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ABSTRACT 

We present a new generalized Langevin equation (GLE) of motion that governs exactly the time 

evolution of phase-space observables in finite open systems described by classical Hamiltonians 

with explicitly time-dependent potentials. This formalism is based on the Mori-Zwanzig 

projection operator (PO) method with a time-independent Zwanzig PO within a Heisenberg 

(Lagrangian) picture and reduced description of Hamiltonian systems in terms of canonical 

relevant and irrelevant coordinates. We demonstrate that, similarly to closed systems, GLE 

dynamics in Hamiltonian systems in the presence of time-dependent potentials is determined by 

conservative, dissipative memory, and projected force fields, and that the memory functions 

relate to the projected force, which is a two-time process, in a way that is reminiscent of the 

equilibrium second fluctuation-dissipation relation. We further show that, in the most general 

case, the memory kernel depends on the relevant momentum gradients of the (Boltzmann) 

entropy of the irrelevant subsystem. Using two Zwanzig operators which are, respectively, 

functionals of the canonical and generalized canonical probability densities, we then derive what 

we call canonical and generalized canonical GLEs. Further, we can formulate the particle-based, 

coarse-grained (CG) GLE dynamics by transitioning to the Jacobi coordinates that corresponds 

to a particle set partitioning of the Hamiltonian system. The obtained canonical CG GLE of 

motion for the relevant momenta is a generalization of the CG equation of motion known for 

closed systems. Also, using a Markovian approximation of the canonical CG GLE, we can 

extend the dissipative particle dynamics (DPD) equation to open systems. A distinctive feature 

of our extension is a use of explicitly time-dependent frictions, which reflect the changes in the 

dissipation rate caused by time-dependent coupling to an external bath. Our GLE formalism and 

workflow constitute a general and viable framework that can be readily used as a starting point 

to rigorously formulate microscopically informed CG treatments for a variety of phenomena in 

externally forced systems far from equilibrium. 
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I. INTRODUCTION 

The projection operator (PO) formalism [1-14] remains one of the most powerful tools 

in statistical physics that prescribes how first-order equations of motion (e.g., Hamiltonian 

equations for observables or Liouville equations for probability densities) can be mapped onto 

reduced-dimensionality equations of motion. In statistical physics, the notion of POs was put 

forward by Nakajima [1] and then formalized by Mori and Zwanzig who introduced, in 

particular, the specific operators suitable to formulate a reduced description for classical and 

quantal systems. For this reason, PO theory is often referred to as the Mori-Zwanzig (MZ) 

theory. In general, the MZ formalism can be used within a Heisenberg (or Lagrangian) picture 

[15,16] to derive the equations of motion for the observables. These equations commonly appear 

in a time-convolution (generalized Langevin) form. Equally, the MZ method can be used within 

a Schrödinger (Eulerian) picture [9,14] to obtain the equations of motion for the probability 

densities (e.g., Fokker-Plank [9] and master [17] equations).  

The MZ approach is widely used as a rigorous theoretical basis for treating 

nonequilibrium phenomena in many fields: transport theories [6,18-20], hydrodynamics and 

theories of liquids [15,21-24], theories of glasses [25], response theories [26,27], theories of 

nonlinear constitutive relations [6], damping theory [28], polymer physics [29-31], plasma 

physics [32], active matter [33], time-series analysis [34], classical density-functional theory 

[35,36], mode-coupling theory [22-25,37], correlation functions [6,38], relaxation phenomena 

[12], (active) probe dynamics [39], theory of turbulence [40], and the physics of phase 

transitions [41]. An important, and relatively recent, application of the MZ formalism is a 
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bottom-up particle-based, coarse-grained (CG) treatment where microscopic (Hamiltonian) 

systems are replaced with dynamically equivalent systems of CG particles [42,43] representing 

particle sets (clusters) in the Hamiltonian systems. Published applications have demonstrated 

that the time evolution of the translational degrees of freedom (d.f.) of the particle clusters 

composing a closed Hamiltonian system can be described by a (CG) generalized Langevin 

equation (GLE) of motion [31,44-53]. These works provided clear microscopic foundations for 

the dissipative particle dynamics (DPD) method, showing that the DPD equations arise as a 

Markovian case of CG GLE dynamics [31,48,51,54,55]. Applications of the MZ formalism 

encompass the bottom-up principles of a variety of particle-based CG models including hybrid-

resolution models [51,56].  

Open classical systems are usually understood as small Hamiltonian systems (i.e. with 

a finite number of d.f.) in contact with an external system (bath) [57]. The open classical systems 

are permeable to energy and not to matter and are always in nonequilibrium. The Hamiltonians 

can be explicitly time-dependent for open systems. Although the generalizations of the MZ 

formalism toward systems with time-dependent Hamiltonians have been topics of much 

research [58-60], the bottom-up particle-based CG GLE is not formulated for these systems. 

This is a consequence of many challenges faced by the MZ formalism to obtain practically useful 

CG equations of motion from time-dependent Hamiltonians. Those equations, however, are 

relevant for many scenarios which include soft-matter systems subjected to time-dependent 

external driving forces [39,61], systems of charged particles in external time-varying 

electromagnetic fields [62], and nonlinear response [15,27,63,64]. The formulation of GLE 
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dynamics for open systems is equivalent to the derivation of the second fluctuation-dissipation 

relation (FDR) for these systems [27,38]. The equilibrium FDRs can be rigorously derived 

within linear response theory [65]. Their validity in off-equilibrium situations, however, has 

been extensively discussed in the literature [66]. Consequently, the top-down applications of the 

equilibrium GLE and DPD models (in which the dissipative and projected forces are explicitly 

related via the equilibrium second FDR [67]) to states beyond equilibrium [68,69] are probing 

the boundaries of applicability of linear response theory [27,66]. Furthermore, the equilibrium 

GLE has to be properly extended with new terms to deal with the nonequilibrium. For example, 

the nonequilibrium conditions give rise to transport processes driven by the additional forces 

(transport terms) [9,50] which are required in the extended GLE. The constant energy variant of 

DPD (DPD-E method) suitable to treat energy transport in systems with a temperature gradient 

is an example of a top-down transport extension of the equilibrium GLE of motion [55,70,71]. 

In this work, we address the need for a framework to derive practical CG GLEs that 

rigorously project dynamics in the open classical systems with time-dependent Hamiltonians far 

from equilibrium. On the methodological side, the existence of such a framework is highly 

valued because: (1) it provides the structure of CG equations of motion which may be difficult, 

if not impossible, to guess from top-down considerations; (2) it clearly indicates the crucial 

points where approximations are required and provides the basis to apply these approximations 

systematically and consistently; and (3) it serves as a starting point to develop strategies for 

systematic parameterization of CG models which are tailored to study systems and states of 

interest. We limit ourselves to open systems which are described by Hamiltonians in the 
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presence of a time-dependent potential (i.e. the external force is the potential force). The reason 

for such a limitation is that Hamiltonians with more general system-bath coupling involving 

particle momenta give rise to a CG GLE with a far more complex memory term which cannot 

be reduced to a practical form. Our derivation follows the MZ formalism within a Heisenberg 

picture, which can be naturally extended to handle the systems with time-dependent 

Hamiltonians. The MZ formalism with time-dependent POs has been applied in the past to treat 

open quantal and classical systems far from equilibrium [38,59,60], as well as non-Hamiltonian 

systems [72]. In this paper, we show that GLE for the open Hamiltonian systems can be 

formulated using a time-independent Zwanzig PO, which simplifies the calculus and allows us 

to take the formalism to the point of obtaining practical, important CG equations of motion. In 

the reminder of the Introduction, we review the necessary preliminaries of the PO and MZ 

methods for classical systems. 

The general problem addressed by the PO method in a Heisenberg picture for the open 

systems of interest is as follows. We consider an n-particle system with a phase space  ,r p 

, where the coordinates  
1

n

i i
r r


 ,  

1

n

i i
p p


  are the particle positions and momenta, 

respectively, and the following explicitly time-dependent Hamiltonian  

  
2

, ( , )
2

i

i i

p
H t u r t

m
     (1) 

where im  is the ith particle mass. The term ( , ) ( ) ( , )int extu r t u r u r t   includes the interparticle 

interaction potential ( )intu r  and the external time-dependent potential ( , )extu r t  which describes 

the coupling to external (potential) fields  ( ) ,ext r extF t u r t  . The systems with coordinates 
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p , r  coupled to external fields can be described by the Hamiltonian with a more general 

potential term ( , )extu t  when the corresponding external forces are momentum–dependent 

[9,15,28] (e.g. forces experienced by charged particles in a magnetic field). These systems are 

beyond the scope of the present work. We consider a sufficiently broad class of observables

  B   which are functions of   with no explicit time dependence (the Hamiltonian obviously 

does not belong to this class, but the coordinates of the centers of mass of particle sets, for 

example, do). The flow of the observables,  tB  , along the system’s phase space trajectory 

 Γ ,  t t tr p  initiated at 0t   in the state 0Γ  is determined by the Liouville equation 

[15,16,73]: 

  ,td
B iL t B

dt
    (2) 

with the p-Liouvillian operator   
Γ

( , ) , Γ,iL t H t    , where  
Γ

,   are Poisson brackets in the 

Γ  coordinates. We consider then the 2L  Hilbert space of the observables,   0O B  , 

equipped with the inner product 

      0 0 0 0; ,0G F GF d G F
 

      ,  (3) 

where the weighting function is the specified probability density  0 , t   at 0t  , which, in 

general, can be non-stationary. A reduced description of the system dynamics is achieved by 

introducing a relevant set of independent observables:   0 0

1

N

I
I

A A


  , 0A O , N n . The 

space   0

A AO B A  of the 2L  functions defined on 0A  is a subspace of the relevant 
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observables in O : 
AO O . The PO method in a Heisenberg picture prescribes how to 

decompose the Hamiltonian vector field  ,tiL t B  [Eq. (2)] into the relevant  A AiL t B O  

and orthogonal (projected) ( )Q

AB t O  contributions:  

    A

d
B iL t B B t

dt
  Q  . (4) 

In terms of the inner product, the orthogonality property renders to 

 ( ); 0AB t B

Q  , (5) 

where A AB O  , which can be interpreted as a lack of linear correlation between the projected 

force ( )B tQ  and the relevant dynamics in the   ensemble. This fact constitutes one of the 

major motivations to finding the decomposition in Eq. (4), as the ( )B tQ  term can be treated 

statistically with an equivalent stochastic process, which has a vanishing linear correlation with 

the relevant dynamics. An assumption that the A  coordinates are “slow” is often made [9,13], 

however, it is not a necessary prerequisite for the orthogonality condition in Eq. (5). For the 

slow A , the relevant and irrelevant dynamics decorrelate on characteristic time scales of the A  

dynamics, which is advantageous when transitioning to a stochastic treatment of the projected 

force [31]. 

The PO 0P , 02 0P P , is defined on O  with the image in AO . Using a Heisenberg 

picture, we consider the projection 0 tBP  of the flow  t tB B  , which belongs to AO . The 

operator 0P  has a representation in a certain projection (though not necessarily complete) basis 

 i  in AO  [5,9,74]:  
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  0 0;t t

i i

i

B B A


 P   (6) 

where  i  is the dual basis: ;i j ij
   . The PO 0P  in Eq. (6) has no explicit time-

dependence if the basis  i  and hence  i  are stationary. In this case, the time evolution of 

the projection is carried out solely by tB [48,50]. In fact, the difference between the POs (in a 

Heisenberg picture), which has been introduced in the past, can be expressed in terms of the 

different basis sets used in the representation in Eq. (6) [38]. Furthermore, for a similar reason, 

not all POs are equivalent and, in particular, not all operators can be used to obtain the exact 

equations of motion for an arbitrary observable  B  , as per Eq. (4). For example, the Mori 

operator [4] has a representation in the basis   0

i A  , which is incomplete in 
AO  and results 

in  AiL t B  being a linear functional of A  (the so-called a-linear GLE [5]). Other operators are 

explicitly time-dependent (e.g., from Robertson [10-12], Kawasaki and Glunton [6], Ochiai 

[75], Willis and Picard [76], Grabert [7,13], McPhie et al. [59], Koide [19], Latz [77], Xing and 

Kim [72], and Meyer et al. [38]), as those operators can be represented effectively on an 

explicitly time-dependent basis  i  [59], which somewhat complicates the resulting 

formalism. In this light, the Zwanzig PO (cf. Eq. (9.46) in Ref. [9]) seems to offer several 

important advantages. For the Zwanzig projection, the basis  i  in Eq. (6) is complete in AO  

[74]; consequently, the reduced equations of the motion in Eq. (4) are an exact representation 

of the Hamiltonian equations of motion in Eq. (2) [9,74,78]. For open and non-stationary 

systems inclusively, the Zwanzig PO can be made formally time-independent by using a 
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representation with a stationary basis  i  [Eq. (6), also see Eq. (21)] [50]. Finally, the 

application of the Zwanzig PO is facilitated if 0A  is chosen to be a subset of the new canonical 

coordinates  0 0,A   with a curvilinear mapping  0 0 0,g A    where 0  is a canonical 

complement [48,50,51]. 

In this paper, we follow the previously described formalism to obtain the GLE for open 

CG systems. We start in Sec. II by discussing the Liouville propagator for open systems and 

introduce particle-based coarse-graining using the Jacobi coordinates. In Sec. III, following the 

formal PO calculus used in Refs. [13,20,49,79-82], which is more transparent for open systems 

compared to the Dyson decomposition [15,74] or Kawasaki identity [5], we obtain the time-

convolution decomposition of the dynamics in open Hamiltonian systems. In Sec. IV, we 

describe an explicitly time-independent Zwanzig PO in a Heisenberg picture. In Sec. V, we 

pursue this development using the general canonical coordinates, a subset of which is considered 

the relevant observables, and the Zwanzig PO. We derive the most general GLE governing the 

nonequilibrium time evolution of the microscopic observables in open far-from-equilibrium 

systems. In the new GLE, the dissipative term is related to the projected term by the second 

FDR. Additionally, the dissipative term is determined by the relevant momentum gradients of 

the Boltzmann entropy of the irrelevant subsystem. Finally in this section, utilizing two Zwanzig 

operators which are, respectively, functionals of the canonical and generalized canonical 

probability densities, we derive what we refer to as canonical and generalized canonical GLEs. 

In Sec VI, we formulate CG GLE that describes the particle-based CG dynamics in the Jacobi 
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coordinates, which, for the canonical Zwanzig PO and closed systems, lead to known CG 

equations of motion. The Markovian approximation allows us to derive a DPD-type equation of 

motion for open systems. Finally, conclusions and outlook are given in Sec VII. 

II. LIOUVILLE PROPAGATOR FOR OPEN SYSTEMS AND PARTICLE-

BASED COARSE-GRAINING  

The solution to the Liouville Eq. (2) can be written formally as [15,16,63,73,83] 

    0 0 Γ,Γ ( )t

RB U t B . (7) 

The Liouville p-propagator ),(0RU t , which we need to determine, satisfies the following 

operator equation [16]: 

 0(0, ) (0, ) ( , )R RU t U t iL t
t


 


. (8) 

Indeed, applying Eq. (8) to  ΓtB , we recover the Liouville equation in Eq. (2) as 

      0 0Γ (0, ) ( , ) Γ ( , ) Γtt t

R

d
B U t iL t B iL t B

dt
    . (9) 

The formal iterative solution of Eq. (8) is the right time-ordered exponential ( Re ): 

 
 0

1 1
0

,
0 0 0

1 2 2 1
0 0 0

0

(0, ) ( , ) ( , ) ( , )

t

nt s s dsiL s

R n n R

n

U t ds ds ds iL s iL s iL s e







       ,  (10) 

1 2 nt s s s    . Provided the p-Liouvillian is explicitly time-independent, 

0 0( , ) ( )iL t iL    (e.g., the system is closed), we have  

 
0( )(0, ) iL t

RU t e   . (11)  

We transition to a reduced description by combining the canonical relevant (CG) 

coordinates  ,A R P  and their canonical irrelevant complement  ,r p    with, in general, 

a curvilinear coordinate mapping  ,g A   . A specific choice of coordinates  ,A   is 
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prescribed by particle-based coarse-graining [42,43] when the system is partitioned into N non-

overlapping particle clusters with masses  
1

N

I I
M


, I ii I

M m


  and the coordinates 

 
1

N

I I
R R


 ,  

1

N

I I
P P


  describe translational d.f. of the clusters. A most common and 

convenient choice of  ,R P  is the center of mass (c.m.) positions of the clusters and their 

translational momenta, respectively: 

    ,
i ii I

I I i

i II

m r
R r P p p

M





 


 . (12) 

The generalized forces  
1

N

I I
F F


 ,  

  ,I I i

i I

F r t P f


   ,  (13) 

which are explicitly time-dependent, are easily computable linear mappings of the particle 

forces i if p . The canonical coordinates of which the c.m. coordinates are a subset are the 

Jacobi coordinates, which for the Ith set are 

 
1

| |

|

, 1

|

,

,   , ,  k

k k

k

I

i ii i i I

i i k k

ii i i I

i I

m r
r r i i I k I

m

r R







 



 

   





   (14) 

( I  denotes here a cardinality of set I ). Therefore,  
1

N

I I
r r  
 , where 

 , ,
kI i kr r i I k I    , can be chosen as the irrelevant canonical coordinates. Particle-based 

coarse-graining using the Jacobi coordinates is an example of the point transformation [84] 

(when the new position coordinates are functions of the old position coordinates only). The point 

transformation  R r ,  r r  can always be inverted as  ,r R r . For the point transformation, 
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the complete set of conjugate momenta  ,P p  is [84]    
1

, ,P p R r r p 



   . 

Furthermore, the Jacobi transformation     ,R r r r  is linear and hence the transformation to 

Jacobi momenta     ,P p p p  is also linear. For a canonical transformation, the Jacobian 

 , 1A     and hence the volume measure is invariant: 

 d dAd dRdPdr dp     . (15) 

For linear  R r ,  r r  such as the Jacobi coordinates, the mass matrix of the system in the 

new coordinates is not a function of the old coordinates. If we assume that, additionally, the 

mass matrix associated with the relevant coordinates is diagonal,  ˆ
I IJM M  , which is true 

for the Jacobi coordinates, then the Hamiltonian in Eq. (1) in the new coordinates becomes 

    
2

11
ˆ, , , ,

2 2

TI

I I

P
H A t p m p u R r t

M
       , (16) 

where m̂  is the irrelevant mass matrix and     , , , ,u R r t u r R r t  . The new  , ,H A t  is 

the canonical Hamiltonian which can be interpreted as describing the evolution of the c.m. 

coordinates of the particle clusters immersed into a sea of irrelevant d.f. in an external potential 

field. The  , ,H A t  does not contain terms coupling the P  and   coordinates. As we discuss, 

this property leads to far simpler and more standard GLEs.  
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III. TIME-CONVOLUTION DECOMPOSITION OF THE LIOUVILLE 

PROPAGATOR 

Using the PO formalism, the Liouville dynamics [Eq. (7)] can be cast exactly into the 

reduced-dimensionality dynamics [Eq. (4)], in which the term  AiL t B  has time-convolution 

memory integrals [78]. This is achieved in two steps. First, Eq. (9) is transformed to a time-

convolution equation (TCE), which retains the same mathematical structure for any (including 

time-dependent) PO 0P  and the complementary projector 
0 0I Q P  defined on 

  0O B  . To obtain a general TCE, we use the formal operator approach [20,49,79-82] to 

perform a time-convolution decomposition of the dynamics in a Heisenberg picture. This 

approach works for generic (including time-dependent) POs and time-dependent Hamiltonians 

[79], so, for open systems, it seems advantageous compared to a Dyson decomposition or 

Kawasaki identity [5]. We begin with the two identities derived from Eq. (8):  

 

 

 

0 0

0 0 0 0

0

0

(0, ) (0, ) ( , )

(0, ) (0, ) ( , )

R R

R R

t

t

U t U t iL t

U t U t iL t


 










 

P Q

Q P Q Q

 . (17) 

The second line, which is obtained by operating on the first line with 
0Q  on the right and hence 

describes the irrelevant (projected) dynamics, is a nonhomogeneous linear operator equation 

with respect to 0(0, )RU t Q . Substituting its formal solution  

 
   00

0

0 0

0
,

0
,

0 0 0

0

0(0, ) (0, ) ( , )

t t

ds iL s ds iL s

R R R R

t

U t e U L ed i



 



 


 

 
Q Q

Q Q P Q   (18) 
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into the first line of Eq. (17), while transforming 
   0

0

00

0

0, ,
0 0

t t

dsiL s ds iL s

R Re e
 

 Q Q

Q Q  and then 

applying the resultant equation on  0B  , we obtain the following TCE: 

        000 0

0

0(0, ) ( , ) ( ,0, ) ( , ,)

t

t

R R

d
tU dt iL tB B B t B t

d
iL

t
t U t         

Q QP P . (19) 

In this equation, the first term in the right-hand side is the conservative force  CB t , the second 

term is the dissipative force  DB t , and the projected force is 

  
 

 
00

0 0 0
,

0(, , )
ds iL s

RB t L t Be i






  
Q

Q Q  . (20) 

Note, that in addition to being a function of the past time  , the force  ,B tQ
 is an explicit 

function of the present time t  as a result of the explicit time-dependence of 0( , )iL t . The force 

 ,B tQ
 can be interpreted as the projected force of the system in the configuration  , t , 

that is, the system in the (past) state   but where the external force is taken at the (present) 

time moment t  (cf. Sec. 7.7 in [15]). Finally we note that the TCE in Eq. (19) holds for the 

time-dependent 0P , 
0Q . In this case, the time ordering of the projection operations is taken 

care of by the exponent Re in Eq. (20). 

IV. ZWANZIG PROJECTION OPERATOR  

In the second stage of the GLE derivation, we have to specify the PO. Our theory is 

based on a Zwanzig PO (cf. Eq. (9.46) in Ref. [9]) [31,44,47,49-51] in a Heisenberg picture 



16 

 

 

[15,16,74]. The corresponding Zwanzig projection of the flow  tB   is the following 

thermodynamic conditional expectation given an initial 0A : 

    
    

  0

0 0 0 0

0

0 0 0 0;

( ,0)

( ,0)

t
cond

t t

A

d A A B
B B

d A A

 

 

    
   

   




P  , (21) 

with integration over a given probability density ( , )t   taken at 0t  . The ensemble average 

is given by the unconditional thermodynamic expectation 

    0 0( ,0)t tB d B


      . (22) 

It is convenient to work in terms of the conditional probability density 

  
 

  

,
| ,

( , )

t
A t

d t A A




 


 

   
 , (23) 

which in coordinates  ,g A    is denoted as 

  
  

  

, ,
,

, ,
A

g A t
t

d g A t

 
 

 



  (24) 

where we to use Eq. (15). The Zwanzig projection in Eq. (21) then becomes  

      0

0 0 0 ,0t t

A
B d B    P  . (25) 

The PO 0P  is explicitly time-independent and the time-dependence of the projection is carried 

out solely by the time-evolution of  tB  . By expanding integral in Eq. (25) into the complete 

basis set   0

i A , we can obtain the representation in Eq. (6). The majority of time-dependent 

POs that have been introduced in the past are functionals of  , t   which is allowed to evolve 
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in time [13,17]. Since the projections are linear functionals of both the observable and  , t  , 

the projection basis  i  in Eq. (6), in general, is explicitly time-dependent. 

V. GLE FOR A GENERAL ( , )t   

A CG GLE for open systems is derived from the TCE in Eq. (19) using the explicit 

expression for a Zwanzig PO, Eqs. (21) and (25). The GLE force field is the sum of the 

conservative, dissipative, and projected force field terms: 

             ,t C D GLE td
B B t B t B t iL t B

dt
     Q  . (26) 

The relevant contribution [Eq. (4)] is      C D

AiL t B B t B t  . In Eq. (26), we introduced the 

operator functional   ,GLEiL t  to compactly denote the GLE force field. This notation reflects 

that the GLE is obtained for the PO using   and hence the GLE force field is a (linear) 

functional of  . The identicality of the Liouville and GLE dynamics can then be formulated as  

     ,GLEiL t iL t  . (27) 

The mathematical form of the GLE is uniquely determined by the   and hence we 

may refer to the GLE by the name of the ensemble which the   represents (e.g. “equilibrium 

GLE” for equilibrium probability density eq ). Following Zwanzig [3], we can use the 

equivalence of microscopic and GLE dynamics [Eq. (27)], and hence the independence of the 

GLE dynamics on  , to derive additional forces (transport terms) which are introduced to the 

equilibrium GLE to account for the transport of the averages of dynamical variables, ( )
eq

B t


. 
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Let us briefly outline this approach: we represent the quasi-equilibrium   as 
eq   

where   is a small perturbation; we can perturbatively expand the GLEiL  as  

         , , , ( )GLE GLE GLE

eq eqiL t iL t d iL t o


    


           ; (28) 

it then follows from the equivalence in Eq. (27) that the terms linear in   are the additional 

forces necessary to add to  ,GLE

eqiL t    to account for the transport phenomena in the quasi-

equilibrium [39]. The transport equations for ( )
eq

B t


 are then obtained by averaging Eq. (26) 

over eq . This approach was used in Ref. [41] to derive the constant energy variant of the GLE.  

In the remainder of this section, we derive expressions defining  CB t  and  DB t  in 

terms of conditional expectations 
cond

A
  and then write down the GLE. The derivation of  DB t  

holds for the canonical transformation  ,g A   , which does not lead to the terms in 

 , ,H A t , which couple P  and   [see the discussion of Eq. (16)]. The derivation for a general 

 , ,H A t  is possible; however, the resulting GLE ought to adopt a more complex and less 

familiar form.  

1. Conservative term 

The conservative term  CB t  can be derived easily using the rule in Eq. (7), which for 

the relevant projection 0( )t tA A   of trajectory t  becomes 0(0, )t

RA U t A . Thus, we have  

      
0

0 0 0 0 0

;
(0, ) ) ( , )( ,

t

cond
C

A A
RU t iB t B t BL iLt

 
     P  . (29) 
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where, for clarity, in this equation, we use the previous, more explicit notation 0( , )iL t .  

If    B A   , then the conservative term  

    0
0

0

;

ˆ ,
t

cond
C

N A A A
A t H t

 
     , (30) 

where ˆ
N  is the 2 2N N  simplectic matrix. For a closed system in the canonical equilibrium 

   ,0 c    ,  

  
  BH k T

c

e

Z


 

   , (31) 

we obtain  

   ˆ ( )t

C rel t

N A
A t H A    . (32) 

Here, the relevant Hamiltonian  

  0( ) ln ( )
c

rel h

B AH A k T A A


       (33) 

is the restricted Helmholtz free energy where h

A  is a normalizing factor of dimensions of the 

volume element dA  to cancel the dimensions of the average (e.g. for identical CG particles and 

the Jacobi coordinates, 3 !h N

A h N  ). Equation (32) justifies calling the term CB  the 

conservative force. For coarse-graining using the Jacobi coordinates and similar linear point 

coordinate transformations [see discussion of Eq. (16)], we have  

  
2

( , )
2

rel irrI

PMF id

I I

P
H P R W R F

M
   , (34) 

where    ,1ln Bu R r k T

PMF BW R k T V dr e 

 

    is the all-particle potential of mean force (PMF) 

and a constant 
 1ˆ 23( ) 1ln

T
Bp m p k Tirr n N

id BF k T h g V dp e   

  

     is the ideal gas contribution from 
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the irrelevant momenta (here, V dr    is the volume and g  is the degeneracy factor for the 

irrelevant d.f.). For open systems, the term corresponding to  PMFW R  in Eq. (34) cannot be 

introduced. More generally,  ,relH A t , which is used to calculate a conservative term similar 

to Eq. (32) for closed systems, cannot be used in open systems. As we discuss in Sec. V.3, for 

GLE describing the time evolution of A , the potential  ,0relH A  can still be introduced if the 

GLE is derived using a canonical PO, i.e., in which 
 ,01( ,0) BH k T

Z e
   . However, in this 

case, the potential relH  can be related to CA  only at 0t   and, additionally, it appears in the 

dissipative term  DB t . 

2. Dissipative term 

The derivation of the dissipative term  DB t  in the GLE is more cumbersome but 

essentially follows the derivation for closed systems in a canonical ensemble [50]. During the 

course of the derivation, the anti-Hermitian property of iL  must be replaced with  

  ; ; ; ln 0iLO B O iLB O BiL
  

    , (35) 

(0) ( ,0)   , which is obtained from integration by parts. Below, for a clarity, we use a vector 

component notation sB  to indicate that the observable  sB B  may be a set of observables 

themselves. First, we express the memory term  DB t  in the TCE [Eq. (19)] in the following 

form: 

      0;
0

) ,(0, ( )

t
cond

R

D

A
B Ut d Bt L t ti


    

Q
, (36) 
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where following the definition of 0P  in Eq. (21), we express the projection  0 tiL B QP  as 

the conditional expectation. We expand 

      0

0

;
( , ,)

cond

i iA
i

i B t b tL t A


   Q Q
  (37) 

using the functional basis   0

1
i

i
A




, which is orthonormal, 

    0 0

i j ijA A


   , (38) 

and complete [see Eq. (6)]. The expansion coefficients are  

              0

0 0

;
, , , ;

cond

i i iA
b t iL t B t A iL t B t A

 

      Q Q Q
.  (39) 

Integrating by parts in the thermodynamic average in the right-hand side of Eq. (39) [see Eq. 

(35)], we obtain 

            , ln 0, ,i i ib tt tt B t iL B iL
 

       Q Q Q   (40) 

 (for clarity, we have eliminated the notation of the explicit dependence on 0A  in the averaging).  

For an equilibrium  , the last term in Eqs. (35) and (40) vanishes and hence  iL t  is anti-

Hermitian. We recall that in the canonical coordinates  ,A  , the canonical form of  iL t  is 

preserved: 

         0 0 0
0

0 0 0, , , ,0i i i iR P P R
iL t H t H t H t   


          . (41) 

If we assume that  ,H t  does not contain terms coupling P  to the   coordinates [see 

discussion of Eqs. (1) and (16)], then the second term in Eq. (41) is the CG phase-space 

observable and thus is orthogonal to  ,B tQ
: 



22 

 

 

      0 0

0 0, , 0iP R
B t H t A


      Q .  (42) 

Therefore, we are able to transform the expansion in Eq. (37) [with 
ibQ  from Eq. (39)] into 

 

   

                

0

0

;

0 0 0 00

,

, , , ln0

cond

A

i i iR P
i

iL B t

B t H A A i

t

B tt L At







   



 

 

      
 

Q

Q Q

, (43) 

where we assume the averaging is over the tilde coordinates  0 0,A  . The basis  i  is 

complete:  

    
 

 

0 0

0

0 0

0

i i

i

A A
A A

A A



 







 .  (44) 

We note that    0 0 0A A A


    in Eq. (44) is a weighting function for the inner product 

in the 0A  subspace. After we perform the summation over i  in Eq. (43) using Eq. (44), we 

obtain 

 

   
     

 

       

 

0

0

0 0 0

; 0 0

0 0

0 0

, ,

,

, ln 0

0R Pcond

A

B t H A A

iL B t
A A

A A B t i

t

L

A

t

A

t










 

















    
 

 


 








Q

Q

Q

 . (45) 

 Next, in the first term of Eq. (45), making use of the known properties    0, ,B t B t Q QQ , 

   0 0

0 0 0 0

P P
A A A A      , and the Hermicity of 

0Q , 0 0; ;B B B B
 
Q QQ Q , we 

transform the transpose of Eq. (45) as  
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0 0

0

0 0

0

0

0 0 0 0

; 0 0

0 0

0 0

0 0 0 0 0 0

2
0 0

0 0 0 0

0 0

,

ln 0

, ,

,

,

,

, ,

T
T

T P Rcond

A

T

T
T

P R

T

R
T

P

A A B t H

iL B

A

t

t t
A A

A A B t iL

A A

A A A B t H

A A

A

t

A B t H

A A

t

t











 





 




 



  









 







     
 









      









  








 











Q

Q

Q

Q

Q

Q

Q

Q

       

 

0 0

0 0

0, ln
T

A A B t iL

A

t

A






 



 




Q

 

 (46) 

where the symbol   denotes the outer product. Finally, in the vector component notation 

 sB B , we introduce the memory tensor functions 

 

     

 

   

0

0
0

0 0 0 0

0

0 0

0 0

;

, ,
1

ˆ ( , , )

1
, ,

s R

sJ

B

cond

s R
A

B

A A B t H

t A
k A A

B

t

H
k

tt







 




 





    
 




     
 





Q

Q

Q

Q

  (47) 

 

We observe that in this equation, the force  0 ,
JR H t  Q  is the projected force from Eq. (20) 

for  0 0B P   [when 0

0 0( , )
R

HiL t P   ] : 
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00

0
0

,
0 0, ,

J

ds iL s

RJ R
F tet H






   
Q

Q Q   (48) 

taken at 0  . The memory function in Eq. (47) then adopts a more familiar form: 

   0

0

;

1
ˆ ( , , ) , (0, )

cond

sJ s J A
B

t A t F
k

tB


    Q Q  . (49) 

This equation is analogous to the equilibrium second FDR, but it holds for arbitrary out-

equilibrium states processes [38]. In terms of the memory function in Eq. (49) and the vector 

component notation, Eq. (46) becomes 

 
          

   

0 00

0

0 0 0

;

;

ˆ ˆ, , ,

0

, ,

, ( ) ln

J J

cond

Tcond
T T

s sJ B B sJP PA
J

s A

iL t B t t A S A k t A

B t iL t






     

 

      

 

 Q

Q

.  (50) 

Here, the potential  

          0 0 0 0ln ln ,0h h

B B A B AS A k A A k d A A


                (51) 

is the Boltzmann entropy of the irrelevant subsystem [31] where h

A  is the normalizing factor 

as in Eq. (33). This interpretation follows from the equality   0 01 AA A


      where 0

A  

is the volume of the microscopic phase space 0  associated with the macrostate A  and the fact 

that the corresponding number of irrelevant microstates is 0 h

A A AW    . Therefore, 

  lnB B AS A k W . Substituting Eq. (50) into Eq. (36), we finally obtain the general expression 

for the dissipative term: 
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0

;
ˆ ˆ, , , , , ln 0( )

J J

c

D

s

t T
T T

sJ B B sJ sP P
J

ond

A

B t

d t t A S A k t t A B t t iL  

  


      



            


Q

. (52) 

3. GLE and canonical GLE 

Putting Eqs. (29) and (52) into vector component notation, we obtain the following 

GLE:  

   

          

 

0

0

;

0
;

( )

ˆ ˆ, , , , , ln 0( )

,

t

J J

cond
t

s s
A A

t T
T T

sJ B B sJ s

c

P P
J

s

ond

A

d
B iL t B

dt

d t t A S A k t t A B t t iL

B t t

  







        


  

            




Q

Q

 

 (53) 

where the memory function is given by Eq. (47) and the projected force  ,sB tQ
 is given by 

Eq. (20) [see also Eq. (48)]. The less general but perhaps more practically useful GLE is obtained 

for B A , and choosing the  0  to be of the canonical form [compare to Eq. (31)], 

  
 ,0

,0
(0)

BH k T

c

e

Z


 

   . (54) 

From the definition of BS  in Eq. (51) and the definition of relH  in Eq. (33) where  ,0c   is 

used, we have the following relation 

    0 0

0 01
,0rel

BP P
S A H A

T
   .  (55) 
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Furthermore, the last term in the dissipative force [Eqs. (52) and (53)] vanishes. This leads to 

the following (canonical) CG GLE: 

 

   

        

0
0

0

;

0

ˆˆ ,

ˆ ˆ, , ,0 , , ,

t
c

J J

cond
t

s ss N A A A

t T
rel T T

sJ B sJ sP P
J

d
A e H t

dt

d t t A H A k T t t A A t t 



      


    

       
 

Q

  (56) 

( ˆ
sse  is the 2 2N N  single-entry matrix) with the memory tensor being scaled down by T   

   0

0

;

1
ˆ ( , , ) , (0, )

c

cond

sJ s J A
B

t A t F
k

tA
T 

    Q Q  . (57) 

It is interesting that although the system can be out of equilibrium, the notion for temperature 

can be still naturally introduced to the GLE. However, the use of temperature in Eq. (57) (which 

resembles the equilibrium second FDR) is rather superfluous and, in principle, can be 

eliminated: the canonical GLE dynamics is an exact map of the deterministic Hamiltonian 

dynamics and therefore does not rely on the notion of temperature.  

For systems weakly influenced by external fields or which are in quasi-equilibrium 

where there is a set   rel

lX  of relevant variables which evolve slowly, it is more appropriate 

to use the probability density of generalized canonical form 
 1 ( ) ( )

( , )
rel

B l ll
k t t X

gc t e



      [14], 

where 
 ( )

( ) ln
rel

l ll
t X

Bt k d e
     is the Massieu–Planck function. The gc  maximizes the 

Gibbs entropy functional [ ] ( , ) ln ( , )G BS k d t t       . The Gibbs entropy then is 

( ) ( ) ( ) ( )rel

G B l ll
S t t k t x t    , where      ,rel rel

l gc lx t d t X    . The conditional 

probability density is obtained following Eqs. (23) and (24):  
 1 ( , ) ( )

; ,
rel rel

B l ll
k A t t X

gc A t e


 
     



27 

 

 

with the conditional Massieu-Planck function  
 ( )

, ln
rel rel
l ll

t X

BA t k d e



    . The 

thermodynamic state of the irrelevant subsystem is described by the variables 

     ;, ,rel rel

l gc A lx A t d t X   ,    1, , ( )rel

l B lx A t k A t t     and their conjugates 

   , ( , )rel

l G lt S A t x A t    where the conditional Gibbs entropy is 

( , ) ( , ) ( ) ( , )rel

G B l ll
S A t A t k t x A t    . From Eq. (51), it follows 

            0 0 0

0 0 0 00 ,0 0 ,0rel rel

B B l l B l lP P P
l l

S A k x A S A x A       (58) 

from which we can find  0

0

BP
S A . The generalized canonical GLE can then be 

straightforwardly obtained from Eq. (53). In many applications, it is convenient and justifiable 

to choose   rel

lX B   if the B  are slow variables. 

VI.  PARTICLE-BASED CANONICAL CG DYNAMICS AND MARKOVIAN 

ASSUMPTION 

The particle-based canonical CG equations of motion are obtained from Eq. (56) in 

which  ,A R P  are the Jacobi coordinates [Eqs. (12) and (14)]. Formally, the GLE can be 

written for the R  coordinates; however, this GLE must be equivalent to 

1

I

rel

I P I IdR dt H M P   , 1, ,I N , where the Hamiltonian relH  is given in Eq. (34). 

Therefore, in the GLE for R , the memory and projected terms must vanish. The nontrivial GLE 

is obtained for the momenta P . From Eq. (55), we have 

  0

0
0

1

1
N

I

BP
I I

P
S A

T M


 
   

 
.  (59) 
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From Eqs. (56) and (1), we then obtain the following canonical CG GLE:  

 

 

     

0
0

0

0

,

ˆ ˆ, , , , , , ,

tI

J

cond
t

I R
R R

t T
T TJ

IJ B IJ IP
J J

d
P u r t

dt

P
d t t R P k T t t R P F t t

M



       



  

 
        

 


Q

  (60) 

with  

   0 0

0 0

,

1
ˆ ( , , , ) , (0, )

cond

IJ I J R P
B

tt R P F t F
k T

    Q Q   (61) 

where we dropped c  in the expectation notation. The projected force is orthogonal to the P  

as  

  , , , 0t

I i J jP F t Q , 0,t    , ;   , 1,2,3I J i j    (62) 

where i , j  indicate the vector components. Equations (47), (61) are both second FDR which is 

already known to hold for microscopic Hamiltonian systems in nonequilibrium states [27]. 

Equations (47), (61) prescribe a consistent procedure for generalization of the equilibrium 

second FDR (which can be derived within linear response theory) to open systems.  

A generalized Markovian approximation can be introduced for open systems [60]. For 

CG dynamics in closed systems in equilibrium, a Markovian approximation is a major 

assumption, leading to the DPD equations of motion. We show that while a Markovian 

approximation can be introduced for open systems, the friction tensors approximating the 

memory functions become explicitly time-dependent, which reflects a change in the strength of 

the dissipative interactions caused by time variations in the strength of the coupling of the 

irrelevant subsystem to the external field. Using a Markovian approximation amounts to 

neglecting the memory effects in Eq. (60) and is justified when there is a strong separation 
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between characteristic time scales for the slow relevant and fast irrelevant dynamics. In this 

scenario the scale for the decay in   of the memory functions 0 0ˆ ( , , , )IJ t R P   in Eq. (61) 

becomes short compared to the characteristic scale for the  A   trajectory evolution and we 

can use the following approximation 

  0 0 0 0ˆˆ , , , ( )2 ( , , )IJ IJt R P t R P      (63) 

where  

   0 0

0 0

,
0

1ˆ ( , , ) , (0, )
cond

IJ I J R P
B

t R P d F t F t
k T

   


  
Q Q

  (64) 

are friction tensors expressed in the Green-Kubo form [31]. The next standard approximation 

we use is an assumption that ˆ
IJ  is not an explicit function of  0 0,R P . In this approximation, 

the conditional expectation 0 0,

cond

R P
  in Eq. (64) can be replaced with unconditional averaging   

while the gradient term ˆ
J

T T

P sJ  vanishes [see Eq. (60)] [47-50]. An additional observation of 

DPD is that the dissipative and projected forces are momentum conserving: (0, ) 0JJ
tF  Q

 

and thus ˆ ˆ( ) ( )II IJJ I
t t 


  . These approximations lead to the following DPD equation for 

open systems: 

      0
0

0 ˆ, ,
tI

ttcond
t JI

I IJ IR
R R

J I I J

PPd
P u r t t F t t

dt M M





 
      

 
 Q

 . (65) 

where the friction tensors ˆ
IJ  and the projected forces IFQ  are related by the following second 

FDR: 
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   ˆ, (0, ( )2 ( )I J B IJF t F t k T t    Q Q  , 0,  t I J    . (66) 

Note, here the friction tensors ˆ
IJ  are negative-definite which is a result of a sign convention on 

the average in Eq. (64) that has been adopted in the literature [31,85]. The FDR in Eq. (66) is 

internally consistent with describing   evolution of the  ,F tQ
 by additive white noise 

 
1

( ) ( )
N

S S

I I
F F 


  (e.g., superposition of Gaussian white noises [67]). Furthermore, Eq. (66) 

implies that the  and t  scales are also separated (e.g. the characteristic time scale for the 

variation of the external forces is much longer compared to the characteristic scale for the 

intrinsic irrelevant dynamics). Therefore, when transitioning to a DPD description, we can go 

further and represent the projected force  ,F t tQ
 in Eq. (65) by the following linear 

combination of Gaussian white noises [67,86]:      S

I IJ JJ
F t B t dW t dt , where  JW t  

are Wiener processes [17,28] and  IJB t  are deterministic processes satisfying 

    ˆ2 ( )IK JK B IJK
B t B t k T t . We are then able to satisfy the DPD FDR in Eq. (66) as: 

   ˆ( ) ( )2 ( )S S

I J B IJF t F t t t k T t      , t t  (67) 

where we used the stationarity of  S

IF t .  

Applying the DPD framework to open systems [Eqs. (65) and (67)] is complicated by 

the fact that the friction tensors, and consequently the FDR, are explicitly time-dependent. The 

frictions and the respective stochastic process designed to model the projected force must reflect 

the effect of the external force on the irrelevant dynamics. To assess our assumption that the CG 

dynamics in a microscopic system are Markovian, we compare the decay time of the 
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autocorrelations   0( ) , ( ,0)t

FC t F r t F r   of the generalized forces [Eq. (13)] with the 

characteristic scale of the CG dynamics as commonly determined by the decay time of the P  

autocorrelations, 0( ) t

PC t P P   [31,86]. ( )FC t  decaying faster than ( )FC t  would indicate 

that  ,F t tQ
 can be treated stochastically within the FDR in Eq. (67). This, in turn, requires 

that the characteristic timescale of the external force may be large compared to the characteristic 

scale of the CG dynamics. This disparity in the characteristic timescales is a hallmark of 

Markovian behavior [31,86]. 

VII.  SUMMARY AND OUTLOOK 

We have shown that for classic Hamiltonian systems which are influenced by the 

external explicitly time-dependent potentials (we refer to such systems as open systems) and are 

far from equilibrium, the MZ formalism with a time-independent Zwanzig PO  0 P  in a 

Heisenberg picture [Eq. (21)] can perform an exact time-convolution decomposition of the 

dynamics into relevant (CG) and irrelevant parts [Eq. (19)]. To develop our formalism, we 

required that together the CG and irrelevant coordinates form a canonical set. At this stage, we 

kept the formalism very general and obtained the GLE [Eq. (53)], which describes exactly the 

Hamiltonian time evolution [Eqs. (2) and (4)] of the microscopic observables without explicit 

time-dependence. The dynamics was determined by a GLE with time-reversible conservative 

[Eq. (29)], time-irreversible dissipative [Eq. (52)], and projected [Eq. (20)] force terms. The 

projected force [Eq. (20)] can be viewed as a two-time process with the first timescale 

determined by the phase trajectories   and the second timescale determined by the explicit 
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time-dependence of the Hamiltonian [Eq. (1)]. The dissipative force takes a time-convolution 

form and can be expressed through memory tensor functions related to the projected force 

through the second FDR [Eqs. (49), (57), and (61)]. Furthermore, in general, the dissipative 

force depends linearly on the gradients of the (Boltzmann) entropy  BS A  of the irrelevant 

subsystem [Eq. (51)]. For closed systems and canonical Zwanzig  0 P  (i.e., which 

corresponds to the canonical  ), the  BS A  can be related to the relevant (CG) Helmholtz free 

energy [Eq. (33)]. Our framework using the canonical  0 P  leads to a CG GLE [Eq. (56)] that 

is an extension of the known CG GLE but to open systems. The further generalization of the 

canonical CG GLE is obtained by using the   of the generalized canonical form. The main 

application we seek for our formalism is particle-based coarse-graining of open Hamiltonian 

systems, which is accomplished by transitioning to the Jacobi coordinates [Eqs. (12) and (14)] 

considering the c.m. coordinates [Eq. (12)] of the particle clusters as the CG coordinates. This 

is followed by the derivation of the particle-based CG GLE, which governs exactly the time 

evolution of the CG coordinates (the relevant Jacobi momenta) in open classical systems [Eq. 

(60)]. The obtained expressions for the particle-based CG GLE memory tensors through the 

projected force correlations [Eq. (61)] can be viewed as an open-system generalization of the 

second FDR known for closed systems in the equilibrium. This extension has not been 

previously reported.  

We have also shown that in the Markovian limit, the particle-based CG GLE is a 

memoryless equation of motion of the DPD type with frictions that are explicitly time-
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dependent. The time dependence of the frictions reflects a time-variable dissipation rate caused 

by coupling of the irrelevant subsystems to an external time-dependent bath. We have 

formulated criteria to determine whether the CG dynamics in open systems can be considered 

Markovian, and hence can use the stochastic differential equation (SDE) approach, where the 

projected force is modeled using additive Gaussian white noise. 

Regardless of the  ,0   which determines the  0 P , the presented CG GLE time 

evolution must be an exact map of the microscopic Liouville evolution and, as such, can serve 

as a starting point when considering CG dynamics in various approximations including those 

for transport equations [see Eq. (28)], response theories, DPD and its variants, the 

nonequilibrium statistical operator method [17]. An important application envisaged is the 

internal energy transport in open molecular systems. Energy transport processes can be 

described by the coupled set of GLEs governing the evolution of the position, momentum, and 

internal energy of thermal blobs representing entire complex molecules at the CG level [50,87]. 

Considering that the Jacobi conjugate momenta can be calculated analytically, the present 

generalizations of the CG GLE theory emerge as a tractable framework to study a range of other 

transport processes. Potential applications include bottom-up formulations of more complex 

coupled CG dynamics to describe the evolution of various properties of microscopic systems 

and in various ensembles. Many of these properties are not feasible to calculate from the CG 

trajectories alone due to loss of information upon coarse-graining.  
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