
bility driving bifurcations in the combustion chamber.

The RDE was first conceptualized as an alternative
to standard rocket engine designs in the late 1950s to
early 1960s [8, 9]. In the RDE, instead of the suppres-
sion of combustion instabilities, the combustion cham-
ber was designed to leverage and promote a specific and
ubiquitous instability which generated rotating combus-
tion fronts whose growth produced a number of discrete
co- and counter-propagating traveling detonation waves
that consumed injected propellant. This instability is the
promotion of the self-steepening of pressure and density
gradients caused by heat release in an annular combus-
tion chamber. The RDE is anomalous in that its steady
operation is the saturation of this instability.

However the RDE is not free from its own set of in-
stabilities: the balance between the nonlinearity of the
fluid medium and the competing physical processes of
combustion, injection, and exhaust is delicate. Rotating
detonation waves have experimentally been found to be
very sensitive to combustor boundary conditions (such as
inlet pressure and exit plane pressure), propellant heat
release, and the geometric parameters of the engine, such
as engine length and annulus circumference. For certain
conditions, rotating detonation waves have been observed
to exhibit a number of remarkable properties that differ
significantly from the freely-propagating detonations of
conventional theory. A prototypical detonation wave is a
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FIG. 1. A sketch depicting the canonical flowfield of the Rotating Detonation Engine is shown with the major features
annotated. Gaseous fuel and oxidizer is injected through a number of discrete orifices that rapidly mix inside an annular
combustion chamber. A supersonic, circumferentially-traveling, reaction wave consumes the newly-mixed propellant, sustaining
the motion of the reaction wave. Emanating from this front is an oblique shock wave that sweeps the downstream flowfield.
A contact surface marks the location separating the combustion products of this particular reaction front from those of other
waves or, in this case, previous round-trips of the same wave. As the reaction front passes over the propellant injectors, the
injectors become blocked, as the reaction wave pressure is typically higher than that of injection. A time lag therefore exists
before propellant can be re-introduced to the combustion chamber. This time lag is depicted as distance behind the reaction
front before the blue reactant zone reappears. Thrust is produced from expelling the hot exhaust products rearward at high
velocity and by producing a time- and spatially- averaged high chamber pressure acting on a thrusting wall (in this cartoon,
this is the injector face). In the experimental set-up of this study, direct optical access of the annulus allows for the complete
space-time history of the detonation waves to be recorded with a high-speed camera. A single frame from an experiment is
shown in (b) with the annulus integrated pixel intensity overlaid the annulus location. Stacking each high-speed camera frame
gives (c), where line slopes correspond to wave speed. The integrated luminosity trace in (b) corresponds to the trace shown
in (c).

front that connects the states of unburnt and completely these transients and instabilities are not well understood,
burnt mixture. Rotating detonation waves differ in that especially with regard to operational stability and perfor-
they are pulses, where the beginning and end states of = mance.

the wave are the same. The tail of the detonation decays
as the burnt gas can expand perpendicularly to the prop-
agation direction of the pulses. Likewise, at a particular
point in the annulus, the reactant mixture is regener-
ated within the transit time of a wave. This balance of
heat release (gain), exhaust processes (dissipation), pro-
pellant injection (gain recovery), and nonlinearity of the
medium governs the pulse shape, number, and behavior
[7]. Should these physical processes be unbalanced, a
wide array of spatiotemporal dynamics are known to ex-
ist and persist, as observed in experiments and detailed
computational studies. Such dynamics include mode-
locking of pulses [7], modulation of the pulse train [7, 10],
and bifurcations to different numbers of pulses [7, 10-12].
The physical mechanisms and engineering implications of

In this article, we investigate the properties of rotat-
ing detonation waves with respect to the interplay of
the physical unit processes that govern the pulse behav-
ior. We use a low-order mathematical description of the
coupling of the physical processes within the combustion
chamber to characterize the behavior of the pulses across
a wide range of parameter space. We find that the col-
lection of detonation waves exhibit solitonic properties
in their interactions and balance physics. However, un-
like the solitons of integrable equations, such as the Ko-
rtewegde Vries equation, the solitonic properties of the
rotating detonation waves are consequences of the global
gain dynamics and domain periodicity. Within this con-
text we describe the fundamental instability of the ro-
tating detonation wave, namely a Hopf bifurcation from



the steadily propagating wave to the time-periodic wave
modulation as seen in experiments. Numerical analysis of
the bifurcation structure of the mathematical model in-
dicates the universality of this instability: along solution
branches of traveling waves, all transients away from the
steady case travel through this Hopf bifurcation point.
We additionally present experimental evidence corrobo-
rating these claims.

In Section II, we begin by presenting a description of
the rotating detonation engine and by reviewing general
themes in literature. In Section III we present recent
observations of nonlinear dynamics in experiments and
in models. In Section IV, we present a summary of the
RDE analog system and analyze, numerically, the trav-
eling waves admitted by the analog system. In Section
V, we identify and discuss regimes of wave propagation
and make the autosoliton analogy. Lastly, we discuss the
relationship between the source terms of the model and
the Rankine-Hugoniot relationship for the shock jump
conditions in Section V.

II. BACKGROUND

The RDE is an internal combustion engine belong-
ing to a class of engines called pressure gain combus-
tors, where the primary mechanism by which heat is
added to the flow is through constant-volume combus-
tion. Detonations, or self-sustained supersonic reaction
waves where combustion products are sonic relative to
the leading shock [13, 14], are the naturally occurring
physical process that most constant-volume combustors
seek to employ, including the RDE. RDEs typically are
designed with periodic, annular combustion chambers
(Fig. 1) that provide geometric confinement to the heat
release process. The rapid heat release in the presence of
this confinement promotes the self-steepening of the gra-
dients of pressure and density within the fluid. Because
chemical reactions are accelerated with increasing pres-
sure and temperature, this creates a positive feedback
mechanism that further accelerates the reaction front.
This front continues to accelerate until the combustion
products behind the wave front are exactly sonic relative
to the wave, where no ‘downstream’ influences can affect
the state of the wave. These waves travel in the circum-
ferential direction ingesting axially moving propellant.
After the propellant has been detonation-processed, the
hot and high pressure exhaust gasses are ejected through
the aft end of the device at high velocity, providing us-
able thrust. The path to maturation of RDE technol-
ogy includes a detailed investigation of the physics of
rotating detonation waves, especially the relationship be-
tween detonation behavior, engineering performance, and
component-level (injection and exhaust hardware, for ex-
ample) coupling.

A number of research groups and institutions have suc-
cessfully sustained rotating detonation waves in annu-
lar and disc-type geometries. Although the parameters

that uniquely define these specific engines vary drasti-
cally across the literature, the behavior of the travel-
ing detonation waves contained within these engines are
consistent. Wave speed and count are metrics that are
easily observed and readily available in literature. An
overarching theme of the RDE community is that the
speed and number of waves are related to the energy flux
through the engine [10, 15-18]. The wave speeds are de-
cidedly slower than those of Chapman-Jouguet detona-
tions [13], or the freely-propagating detonation through
a premixed fluid of the same propellant chemistry. Like-
wise, the wave speeds take on distinct ratcheting transi-
tions when energy flux is taken to be a bifurcation pa-
rameter [15]. In incrementing the number of detonation
waves by changing energy (mass) flux, the collection of
waves assumes a slower speed than the original state. The
opposite scenario also holds, where a decrement in waves
results in the remaining waves traveling faster (on the
order of 10% velocity difference [7, 11, 15, 18]). In addi-
tion to transients leading to changes in number of waves,
commonly observed are ‘galloping’ detonations, or peri-
odic modulation of detonation wave velocity [7, 11, 19].
Such modulation has been identified as a precursor to
mode changes [11]. Amplitude, speed, and phase dif-
ferences of the waves become time-periodic at the onset
of this instability. Such modulation is apparent in the
spectral content of fast-response instrumentation, such
as in piezo-electric pressure sensors or high-speed camera
footage, where spectral sidebands are present and sym-
metric about a dominant carrier frequency [20]. Lastly,
extreme events such as chaotic propagation, especially
during times of ramp-up or ramp-down of propellant feed,
have been observed experimentally [21].

Most laboratory-grade RDEs in literature use gaseous
propellants injected through sets of sonic orifices into the
combustion chamber. If injection pressure is significantly
higher (about a factor of 2) than the combustion cham-
ber pressure, the propellant Mach number becomes one
at or near the exit of the injector, meaning the injector
is acoustically isolated from the combustion process. No
information can be exchanged between the combustion
and injection processes: they are decoupled. However,
as noted by many (see [21], for example), the detonation
waves possess a peak pressure typically an order of mag-
nitude greater than that of the injector feed. The impli-
cation is that the acoustic isolation is lost and the injec-
tion and combustion processes become coupled. The high
pressure detonation waves can induce blockages or back-
flow into the propellant feed systems. To alter the energy
flux through RDEs (fed with gaseous propellant through
nominally-choked injectors), one can either change the in-
jector feed pressure or the total injection area. However,
these strategies affect the injection-detonation coupling
differently [22, 23]. Consider two sets of injectors deliv-
ering equivalent mass fluxes to a combustion chamber:
one set with a larger total injection area and lower feed
pressure, and one set with smaller total injection area
and higher feed pressure. The set with a larger total



injection area has a greater potential for coupling with
the detonation waves as the detonation peak pressure is
much greater than that of injection. Significant coupling
of this type generally leads to unstable detonation behav-
ior and/or weakly propagating waves [22, 23|. Increasing
feed pressure such that it becomes comparable to that
of the detonation waves decreases the degree of coupling,
though using large pressure ratio injectors typically lead
to large, unrecoverable pressure loss [20, 22]. The time
scales associated with injection and mixing are directly
related to these metrics, along with specific injector ge-
ometries (the aspect ratio of length to diameter), orienta-
tions (axial injection versus radial injection, for example),
and mixing schemes (impinging jets or vortical mixing,
for example).

Computational Fluid Dynamic (CFD) models of the
RDE have been particularly useful in identifying and ex-
ploring the physical processes responsible for the wave
behavior and instabilities seen in experiments, includ-
ing injector coupling. With CFD, one has access to
the full state of the system. Therefore, these various
wave phenomena can be explicitly linked to performance
(combustion efficiency, thrust, etc.) ‘Unwrapped’ two-
dimensional (2D) domains of the annular-type RDE have
been simulated with great success [24-29]. These mod-
els have established the flow field of the RDE with re-
spect to different geometric and operational parameters,
and have been instrumental in characterizing the modes
and instabilities of rotating detonation waves. In 2D do-
mains, the inlet boundary condition is critical in deter-
mining the global behavior of the simulation. A com-
mon approach (see [25] for a detailed presentation) is
to treat the inlet boundary as a solid wall (zero mass
flux) if the pressure in the domain is larger than the pre-
scribed injection pressure. If the pressure in the domain
is less than the injection pressure, the velocity at the in-
let takes on super- or sub-sonic values corresponding to
isentropic nozzle expansion of a certain area ratio (in-
jection area relative to combustor annulus area). The
prescribed area ratio and injection pressure dictate the
time lag behind the passing waves before propellant can
be reintroduced to the domain. Long-time history of the
propellant regeneration of these simulations show explic-
itly the ‘self-adjustment’ mechanism [30] whereby the col-
lection of detonation waves mode-lock to symmetric and
maximal phase differences.

Studies have been extended to three-dimensional (3D)
domains [31-33] to investigate the interaction of traveling
detonations on propellant injection, mixing, and exhaust
processes. As computing power increases, these full-3D
simulations have naturally been refined to match specific
hardware and propellants used [34-36]. Several studies
have focused exclusively on the stability and behavior of
the traveling waves in 2D and 3D [37-41]. Computational
expense becomes a significant problem as one increases
complexity in the modeling. Because the flow field of the
RDE is inherently low-dimensional (a number of waves
traveling at a certain speed is all one needs to recreate

the major features of the flow), a number of groups have
shifted efforts to simplifying the modeling and analysis
to exploit this traveling wave structure [42-44] with vary-
ing degrees of success. These studies use geometric scal-
ing and ‘black box’ numerical techniques to tie together
the physical processes of injection, detonation, and flow
expansion and exhaust to determine representative flow
fields. With these studies, time-to-solution is prioritized
over accuracy. Data-driven methods, like Dynamic Mode
Decomposition (DMD), have also been used to extract
dominant features from high-speed camera footage and
investigate the interaction of these features [45].

Despite the success of using computational models to
determine the RDE flow field and to predict performance
with some confidence, the investigation of the fundamen-
tal physics governing the behavior of the collection of
waves is diluted by the arbitrarily high-dimensional na-
ture of these formulations. While these studies certainly
have merit in the engineering development of specific
hardware, they are necessarily constrained to condition-
or geometry-specific models and do not generalize to
other engines, propellants, boundary conditions, or cou-
pling schemes. These complications drive the state-of-
the-art further into increasing fidelity and computational
cost.

In [7], we introduced an alternative view of the rotating
detonation process. We extended the Majda detonation
analog [46] to model an autowave process; i.e., one that
produces solitarily propagating detonative pulses trav-
eling about a periodic domain. The Majda detonation
analog, like that of Fickett [47], is a simple 2-component
partial differential equation system that is readily solved
by conventional numerical techniques. These models
bring together the physics of compressibility, shock for-
mation, and reactivity in a simple mathematical frame-
work that qualitatively reproduces many physical phe-
nomena observed in real detonations. The tractability
of these models have made them a natural mathematical
test bed for development of methods to evaluate detona-
tion wave stability[48-51], especially in the Zeldovich-
von Neumann-Doring limit[52]. These analog models
have been extended to investigate period-doubling and
the transition to chaos in detonation fronts [53, 54] and
mode-locking in periodic media [55].

This autowave model marks a significant departure
from the modeling state-of-the-art in that it stresses
global energy dynamics and qualitative behavior over ac-
curacy and device- and condition-specific computational
studies. The approach adequately captures the non-
locality (meaning the behavior at a single spatial loca-
tion is coupled to all other locations) of the energy bal-
ance that leads to the diverse behavior seen in experi-
ments. The physics are simplified in this approach: for
the pulses to steadily propagate, global gain and loss
must exactly offset, subject to the nonlinearity (possess-
ing a Burgers’-type flux) and periodicity of the medium.
This perspective is adopted from the nonlinear waves
community (see [56-58]). Localized structures that self-



organize and propagate as a response to energy pumping
from an external source are called dissipative solitons or
autosolitons. We classify rotating detonation waves as
such.

The precedent exists for the classification of reac-
tion waves into this mathematical physics framework.
Reaction-diffusion systems in active media have been
known to exhibit solitonic properties and have a rich
mathematical framework with which they can be ana-
lyzed [59]. More topical are flamons [59] and the phe-
nomenon of spinning reaction fronts [60]. In the engi-
neering community, tangential rocket combustion insta-
bilities have been classified as solitonic [61]. The pulses of
the RDE differ from those in literature in that the pulse
fronts can be discontinuous. Our treatment of the reac-
tion front remains rooted in the detonation phenomenon
as we retain the nonlinearity that leads to shock forma-
tion, whereas the formulations of reaction-diffusion sys-
tems neglect this nonlinearity.

To adopt the view of solitonic propagation of rotat-
ing detonation waves has high value in fundamental
physics investigations. The physical processes respon-
sible for pulse shape and behavior are known. This view
de-emphasizes hardware or condition-specific considera-
tions. Instead, highlighted are the influence of the in-
teraction of scales of associated physical processes. Fur-
thermore, this perspective allows one to examine rela-
tionships between system stability and readily observed
wave properties, such as speed and multiplicity. To that
end, we envision the use of this phenomenological model
as a test bed for the development of mathematical meth-
ods and techniques that can then be applied to higher-
fidelity simulations or experimentally-obtained data.

Note that in this article we have restricted our discus-
sion to co-rotating waves exclusively, despite the preva-
lence of counter-rotating in literature. The inclusion of
counter-rotating waves is the subject of future studies.

III. EXPERIMENTS

For this article, we have collected a series of ob-
servations from experiments that highlight the spatio-
temporal dynamics of rotating detonation waves. The
rotating detonation engine used is a gaseous oxygen- and
methane-fed engine based on a 76mm outer annulus di-
ameter and 76mm core length. Each experiment consists
of a minimum of 0.5 seconds of ‘hot’ operation where
the feed lines and combustion chamber pressures have
settled to steady values. The engine is mounted to a
large dump volume that captures all engine exhaust. Be-
cause the system is closed, both the inlet (feed pressure)
and outlet (dump volume pressure) boundary conditions
can be controlled and independently set. Likewise, rout-
ing the exhaust into a dump volume has allowed for the
safe installation of an optical viewport roughly 2 meters
downstream of the engine. Using a high speed camera,
the complete spatio-temporal history of the detonation

waves is recorded for each experiment. These space-time
histories are the primary metric by which we compare our
model to experiments. A single frame from an example
high-speed recording is shown in Fig. 1. The location
of the annulus is overlaid with black circles. By inte-
grating the pixel intensity around the annulus for each
frame of the video [62], a profile of the luminosity can be
constructed and stacked through time to yield a spatio-
temporal history (Fig. 1) of the detonation waves in an
experiment. In this view, slopes correspond to wave an-
gular velocity. For the experiment shown in Fig. 1, the
wave motion is steady through time.

We present here a subset of experiments that exhibit
a modulational instability with the goal of characteriz-
ing this phenomenon with a low-order model in Section
IV. Figures 2 and 3 show different numbers of waves in
the annulus that travel with a modulated speed, ampli-
tude, and phase difference. For these figures, plotted are
these histories against time normalized by the average
round-trip time of a wave. The time units correspond
to the number of round trips for the mean-velocity of
the waves. Raw integrated pixel luminosity for a two-
wave modulation case is given in Fig. 2a. In viewing
this space-time history, it is apparent that in this exper-
iment the waves have two regimes of propagation. The
first regime is characterized by a stronger (greater lumi-
nosity), faster moving pulse. The second regime is char-
acterized by a significantly weaker, slowly moving pulse.
The two co-existing waves in the RDE annulus regularly
alternate between these propagation regimes. The point
at which the waves ‘switch’ regimes is at the local maxima
of the modulation; i.e., when the two waves are closest
together.

At this close range, a fundamentally different balance
physics exists that changes the behavior of the waves.
The strengths and speeds of the waves are directly tied to
the amount and distribution of available reactant in the
annulus. Immediately after a wave-pair interaction, the
faster of the two waves has an excess of reactant through
which it can propagate stably (with a constant velocity
and amplitude). This imbalance of propellant distribu-
tion exists because: (i) the weaker wave has not blocked
propellant injection to the degree that the stronger wave
has, and (ii) a temporal imbalance exists corresponding
to the large amplitude phase differences of the waves.
Because the stronger wave travels faster than its coun-
terpart, it approaches the tail of the slower wave, where
the amount of renewed reactant is significantly less than
required to sustain the speed and amplitude of the strong
wave. This strong wave therefore decelerates, as the dis-
sipative processes (exhaust) now dominate the physics.
At this point of interaction, the phase difference between
the strong and weak waves is small - on the order of 45
degrees or m/4 radians. The accompanying phase dif-
ference - the one preceding the weak wave - is therefore
27 —m /4. With these large phase differences (and accom-
panying time lags), reactant regeneration asymptotically
approaches a state of complete ‘refill’, where no combus-
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the same type as displayed in the two wave case of Fig. 2, the amplitude of the modulation is less severe. The spectrum of the
experiment is shown in (c), with sidebands near wave counts of two and four symmetric about the carrier frequency of three
waves.

tion products are present in the flow and the reactant is three waves.
fully mixed. The weaker wave now rapidly gains strength:
the input energy to the wave is greater than that which is
lost through the dissipative processes. Finally, the tran-
sition to the stronger mode of propagation is complete
when the energy input to the wave exactly balances the
dissipative processes. This saturation of the growth of
the waves is explicitly seen in the spatio-temporal history
of the experiment: the paths of the waves are straight
lines (paths of constant velocity) connected by brief pe-
riods of nonlinear wave-to-wave interaction. Displayed in
Fig. 3a is similar time-periodic modulation, though with

All experiments possessing this modulational instabil-
ity share a similar frequency spectrum. A carrier fre-
quency corresponding to the average velocity (or, if nor-
malized as in Figs. 2c and 3c, a count of the waves in the
domain) is accompanied by sidebands symmetric about
the carrier frequency. By recasting the wave trajectories
into the reference frame of the velocity corresponding to
the carrier frequency, one can visualize the same dynam-
ics as deviations from the average velocity. The side-
bands in the spectra correspond to frequencies near that
which would appear for an increment or decrement in the
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number of waves. For example, for the three wave case
of Fig. 3, the spectrum shows a dominant (carrier) fre-
quency of three waves with sidebands at approximately
two and four waves. Figure 2b is the representation of the
data contained in Fig . 2a recast into the reference frame
of the mean velocity of the waves by the transformation
1) = 0 — ct, where ¢ corresponds to the speed associated
with the carrier frequency of the spectrum. In this ref-
erence frame, the oscillations of phase difference between
the waves is explicit, as is the modulation of wave am-
plitude. The lower-amplitude modulations of Fig. 3 do
exhibit the same propagation characteristics of the two
wave case, though the range of interaction for these cases
is observably larger than that of the two wave case.

In the brief wave-to-wave interactions, the waves ex-
hibit solitonic behavior. The strong wave assumes the
shape and velocity of that of the weaker and is displaced
by a small phase shift. Likewise, the weak wave assumes
the shape and velocity of that of the stronger wave -
again displaced by a small phase shift. This interaction
is most easily observed with close-scale interactions. In
Fig. 4, displayed is a single period of oscillation extracted
from the two wave modulation case of Fig. 2. The time
shifts At yielding phase shifts Af give the interaction the
appearance of a solitonic collision.

IV. THE RDE ANALOG SYSTEM

Our goal is to use a low-order mathematical formula-
tion to (i) reproduce, qualitatively, the modulational in-
stability and solitonic interactions of collections of rotat-
ing detonation waves, and (ii) characterize the conditions
under which these instabilities develop. We first summa-
rize the mathematical model first presented in Koch et
al. [7]. This model builds upon the Majda detonation
analog to account for dissipation, reactant regeneration,

and periodic boundaries. The model developed is a hy-
brid in nature: leveraging known first-principles physics
with empirical additions that are based upon experimen-
tal observations. As such, the model preserves critical
features of the detonation physics while parameterizing
phenomenological aspects. As will be shown, this hy-
brid approach produces a model that provides the clos-
est match to experiment achieved to date, including the
instability structure manifested in rotating detonations.
Using this model, we run a sweep of numerical simula-
tions to survey wave behavior. Lastly we use numeri-
cal continuation to extract the traveling wave solution
branches and their linear stability as a function of a bi-
furcation parameter.

A. Model Formulation

The model quantifies the spatio-temporal evolution of
a property analogous to specific internal energy, u(z,t),
and a coupled reaction progress variable, A(z,t), on a one
dimensional (1D) periodic domain:
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The quantity g is analogous to propellant heat release,
€ is a dissipation coefficient, w is the rate law for the
combustion kinetics, and 3 is the injection model. The
model domain is normalized such that x maps to 6 €
[0,27) with periodic boundary conditions imposed due
to the annular construction of the engine (See Fig. 1).
In this study, we treat the chemical kinetics as a simple



exponential of u(x,t), with the functional form of:

’Z,Lauc>’ 3)

where k is a pre-exponential factor, u,. is prescribed ‘ig-
nition energy’, and « is analogous to the inverse of ac-
tivation energy. Note that as written, the kinetics are
auto-catalytic: w(u) > 0 always. The evolution of the
combustion progress variable \ is governed by the com-
petition of combustion (following the rate law of w(u))
and injection (following the injection model S(u)). For
injection, we use an activation function that sufficiently
mimics injection from nominally choked orifices:

Blu)

w(u) = kexp (
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where the product su, is the time constant for the re-
generation of A\. In real engines, the rate of propellant
regeneration is influenced by the injection scheme, mix-
ing effectiveness, and total injection area. The parameter
u,, is an injection activation threshold. The parameter s
scales the overall time constant independent of the ac-
tivation threshold. This functional form asymptotically
assumes the value of the numerator if the value of u is
small compared to u,. In the limit as u becomes much
larger than u,, 5(u) approaches zero. Similarly, if either
s or uy is zero, there is no regeneration of A. Lastly, the
quadratic loss term, eu?, is the imposition of lateral relief
on the domain tunable with the parameter e.

The model’s steady (or quasi-steady) state exists when
the energy flux into and out of the domain balance. This
condition is met when the integrated losses are equal to
the integrated energy input over the domain:

L L
Edomain = / q(]- - )\)W(U)dfﬂ — / €U2d$ (5)
0 0

For spatially homogeneous states (steady planar defla-
gration fronts) and mode-locked traveling wave solutions,
the integrals exactly balance and Eiomain = 0. For os-
cillatory plane waves, Egomain # 0: there is periodic
accumulation and ejection of energy in the domain that
oscillates in-phase with injection and heat release, similar
to the autoignition model of Frank-Kamenetskii [63, 64].

Transient phenomena, such as the initial start-up of a
simulation or immediately after ignition of an RDE, ex-
hibit an imbalance of the integrals in Eqn. 5: Ejomain >
0. From an initial condition of zero combustion and low
values of u throughout the domain, the losses in the
chamber are minimal. An accumulation of u will oc-
cur until the domain satisfies the relationship in Eqn. 5.
A direct consequence of this behavior is the influence of
the accumulation of u on the kinetic model. As u in-
creases with the onset of combustion, the chemical reac-
tions governed by the simplified kinetics are accelerated.
This feedback mechanism further accelerates the chem-
ical kinetic model in the entirety of the domain. This

TABLE I. Plane Wave Simulation Parameters
a u. s kr
03111015

energy influx can trigger the transition to an increased
number of traveling waves. This process is the physical
mechanism for wave nucleation in RDEs.

B. Modulation of the Deflagration State

We first consider the plane wave case. Modulational
instabilities play a critical role in driving the overall dy-
namics of a similar damp-driven system of mode-locked
lasers [7], where the instability/stability of plane wave
solutions determine the overall global dynamics [65, 66].
Plane waves, or spatially-homogeneous states, are not in-
fluenced by spatial derivatives. Thus, an equivalent sys-
tem is the further-reduced coupled ordinary differential
equations:

‘;i: — gk (1— A)exp (“;“C> — eu? (6)
= k1= ey (M) et o7

Stationary solutions (a steady, planar deflagration front)
exist for eu? = ¢ (1 — N)w(u) and (1 — N w(u) = A\B(u).
These fixed points can be found numerically. Figure 5a
displays fixed points for the parameters listed in Table 1.
The eigenvalues of the linearized system evaluated at the
fixed points yields Fig. 5b. For small dissipation and heat
release, the steady planar deflagration is linearly stable.
For high energy flux conditions, an instability can form
leading to the growth of oscillations and a stable limit
cycle (as shown in Fig. 5b-d). This is a Hopf bifurca-
tion with the injection sensitivity threshold (u,) as the
bifurcation parameter. Similar pulsations are observed in
real engines with axial injector-combustion-exhaust res-
onance [7, 21].

C. Bifurcation Structure of Traveling Waves

The open-source finite volume code PyClaw [67] is used
to perform the direct numerical simulations of the model
and the Matlab-based software pde2path [68, 69] is used
to perform the linear stability analysis of the traveling
wave solutions via numerical continuation. However, the
model system as written in Eqns. 1 and 2 admits so-
lutions with discontinuities. Although PyClaw is well-
suited to handle shocks, pde2path was originally intended
for systems of elliptic partial differential equations. To
facilitate the bifurcation analysis, the model system is
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FIG. 5. (a) Fixed points of the deflagration system of Eqs. 6 and 7 for the parameters listed in Table I. The spectrum of the
linearized system evaluated at the fixed points is shown in (b). A Hopf bifurcation to a stable limit cycle exists at u, & 0.55.
The eigenvalues of the black diamonds in (b) correspond to those of the system simulated in (c¢) and its associated phase plane
in (d). The initial condition for the simulation is the red circle in (¢) and (d).
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FIG. 6. A bifurcation diagram of the RDE model analog
showing peak amplitude of the simulated domain is shown in
(a). Model parameters are listed in Table II. In increasing the
bifurcation parameter u, from zero, the system initially ex-
hibits planar deflagration fronts, then traveling waves (from 1
to 5 waves), then back to a deflagration front. The associated
speeds of the traveling waves are given in (b).

necessarily regularized with diffusion such that the solu-
tions become continuous, albeit still possessing sharp gra-
dients characteristic of the reaction fronts. We therefore
perform our bifurcation study of the modified system:

ou 0?u u U — U 9
at—l/lw—uax—i—kq(l—)\)exp( - )—cu (8)

TABLE II. Traveling Wave Simulation Parameters
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where the constants v and v, are diffusivities associated
with the combustion (diffusing «) and injection (diffusing
A) processes, respectively. The model parameters used in
this study are listed in Table II.

A bifurcation diagram showing the peak amplitude in
the domain as a function of the parameter u, is shown in
Fig. 6, as computed by numerical simulation on a con-
verged grid with PyClaw. Each simulation was initialized
with a localized sech-pulse u(x,0) = (3/2)sech®®(z — 1)
with a ‘half combustion’ condition of A(z,0) = 0.5. This
initial condition was chosen to avoid issues with numer-
ical stiffness associated with simulation start-up tran-
sients.

At u, = 0, the injection term f is zero and the en-
tire domain dissipates to a zero value. As w, increases,
a planar deflagration front forms: the dissipation term
(—eu?) first dominates the dynamics of the domain, pro-
hibiting the formation of stable pulses, then relaxing to
exactly balance the input energy given by a non-zero .
At a critical value of u, =~ 0.56, the initial pulse can form
a single stably-propagating wave. At this condition, the
input-output energy balance is still satisfied, but the time
scale corresponding to the round-trip time of the wave
(the speed of which is determined by the energy release
associated with the detonation and the pre-shock state)
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FIG. 7. Modulated wave trajectories in the laboratory refer-
ence frame from numerical simulations corresponding to the
vertical lines in Fig. 6. The simulation shown in (a) cor-
responds to u, = 0.745. The accompanying spectrum (b)
(with abscissa units corresponding to wave count) shows a
carrier frequency of two waves with sidebands near one and
three waves. In (c), the simulation corresponds to a value of
up = 0.995 and has a similar spectrum to that of (b), shown
in (d).

has become comparable to the time scales of gain re-
generation (su,) and dissipation. Continuing to increase
u,, increases the peak amplitude of the single wave un-
til u, =~ 0.65, where a transition to two waves occurs.
This transition marks the point at which the mean value
of u in the domain has accelerated the kinetics to the
point where the effects of parasitic deflagration (combus-
tion that is not associated with the traveling waves) and
detonative combustion on the domain are of the same
order. The single wave’s amplitude decreases as the par-
asitic deflagration is consuming an increasing amount
of the available energy. Once the parasitic deflagration
can self-steepen to form a shock during the round-trip
time of a detonation wave, a deflagration-to-detonation
transition occurs and the number of waves increases by
one. This transition is seen in Fig. 6 when increasing
u, above 0.65 (a transition from one to two waves) and
again around 0.9, 1.07, and 1.1. As wu, becomes large
(beyond u, =~ 1.1), the domain regresses back to a pla-
nar deflagration front. The time scale of the kinetics is
now much faster than all others in the model, including
that of the traveling waves. All potential energy made
available by 3 is quickly consumed and dissipated.

The inter-pulse regions of the bifurcation diagram show
a diverse set of behavior, including wave modulation. In
Fig. 6, the vertical lines correspond to the simulation his-
tories of Fig. 7 for two and three wave modulation cases.
For this region of operability space in u,, the waves travel
unsteadily with modulation similar to that which is ob-
served in experiments (Figs. 2 and 3). In the bifurcation
diagram of Fig. 6, the wave modulation for the two wave
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branch is bounded by stable two wave propagation on
both sides of the instability. The modulation region for
the three wave branch is bounded by a jump to the two
wave branch and by stable three wave propagation. Note
that the inter-pulse region between N =2 and N = 3 is
marked with scattered wave amplitudes. In this region,
the waves have undergone multiple period-doublings and
exhibit chaotic behavior.

The bifurcation diagram of Fig. 6 shows structure. A
planar delfagration branch exists and is predominantly
linear with w,. Branches exist for each number of travel-
ing waves that interact in some manner, giving intervals
of u, where the wave dynamics are not steady. Tran-
sitioning from steady propagation (a number of waves
moving at constant velocity) to unsteady propagation
constitutes a bifurcation to an instability.

Using the numerical simulations from Fig. 6 as initial-
ization seeds, we construct an estimate of the complete
bifurcation diagram using pde2path for the parameters
listed in Table II. The system of Eqns. 8 and 9 are
modified to produce steady profiles by including an im-
posed offsetting advection velocity and performing the
2-parameter continuation with wu, and the imposed ve-
locity. See Appendix A for the complete formulation of
the continuation problem.

Figure 8 contains several distinct branches of solutions
for the model system: one ‘trivial’ branch and five trav-
eling wave branches. Along these branches, solid lines
indicate regions of stability whereas dotted lines indi-
cate unstable regions. The ‘trivial’ branch is the locus of
points satisfying the input-output energy balance with
no contributions from traveling waves. This is the de-
flagration branch: the locus of solutions where a planar
front spanning the domain consumes and quickly dissi-
pates all input energy. Because of the viscous regular-
ization of the model system, there exists a small region
of stability around this branch where diffusion inhibits
wave growth. We note that in the system without vis-
cous regularization, this is not necessarily the case. Any
change in concavity with Burgers’ type flux (without dif-
fusion) leads to wave growth and shock formation, and
therefore a perturbation off the deflagration branch may
indeed lead to wave formation if the local energy gain
exceeds the local energy dissipation.

The single traveling wave branch is a closed solution
branch - an isola - that exhibits stability for the top half
of the branch. The region of stability is bounded by
fold bifurcations at the extremes of the isola. The solu-
tion branches of higher number of waves are qualitatively
similar to the single-wave branch: each possesses a region
of stability (with the exception of the five wave branch,
which is everywhere unstable for these model parame-
ters) bounded by bifurcations to instability.

The wave speeds along the branches vary dramatically
- by a factor of two for some branches - though they sat-
urate at about the same value across branches. Relative
to the CJ speed of detonations for the Majda detonation
analog (Dcoy = 2q = 2), their speed is about 80 - 90%
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FIG. 8. Bifurcation diagram replicating that of Fig. 6 com-
puted from numerical continuation. Emanating from the triv-
ial deflagration branch are 5 traveling wave branches. For
each traveling wave branch, solid lines correspond to stable
propagation and bashed lines correspond to unstable solu-
tions. The single-wave traveling branch is a closed ring of
solutions - an isola. Corresponding wave speeds along the
traveling wave branches are shown in (b). Hopf bifurcations
exist at the transition from stability to instability for the trav-
eling wave branches, marked by diamonds. Along the Hopf
branches are time-periodic modulations of wave speed, ampli-
tude, and phase difference.

of the theoretical maximum. As wu, increases, there is
marked drop in wave speed and amplitude at each tran-
sition to a greater number of waves. This phenomenon is
consistent with direct numerical simulations and experi-
ments with large wave counts [10].

D. Self-Similarity and Domain Length

In Fig. 9, the single- and double-wave branches of Fig.
8 plotted alongside branches of the same system but dif-
ferent domain lengths: L = 27 (the original system),
L = 37/2, and L = 7. The traveling wave branch for
N =1 on a L = 7 domain is identical to that of the
N = 2 wave branch on a L = 27 domain. The system is
self-similar, scaled by domain length. Furthermore, the
wave speeds along these branches are also equivalent. In-
creasing the domain size from L = «, the N = 1 branch
detaches from the deflagration branch and forms an isola.
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FIG. 9. (a) A bifurcation diagram showing N =1 and N = 2
branches of the original model system (domain length of L =
27) alongside two additional cases: N =1 on L = 37/2, and
N =1on L = x. Note that the traveling wave branches are
self-similar - the curves of N = 1on L = 7 and N = 2 on
L = 27 overlay identically, including the wave speeds, shown
in (b). The maximum wave speed and amplitudes for the
model system with parameters listed in Table II shows strong
dependence on the domain length, in effect changing the time
scale for the round-trip time of the detonation wave.

With further increase in domain size, the isola decreases
in size. A point of criticality exists where the domain
is too large to support a single wave: the transit time
of the wave becomes too long compared to the time re-
quired for parasitic deflagration to self-steepen and form
an additional wave. At this point of criticality, the N =1
isola ceases to exist, though the N = 2 branch detaches
from the deflagration branch and forms a new isola. This
process of isola formation and destruction repeats indef-
initely with each doubling of the domain length. Note,
however, that the regions of stability of the self-similar
branches (N =1on L =m and N =2 on L = 27) are
not consistent: for this set of parameters, instability only
exists for wave count greater than one.

E. The Hopf Bifurcation to Wave Modulation

The traveling wave branches of Fig. 8 each possess
a region of stability: the detonations propagate stably
with a constant velocity through time. However, there



exist Hopf bifurcations that spawn branches of periodic
orbits away from the stably-propagating pulse train. By
adding an appropriate Hopf constraint (see Appendix A),
the continuous branch of orbits - the Hopf branches - can
be extracted. In Fig. 8a, the black diamonds indicate
the initial Hopf bifurcation away from the traveling wave
branches. The black lines connecting these bifurcations
are the Hopf branches. For the two and three wave cases,
these Hopf branches are shown in Fig. 10 with example
solution plots. Note that for these branches we have not
evaluated stability - we have only traced the branch lo-
cation in parameter space.

The Hopf branches intersect the traveling wave
branches at two points. At each intersection is a Hopf
bifurcation. Along these Hopf branches, the period of
oscillation and the amplitudes of phase differences, wave
amplitudes, and wave speeds are all modulated: the
branches constitute the possible states of modulation for
the given parameters. These variations in propagation
behavior are exhibited in Fig. 10. At each intersection
with the traveling wave branches (the end points of the
curves in Fig. 10a), the modulation is low in phase differ-
ence amplitude, though the modulation onset frequency
is about a factor of two faster for the higher energy (larger
up) cases.

At each local extreme of phase difference oscillations,
the waves interact solitonically as in the experiments of
Figs. 2 and 3. From the collection of waves, the pair that
interact exchange strength and undergo a phase shift.
This is clearest in Figs. 10d and 10g-10h. At the onset
of modulation (approached from a high wu,), the phase
differences between the interacting wave pairs is large,
as are the apparent phase shifts. As the oscillations in
phase differences grow, the phase shifts between inter-
acting pairs decreases. In the extreme limit of the three
wave Hopf branch, the phase shifts become such that the
weaker of the interacting waves is overrun and the phase
shifts are zero, resulting in the reduction of the number
of traveling waves. Similar phenomena occur for Hopf
branches of higher wave count, as shown in Fig. 8 along
the 4-wave Hopf branch.

Figure 11 compares a single-period of oscillation for
two rotating detonation waves in an experiment and in
simulation of the analog system. Both are displayed in
the average-speed reference frame. The behavior of the
waves in the experiment and model share the same quali-
tative behavior, including exchange of wave strength, and
similar phase shifts through the interaction. However,
the period of oscillation (shown in number of wave round-
trips around the domain, based on average wave speed)
of the model does not match that of the experiment,
though the model likely is not quantitatively matching
all timescales of interest (chemical, injection, mixing, and
wave transit time). Note that we have not performed any
parameter selection techniques nor have we fit the model
to data. Provided the aforementioned time scales are
such that the model can support traveling detonation
waves, the bifurcation structure and wave interactions
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are qualitatively similar.

V. DISCUSSION

Rotating detonation waves have been experimentally
observed to exhibit solitonic propagation, especially in
wave pair interactions, where wave strengths are swapped
and phase shifts are imposed (Fig. 11). In performing
numerical simulations and a numerical bifurcation anal-
ysis of the rotating detonation analog system, we qual-
itatively reproduced the behavior seen in experiments.
The rotating detonation wave analog is capable of re-
producing real-wave behavior, including the bifurcation
structure, wave selection transients, and modulation of
rotating detonation waves.

In this section, we wish to emphasize the main findings
of this study and how they relate to the development of
the rotating detonation engine. First, we establish that
the global gain dynamics are the mechanisms responsi-
ble for the observed physics. Next, we discuss the scales
of interaction in the system and the solitonic behaviors
they produce. Within this context, we establish the mod-
ulational instability of rotating detonation waves as the
fundamental instability of the system. Lastly, we discuss
the interplay between the shock jump conditions, wave
speed, and dissipation and how these scale with domain
length.

A. Global Gain Dynamics

The process of mode-locking of rotating detonation
waves implies a significant communication pathway be-
tween the waves. This is a direct contradiction to classi-
cal detonation theory. Steady detonations are superson-
ically moving fronts, meaning they are ‘unaware’ of the
fluid properties ahead of the wave. Similarly, the com-
bustion products behind the detonation wave travel away
from the shock front at a velocity sonic relative to the
wave front. This implies that there are no characteristics
that can propagate from the burnt side of the detonation
upstream to the location of heat release. The rotating
detonation engine possesses two physical constraints on
the problem that lifts the restriction of wave (commu-
nicative) isolation. First, the domain is periodic, not
infinite or pseudo-infinite in many classical studies, and
second, the system state ahead of the detonation waves
is a function of the cumulative history of the detonation
waves.

Periodicity means that the waves see the tail of the
preceding wave (or, in the case of one wave, its own
tail). The behavior of the detonation waves is neces-
sarily dependent not only on the local combustion at the
shock front (where classical detonation theory stops), but
also the time scales for energy dissipation and propel-
lant recovery. These three physical processes have four
different time scales corresponding to: (i) combustion,
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FIG. 10. The two- and three-wave branches of the bifurcation diagram of Fig. 8 each possess regions of stability and instability.
Hopf bifurcations from the steadily traveling wave branches exist at these transitions and are reproduced in (a). By continuing
the Hopf branches, one can extract a diverse set of potential modulational behavior. In (a), the period of the orbits along
the two- and three-wave Hopf branches are displayed by number of wave round trips (based on wave speed averaged over one
period) as a function of the bifurcation parameter. Example Hopf orbits for the two wave branch are shown in (b)-(e) and in
(f)-(i) for the three wave branch. These orbits are displayed in the mean-velocity reference frame. Along the Hopf branches,
the amplitude of the phase differences and the waves vary dramatically. For the three wave branch, in the extreme limit of each
wave-pair interaction, the stronger of the two interacting waves overruns the weaker wave resulting in a reduction of number
of waves by one. This phenomenon is shown in (i).
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FIG. 11. Extracted Hopf orbits after the onset of a modulational instability in an experiment and in the numerical continuation
of the RDE analog system. The two detonation waves interact through global gain dynamics, producing a distinct and repeatable
kinematic trace. The model is in good qualitative agreement with the experimentally obtained orbit.

(ii) round-trip time of the detonation wave, (iii) dissi-
pation (exhaust processes), and (iv) gain recovery (in-
jection and mixing). These time scales vary by several
orders of magnitude in real engines, with combustion be-
ing the fastest (sub-microseconds) and dissipation being
the slowest (millisecond).

These time scales are related. The time scale of com-
bustion is related to the amount of reactant ahead of the

combustion zone and the quality of the mixing processes.
The transit time of the wave is governed by the heat
release associated with the detonation wave (Chapman-
Jouguet theory), but also by the properties of the in-
gested gas, as they are not necessarily at standard or
injected conditions. Likewise, the properties of the fluid
in the inter-pulse space is governed by the slower-scale
dynamics of the exhaust processes. The rotating detona-



tion analog succeeds in capturing the dynamics seen in
experiments because the wide range of time scales rep-
resentative of the physics are included and properly cou-
pled.

B. The Fundamental Instability

The modulation seen in RDE experiments and sim-
ulations has been characterized as ‘galloping’ rotating
detonation [11, 17, 70]. This term is adopted from the
phenomenon whereby one dimensional detonations un-
dergo a Hopf bifurcation to front modulation followed
by period-doubling to chaotic propagation [71, 72]. In
these studies, activation energy is typically taken to be
the bifurcation parameter. Qualitatively, the behavior
of ‘galloping’ detonation is very similar to the modula-
tion seen in RDEs: the frontal motion of the waves and
peak pressures oscillate through time, as in Figs. 2 and
3, though the studies of ‘galloping’ detonation are per-
formed on pseudo-infinite, 1-dimensional domains.

The physical mechanisms responsible for the modula-
tion in RDEs and 1-D galloping detonations are funda-
mentally different: for rotating detonation waves, mod-
ulation is caused by the interplay of the processes con-
tributing to the global gain dynamics. In ‘galloping’ det-
onations, the physical mechanism is encapsulated solely
within the local frontal dynamics, including those of in-
duction, reaction, and expansion of gases.

C. Shocks, Speeds, Dissipation, and Scaling

In Chapman-Jouguet theory, detonation wave speed is
directly related to the heat release associated with the
wave[l?;]7 provided a constant upstream state. However,
in the RDE, wave speed is a misleading metric. Be-
cause the detonation physics cannot be decoupled from
the global gain dynamics, the measured wave speed is a
property of the system, not only of the detonation wave
front. To exemplify this, we refer to experimental studies
[22] where decidedly shallow-fronted pulses exist in RDE
chambers traveling at speeds comparable to the acoustic
velocity of combustion products. However, if related to
the Chapman-Jouguet speed of detonation for standard
conditions, these speeds are of the same order. The phys-
ical difference in these scenarios is the pre-shock state. In
the RDE, the properties of the fluid ingested by the wave
are significantly higher temperature and pressure than a
1-dimensional detonation propagating through standard
conditions. If the upstream state of a detonation wave in-
creases in temperature and pressure (or in the RDE ana-
log system, an increase in u), less heat release is required
to attain the Chapman-Jouguet condition for detonation
formation [14].

In the RDE analog, this can be made explicit by ex-
amining the interplay between the Rankine-Hugoniot re-
lationship for the shock jump conditions and the source
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terms of the model. Because the Rankine-Hugoniot re-
lationship is exclusively a function of the pre- and post-
shock states and the flux of the medium, the jump con-
dition for the RDE analog remains unchanged from that
of Majda’s analog. This relationship[46] is given by

D (ur, —ur) = (f (ur) — f (ur)) =0, (10)

where D is the speed of the shock, f(-) is the Burgers’
flux function f(u) = u?/2, and the subscripts (), and
(-) g refer to the ‘left” and ‘right’ (or burnt and unburnt
for a right-running wave) states, respectively. For a heat
release ¢, the state analogous to the upper Chapman-
Jouguet point for a perfect gas is given by:

f(w§?) = f(ur)

uf" —(up+q)’

D¢ = (11)

where the superscript (~)C‘] denotes the upper Chapman-
Jouguet point. If the unburnt state is set to ug = 0, the
detonation velocity simply becomes D¢’ = 2¢. These re-
lations hold at the locality of the discontinuity. However,
outside of this locality there exist dynamics as prescribed
by the source terms of Egs. 1-2 and u(z,t) is time vary-
ing. In general, no variable on the right hand side of
Eq. 11 is constant. In the RDE analog, a high wave
speed could be the effect of either a high heat release (q)
or high pre-shock state (up), making the denominator
of Eq. 11 small. In some cases, it is possible to exceed
the Doy = 2q speed benchmark by simply raising the
pre-shock state, giving the illusion of an overdriven deto-
nation. Both the heat release and the pre-shock state are
subject to the dynamics of the right hand sides of Eqgs. 1-
2: the heat release pre-shock is given by (1 — A) ¢, where
A evolves according to injection and combustion models,
and u (x,t) evolves according to global input/output en-
ergy balances. Wave speed as a comparative metric is
therefore misleading without detailed knowledge of the
underlying physical scales of a particular system.

Small changes in the slow dynamics have dramatic ef-
fects on wave behavior. We demonstrate this behavior in
Figs. 12 and 13 by changing the dissipation coefficient
€ and the domain length. Changing e changes the time
scale associated with returning u(z,t) to its base state.
Changing the domain length changes the round-trip time
of the detonation wave, and therefore the overall balance
of time scales. In these figures, the presented figure of
merit is (twice) the mean value of the Burgers’ flux in
the domain; u2. This metric is chosen as it gives an in-
dication of total energy present in the domain.

In Fig. 12, displayed are several modeled systems with
parameters as listed in Table IT with u, = 0.65. In (a),
these single-wave branches are displayed alongside the
deflagration branch for the system. As the dissipation
coefficient is reduced, the traveling wave branches merge
with the deflagration branch: there is no discernible dif-
ference in u2. With increasing u2, the time scale associ-
ated with the kinetics becomes increasingly fast, meaning
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FIG. 12. In (a), u? is displayed for both the deflagration and single-wave solution branches for varying domain lengths as
a function of the dissipation coefficient. The percent difference over the deflagration branch (taken as the magnitude of the
red arrow in (a) normalized by the value of the deflagration branch at that location) is shown in (b). In the limit of weakly
dissipative rotating detonation mode, the traveling wave branches merge with the deflagration branch.

kinetics are promoted in the entirety of the domain. The
percent difference of u2 between the traveling wave and
deflagration branches is displayed in (b). The domain
lengths (L = 0.727 and L = 2.167) were empirically de-
termined to be the shortest and longest (respectively)
domain lengths to support a single traveling wave for the
chosen model parameters. For the shortest round-trip
distance (domain length of L = 0.7827), u?2 is the highest,
but there is a negligible difference between the attained
value and that of a planar deflagration. For the longest
round-trip distance (domain length of L = 2.167), u? can
attain the lowest value of the displayed systems, but the
magnitude of u? is nearly 70% higher than that of the
planar deflagration.

The curves associated with traveling waves in Fig. 12
terminate for increasing e. At the terminus marks the
condition where dissipation now is the dominant physi-
cal process in the chamber - beyond this point, the wave
is no longer in communication with its tail and it loses
its mode-locking properties. This is shown in Fig. 13.
The traveling wave profile for L = 2.16m and ¢ = 0.76
(corresponding to the blue diamond marker in Fig. 12)
is plotted along with the associated planar deflagration
front. This wave profile marks the point where its period
exactly equals the time required to dissipate its tail to
the rest state. To contrast the properties of this wave, a

weak wave (corresponding to the red diamond marker in
Fig. 12) is additionally plotted. The weaker wave trav-
els at 50% of the Chapman-Jouguet speed of the system
while the stronger wave travels at 78% of this bench-
mark speed. Although the base-to-peak amplitudes of
the stronger wave is approximately 14 times greater than
that of the weaker wave, their wave speeds are of the same
order.

VI. CONCLUSION

Rotating detonation waves exhibit a remarkable set of
properties, including mode-locking and modulation. In
examining the kinematic traces of the detonation waves,
they are observed to undergo nonlinear interactions char-
acteristic of solitons, including phase shifting and the ex-
changing of amplitude. The canonical solitonic struc-
ture of nonlinear waves is held together by the balance
of nonlinearity and dispersion, subject to either Hamilto-
nian dynamics (the Korteweg-de Vries equation [73], for
example) or local gain-loss dynamics (passively mode-
locked lasers [74], for example). Unlike solitons of either
Hamiltonian or canonical driven-dissipative systems, ro-
tating detonation waves are held together through global
gain dynamics, where multi-scale physics associated with
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FIG. 13. Two traveling wave profiles corresponding to the dia-
mond markers in Fig. 12. In the limit of large dissipation, the
detonation wave beginning and end states are exactly equal
to the magnitude of the deflagration branch. Implied is a
loss of mode-locking properties, since the pulse is now iso-
lated from its environment. The displayed weak wave has a
negligible difference in u? compared to that of the associated
deflagration state.

the unit processes of injection and mixing, combustion,
exhaust, and wave propagation are all coupled and non-
linearly interact.

The rotating detonation analog system has been shown
to adequately model these unit processes and their as-
sociated time scales. The model is successful in repro-
ducing the solitonic structures and behaviors seen in ex-
periments. Furthermore, we conclude that the behavior
stemming from these multi-scale physics is fundamental
to the rotating detonation engine. With this study, we
numerically evaluate linear stability of modeled rotating
detonation waves. We find that the steadily propagating
pulse train undergoes a Hopf bifurcation to time-periodic
modulation - this bifurcation to modulation we term the
fundamental instability of rotating detonation waves, as
this is the bifurcation from which transient phenomena
originate.
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Appendix A: Continuation Formulation and Hopf
Constraints

The continuation software pdeZ2path uses the finite ele-
ment method to analyze partial differential equations of
the form [68]

ou
& =-G (%M) (Al)
Gu,p)==-V-(c®@Vu)+au—-b@Vu—f (A2)

where u is a function of space and time, p is a vector of
parameters, and the variables a,b,c correspond to the lin-
ear, advection, and diffusion tensors, and f is the nonlin-
earity. In the finite element formulation on a discretized
domain, this reads as:

Mi = =G (u, p) (A3)

where M is the mass matrix, K is the stiffness matrix
(diffusion term), and M f is the nonlinearity. The model
exists on a periodic domain, meaning that a continuous
symmetry exists that must be eliminated before attempt-
ing continuation. This is achieved by augmenting the
system with an additional bifurcation parameter, v, cor-
responding to velocity, such that this imposed speed ex-
actly offsets the motion of the waves [69].
Therefore, the model system 8-9 is recast as:

= nK —vK, 0 AN —%Kgcu2
o 0 oK —vK, A 0
) (o S
0 M) \ k(=X exp (“T) = T (azan)

(A5)

The continuous symmetry associated with the peri-
odic boundaries has been removed by the addition of this
phase constraint. We use wave profiles from the direct
numerical simulations from Fig. 6 to initialize the trav-
eling wave branches for continuation.

To compute time-periodic orbits along branches ema-
nating from a detected Hopf bifurcation, an additional
constraint must be imposed to fix the translational in-
variance in time [69]. Here, the imposed velocity of Eq.
A5 is redefined to be the average velocity over the period
of oscillation of the Hopf orbit. By defining a reference
profile (the steady traveling wave profile, for example),
the profile at each time slice can be compared to this
reference, producing a deviation of traveling wave speed.
Over one period of modulation, the average of these de-
viations from the reference profile are forced to be zero.
Thus, time-periodicity is enforced and the translational
invariance (in time) is fixed with respect to a reference
profile.
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