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Plasmas are highly nonlinear and multi-scale, motivating a hierarchy of models to understand
and describe their behavior. However, there is a scarcity of plasma models of lower fidelity than
magnetohydrodynamics (MHD), although these reduced models hold promise for understanding
key physical mechanisms, efficient computation, and real-time optimization and control. Galerkin
models, obtained by projection of the MHD equations onto a truncated modal basis, and data-driven
models, obtained by modern machine learning and system identification, can furnish this gap in the
lower levels of the model hierarchy. This work develops a reduced-order modeling framework for
compressible plasmas, leveraging decades of progress in projection-based and data-driven modeling
of fluids. We begin by formalizing projection-based model reduction for nonlinear MHD systems.
To avoid separate modal decompositions for the magnetic, velocity, and pressure fields, we introduce
an energy inner product to synthesize all of the fields into a dimensionally-consistent, reduced-order
basis. Next, we obtain an analytic model by Galerkin projection of the Hall-MHD equations onto
these modes. We illustrate how global conservation laws constrain the model parameters, revealing
symmetries that can be enforced in data-driven models, directly connecting these models to the
underlying physics. We demonstrate the effectiveness of this approach on data from high-fidelity
numerical simulations of a 3D spheromak experiment. This manuscript builds a bridge to the
extensive Galerkin literature in fluid mechanics, and facilitates future principled development of
projection-based and data-driven models for plasmas.

I. INTRODUCTION

Plasmas and plasma-enabled technologies are perva-
sive in everyday life [1], but their nonlinear, multi-scale
behavior poses severe challenges for understanding, mod-
eling, and controlling these systems. There are a tremen-
dous number of known plasma models of varying model
complexity, from magnetohydrodynamics (MHD) to the
Klimontovich equations, but a large gap exists in the
lower levels of this hierarchy between simple circuit mod-
els and the many MHD variants. These low-level mod-
els are motivated because higher fidelity models typically
require computationally intensive and high-dimensional
simulations [2–4], obfuscating the dynamics and preclud-
ing model-based real-time control. Moreover, many high-
dimensional nonlinear systems tend to evolve on low-
dimensional attractors [5]; plasmas across a large range
of parameter regimes, geometry, and degree of nonlinear-
ity exhibit this feature [6–13]. In these cases, the evo-
lution of only a few coherent structures, obtained from
model-reduction techniques [14, 15], can closely approxi-
mate the evolution of the high-dimensional physical sys-
tem. Fortunately, recent progress in theoretical, data-

driven, and machine learning methods are revolutionizing
the analysis, modeling, and control of high-dimensional,
nonlinear systems, especially in the field of fluid mechan-
ics [16]. Reduced-order modeling is advancing particu-
larly rapidly, enabling the modeling of increasingly com-
plex fluid flows [5, 16–21], but many of these advances
have not yet been adopted in the plasma physics com-
munity. In this manuscript, we provide a framework
for physics-constrained, low-dimensional plasma models
which address this important gap in the model hierarchy.

The applications of reduced-order models include un-
derstanding reduced physical mechanisms [22, 23], com-
putationally efficient simulations [24], digital twins (vir-
tual time-dependent models for a dynamic system, con-
stantly updating with sensor measurements) [25], and
real-time control [26–28]. For example, acceleration of
inertial confinement fusion simulations and digital twins
can facilitate an exploration of the implosion parame-
ter space [24], surrogate closure models can lead to more
accurate and efficient fluid simulations [29], surrogate gy-
rokinetic transport models can speed up tokamak simu-
lations by orders of magnitude [30, 31], and steady-state
tokamak operation will require the active avoidance or
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mitigation of disruptions, which can seriously damage
components of the device [32]. For these real-time con-
trol challenges, there are a wealth of model-based control
techniques such as model predictive control [33] that can
be leveraged for plasma systems. However, existing mod-
els can be either too high-dimensional and computation-
ally expensive to operate in real-time, or too low-fidelity
to be useful for control.

In addition to being computational efficient, reduced-
order models can help uncover key mechanisms that gov-
ern the evolution of the dominant coherent structures.
This aspect of reduced-order modeling has a rich history,
from the famous Lorenz model in 1963 [22], through the
present era, including the low-order mechanistic model of
the cylinder wake in 2003 by Noack et al. [17]. Recently,
data-driven algorithms, like the algorithms used in this
work, have shown potential to uncover similarly inter-
pretable and useful models. Examples include related
fluid systems [34, 35] as well as recent work that uncovers
a Lorenz-like model of electroconvective chaos by Guan
et al. [23]. Moreover, increasingly reduced order models
are used to describe key mechanisms in plasma physics,
including “predator-prey” dynamics in gyrokinetic simu-
lations [36], direct data-driven discovery of reduced MHD
or kinetic equations from a plasma dataset [37], and data-
driven fluid models for the L-H mode transition in toka-
maks [38]. These models are often critical for providing
insight into the physical system, including energy trans-
fers and other nonlinear interactions.

Reduced-order models traditionally fall into two cat-
egories: projection-based model reduction and data-
driven system identification. Projection-based model re-
duction is achieved by first computing the evolution of
a governing partial differential equation (PDE) model,
often by spatially discretizing the domain, resulting in
a high-dimensional system of ordinary differential equa-
tions (ODEs). In our case, we consider a 3D MHD simu-
lation. Then a low-dimensional orthogonal basis is com-
puted, often via the proper orthogonal decomposition
(POD) [5, 39]. Finally, the high-dimensional model is
“Galerkin-projected” onto this basis [40, 41], resulting in
an efficient reduced system that describes how the am-
plitudes of the POD modes evolve in time. However, this
projection is intrusive since it requires knowledge of the
governing physics and a working high-fidelity solver.

In contrast, system identification techniques attempt
to identify data-driven models directly from measure-
ment data, often without knowledge of the governing
equations. Increasingly, data-driven methods are produc-
ing effective bases beyond POD for different experimen-
tal or computational tasks [5]; modern methods include
balanced POD [40, 42], spectral POD [43], DMD [44–
46], the Koopman decomposition [47–49], resolvent anal-
ysis [50, 51], and neural-network-based autoencoders [52–
54]. Data-driven techniques, including modern machine
learning, are also being widely applied to discover dynam-
ical systems models of complex physical systems [55–68],
with a particular emphasis on hybrid physics-inspired or

physics-informed machine learning [34, 59, 69–73]. In
fluid mechanics, sparse model discovery has been used
to develop interpretable nonlinear models that enforce
known physics by construction [34, 57, 74]. Particular
emphasis is put on understanding how these models al-
ter or retain the “direct energy cascade” coming from
the interaction of terms in the Navier-Stokes equations;
in Hall-MHD there are also inverse cascades and bidirec-
tional cascades [75], complicating the analysis of model
stability and generalizability.

In this work we develop theoretical foundations for
principled projection-based and data-driven plasma mod-
els. In fluid mechanics, careful development of a di-
mensionalized inner product enabled the extension of
POD from incompressible to compressible fluid flows [76].
It is also common in fluid mechanics to obtain nonlin-
ear reduced-order models by Galerkin projection of the
Navier-Stokes equations onto POD modes, making it pos-
sible to enforce known symmetries and conservation laws,
such as conservation of energy [19, 77–79]. These symme-
tries have recently been utilized to constrain the identifi-
cation of data-driven fluid models [34]. The present work
extends and unifies these three innovations for compress-
ible plasmas, enabling a wealth of advanced modeling
and control machinery. The culmination of this work is
illustrated by accurately forecasting the evolution of a
3D isothermal Hall-MHD simulation of the HIT-SI ex-
periment [80], described in detail in Appendix A.

In Section II, we propose a formalism for reduced
plasma models, and in Section III we derive how global
conservation laws in MHD manifest in the subsequent
reduced-order models. After establishing a framework for
projection-based model reduction in Hall-MHD, in Sec-
tion IV we utilize physics-constrained machine learning
to discover low-dimensional plasma models directly from
data. Figure 1 summarizes the steps for using plasma
data with projection-based model reduction and data-
driven system identification. As described in detail in
Sections II and IV, data is collected, projected onto a
low-dimensional basis, constrained by any known phys-
ical laws, and analyzed to find a descriptive model for
its evolution. This last task may be achieved through
projection-based, data-driven, or hybrid methods.

II. PROJECTION-BASED
REDUCED-ORDER MODELS IN MHD

Despite the many ways to obtain low-dimensional mod-
els, projection-based model reduction such as Galerkin
methods have seen significant use and remarkable suc-
cess in fluid mechanics. This success stems from the di-
rect ties with the first-principles physics, lending inter-
pretability to Galerkin models so that physical character-
istics such as linear stability can be investigated. When
the low-dimensional basis is obtained from the POD, the
resulting models are referred to as POD-Galerkin models.
Since the 1990’s, it has been common in fluid mechan-
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(a) (b) (c)

FIG. 1: Proposed approach for filling in lower rungs of the plasma model hierarchy: (a) Collect data, (b) perform
projection-based model reduction (c) discover data-driven models using physics-constrained system identification.

Throughout this work, see the online version of this manuscript for the color bars and other color-coding.

ics to obtain these nonlinear reduced-order models by
Galerkin projection of the Navier-Stokes equations onto
POD modes. Further developments increased the util-
ity of these methods, including a dimensionalized inner
product which enabled the extension of POD-Galerkin
models from incompressible to compressible fluids [76].
Towards the goal of extending these developments into
plasma physics, we first need to define a new inner prod-
uct for MHD plasmas in Section II A and then illustrate
how the subsequent proper orthogonal decomposition is
performed for plasma datasets in Section II B. This for-
malism facilitates our the derivation of a POD-Galerkin
model for Hall-MHD in Section II C.

The present work adapts and extends these innova-
tions for plasmas, enabling a wealth of advanced model-
ing and control machinery. For clarity and robust con-
nection with the Galerkin literature in fluid mechanics,
we primarily consider models which are quadratic in non-
linearity. This includes ideal MHD, incompressible Hall-
MHD, and variants such as compressible Hall-MHD with
a slowly time-varying density, which together describe a

broad class of space and laboratory plasmas [81–86].

A. An MHD energy inner product

Traditional use of the POD on the MHD fields (ve-
locity, magnetic, and temperature) would either require
separate decompositions for u, B, and T , or an arbitrary
choice of dimensionalization. However, separate decom-
positions of the fields obfuscates the interpretability and
increases the complexity of a low-dimensional model, and
choosing the units of the combined matrix of measure-
ment data can have a significant impact on the perfor-
mance and energy spectrum of the resulting POD basis.
Inspired by the inner product defined for compressible
fluids [76], we define an inner product for MHD through

q(x, t)=

Bu

B
BT

 , Bu=
√
ρµ0u, BT =

√
4ρµ0kbT

mi(γ−1)
. (1)
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Here ρ is the mass density, kb is Boltzmann’s constant, µ0

is the permeability, mi is the ion mass, γ is the adiabatic
index, p=2ρT/mi is the plasma pressure, and the total
plasma energy is

W =
1

2µ0
〈q,q〉=

∫ (
1

2
ρu2+

B2

2µ0
+

p

γ−1

)
d3x. (2)

Normalizing the MHD fields to magnetic field units pro-
duces a natural interpretation of inner products of the
vector q as the total plasma energy. This formulation is
also useful because reduced order models built for q can
be constrained by conservation of energy via Eq. (2), as
we illustrate in detail in Section III.

B. Proper orthogonal decomposition
for plasma datasets

The POD is already used extensively for interpret-
ing plasma physics data across a range of parameter
regimes [28, 87–90], but some formalism is required to
effectively use it for modeling and forecasting. For POD,
a set of point measurements at time tk are arranged in a
vector qk∈RD, called a snapshot, where the dimension
D is the product of the number of spatial locations and
the number of variables measured at each point. For in-
stance, we could have obtained the magnetic field data
from D/3 magnetic probes that measure the magnetic
field components at a fixed location and sampling rate.
Now we assume that the data is sampled at some times
t1, t2, ..., tM , arranged in a matrix X∈RD×M , and the
average in time q̄ is subtracted off. The singular value
decomposition (SVD) provides a low-rank approximation

X=

time
−−−−−−−−−−−−−−−−−−−−−−→
q1(t1) q1(t2) · · · q1(tM )
q2(t1) q2(t2) · · · q2(tM )

...
...

. . .
...

qD(t1) qD(t2) · · · qD(tM )


y

sta
te

=UΣV ∗, (3)

where U ∈RD×D and V ∈RM×M are unitary matrices,
and Σ∈RD×M is a diagonal matrix containing non-
negative and decreasing entries sjj called the singular
values of X. V ∗ denotes the complex-conjugate trans-
pose of V . The singular values indicate the relative im-
portance of the corresponding columns of U and V for
describing the spatio-temporal structure of X.

It is often possible to discard small values of Σ, re-
sulting in a truncated matrix Σr∈Rr×r. With the first
r�min(D,M) columns of U and V , denoted Ur and Vr,
we have

X≈UrΣrV
∗
r . (4)

The truncation rank r is typically chosen to balance ac-

curacy and complexity [21]. The computational com-
plexity of the SVD is O(DM2 +M3) [91], although there
are randomized singular value decompositions [92–94] for
very large problems that can be as fast as O(DM log(r)).
Therefore, even for r�1, the SVD typically produces sig-
nificant computational speedup over codes which evolve
the full spatio-temporal dynamics. The computational
speed [91, 94] of the SVD also enables online computa-
tions to update a model for real-time control.

To proceed, a well-defined SVD requires that the mea-
surements inX have the same physical dimensions. With
a dimensionalized measurement vector q, the matrix
X∗X satisfies

X∗X≈〈q(tk),q(tm)〉, k,m∈{1,2, ...,M}. (5)

The equality is not exact because the inner product
(an integral) is approximated by the discrete sum from
the matrix product of X∗X, but it is important that
we can relate the matrix X to the total plasma en-
ergy through Eq. (2). The temporal SVD modes, or
chronos, vj are the columns of Vr. The spatial modes,
or topos, χ form the columns of Ur. We scale aj(tk)=
vj(tk)/

∑r
j=1 maxk |vj(tk)|. Finally,

q(xi, tk)≈ q̄(xi)+

r∑
j=1

χj(xi)aj(tk). (6)

We have absorbed the normalization of aj(tk) and the
singular values into the definition of χj(xi). By construc-
tion 〈χi,χj〉∝δij . Note that, in principle, we could have
expanded q in any set of modes, although orthonormal
modes are preferred because this property facilitates the
analysis in Section III. Non-orthogonal modes are also
suitable, but introduce a complication in the form of a
mass matrix [95]. The advantage of the POD basis is that
the modes are ordered by energy content; a truncation of
the system still captures a majority of the dynamics. A
separate POD of each of the MHD fields would lead to
three sets of POD modes with independent time dynam-
ics and mixed orthogonality properties. In contrast, our
approach captures all the fields simultaneously, resulting
in a single set of modes ai(t) in Eq. (6).

An example of this decomposition is illustrated in
Fig. 2 for a 3D isothermal Hall-MHD simulation, de-
scribed in detail in Appendix A and modeled in Sec-
tion IV B; the dominant dynamics are harmonics and
sub-harmonics of a driving frequency imposed by two ac-
tuating injectors on the top and bottom of the device.
In general, examining the structure and symmetry in the
spatial and temporal POD modes can inform physical un-
derstanding. For instance, in Fig. 2, the short-wavelength
structures exhibited in the 3D spatial modes derive both
from dispersive whistler waves via the Hall term and the
small characteristic scale associated with the injectors
(actuators). The steep fall-off in the singular values also
indicates that models of only the first few modes would
be enough to accurately forecast and control the domi-
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(a) (b)

(c)

FIG. 2: The first seven POD modes for a 3D isothermal Hall-MHD simulation of the HIT-SI device detailed in
Appendix A. The mean-flow-subtracted chronos indicate that the primary dynamics are forcing at the driving
injector frequency and its harmonics; (a) Mode pair trajectories evolved in time and the corresponding singular
values; (b) 3D spatial modes in the Z=0 midplane illustrate a complicated mix of length scales; (c) Normalized
temporal modes and corresponding Fourier transforms exhibit harmonics of the driving frequency, labeled 1-5.

nant dynamics. While we show stable and accurate r=16
models in Section IV B to illustrate the strengths of our
methods for more complicated dynamics, in our test case
it is true that more modest models of three or four modes
can already achieve reasonable forecasting accuracies.

C. POD-Galerkin models

Now that we have an expansion of the fields in a low-
dimensional basis in Eq. (6), we can project the Hall-

MHD equations onto these POD modes in order to obtain
a POD-Galerkin model. Hall-MHD, using the definitions
of the electromagnetic current µ0J=∇×B, electron fluid
velocity ue=u−J/ne, electron and ion temperature Te=
Ti=T , and the definitions in Eq. (1), can be written:



6

ρ̇=−∇·

(√
ρ

µ0
Bu

)
, (7)

Ḃ=∇×

[
1
√
ρµ0

(
Bu×B−di((∇×B)×B)

)]
+η0ρ

3
2B−3

T ∇
2B+

di√
ρµ0

(γ−1)BT∇BT×
∇ρ
2ρ

,

Ḃu =− 1
√
ρµ0

[
1

2
Bu∇·Bu+Bu·∇Bu−

1

4ρ
Bu(∇ρ·Bu)−(∇×B)×B+

(γ−1)B2
T

2

∇ρ
ρ
−(γ−1)BT∇BT

]

+ν

[
∇2Bu−

∇2ρ

2ρ
Bu+

3Bu

4ρ2
(∇ρ)2+

1

ρ
(∇ρ·∇)Bu−

1

6ρ
∇(∇ρ·Bu)+

1

4ρ2
(∇ρ·Bu)∇ρ+

1

3
∇(∇·Bu)− 1

6ρ
(∇·Bu)∇ρ

]
,

ḂT =− 1
√
ρµ0

[
Bu·∇BT−γBT (∇·Bu−

∇ρ
2ρ
·Bu)

]
− 2

BT
[∇·h+Qvisc]+4η0ρ

3
2B−4

T (∇×B)2,

where we have used that ∇·B=0 and the definitions of the heat flux h and viscous heating Qvisc,

h=− (γ−1)BT

4

[
χ‖b̂b̂+χ⊥

(
I−b̂b̂

)]
·
(
∇BT−BT

∇ρ
ρ

)
, (8)

Qvisc =−ν̃(∇Bu−Bu
∇ρ
2ρ

)T :

[
(∇Bu−Bu

∇ρ
2ρ

)+(∇Bu−Bu
∇ρ
2ρ

)T−2

3
I(∇·Bu−Bu·

∇ρ
2ρ

)

]
.

Here ν= ν̃/ρ is the dynamic viscosity, η=η0T
− 3

2 ∝
ρ

3
2B−3T is the Spitzer resistivity [96], di=mi/(e

√
ρµ0) is

the ion inertial length, and χ⊥ and χ‖ are the anisotropic
Braginskii thermal diffusivities with temperature and
magnetic field dependencies [97]. Although many of the
nonlinear terms are only quadratic in q, we consider the
isothermal limit and limit of time-independent density to
restrict ourselves to the pure quadratic nonlinear case:

q̇=C+L(q)+Q(q,q), (9)

C=

− (γ−1)B2
T

2

√
1
µ0ρ
∇ρ
ρ

0
0

 ,

Q(q,q)=


− 1√

ρµ0

(
Bu(∇·Bu)+Bu·∇Bu−(∇×B)×B

)
∇×

(
1√
ρµ0

(
Bu×B−di(∇×B)×B

))
0

 ,

L(q)=

ν
(
∇2Bu−·· ·− 1

3ρ (∇·Bu)∇ρ
)

η
µ0
∇2B

0

 .
Increasingly sophisticated models may be tractable in fu-
ture work, since the data-driven approach that we adopt
in Section IV is not limited to quadratic nonlinearities.
Other models, such as those assuming incompressibility
and finite temperature evolution, can also be derived
straightforwardly from the results here. Substituting
Eq. (6) into Eq. (9) and utilizing the orthonormality of

the χj produces:

ȧi(t)=C0
i +

r∑
j=1

L0
ijaj+

r∑
j,k=1

Q0
ijkajak, (10)

C0
i =〈C+L(q̄)+Q(q̄, q̄),χi〉,

L0
ij=〈L(χj)+Q(q̄,χj)+Q(χj , q̄),χi〉,

Q0
ijk=〈Q(χj ,χk),χi〉.

The model is quadratic in the temporal POD modes ai(t).
The zero superscript is meant to distinguish the coeffi-
cient tensors C0

i , L0
ij , and Q0

ijk from the spatio-temporal
operators C, L, and Q. If q̄ satisfies the steady-state
MHD equations, then C0

i =0 for all i. This is a rea-
sonable assumption for any approximately steady-state
device, such as a tokamak, which can be sustained for
many characteristic timescales. In contrast to Eq. (10),
a Galerkin model based on separate POD expansions for
each field would involve significant mixing and a lack of
orthonormality 〈χu

i ,χ
B
j 〉 6=δij between the POD modes.

Although Eq. (10) contains only quadratic nonlineari-
ties, the influence of truncated low-energy modes can
sometimes be modeled with cubic nonlinearities in the
Galerkin model [17, 34].

D. Relation to Fourier-Galerkin methods

Similar analytic Fourier-Galerkin models (also called
MHD shell models) have been used for modeling incom-
pressible MHD turbulence [98]. Shell models in MHD
have primarily been used to describe the statistics of ho-
mogeneous and isotropic turbulence in spectral space,
rather than as reduced order models [99]. The differ-
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ences in application likely stem from shell models pre-
serving the MHD invariants within each triad of wave
vectors but POD models providing a dataset-tailored and
energy-optimal basis. However, in various homogeneous
and symmetric limits the POD reduces to the Fourier ba-
sis [39, 100]. In both Fourier-Galerkin and POD-Galerkin
models, truncation of the model at some rank r can
lead to under-resolving the dissipation rate or approxi-
mately breaking the global conservation laws, and a clo-
sure scheme may be required to re-introduce the full dis-
sipation. Additionally, if energy is not conserved, as in
some dissipative MHD models, the stability of the trun-
cated system is no longer guaranteed. Two advantages of
the data-driven approach in Section IV over either POD-
Galerkin or Fourier-Galerkin is that 1) we need not labo-
riously compute the coefficients in Eq. (10) from full state
knowledge, and 2) we can enforce global energy or cross-
helicity conservation directly into the truncated model
(even without energy conservation, we may be able to
enforce other generic stability properties [101]). Lastly,
preserving the features of the direct energy cascade in
truncated Galerkin and data-driven models for incom-
pressible fluid flows is a current field of research. Since
even this “simple case” is unsettled, there is much re-
search to be done regarding the preservation of direct,
inverse, and even bidirectional cascades [75] in truncated
Galerkin models for Hall-MHD beyond highly simplified
cases such as isotropic, incompressible, isothermal Hall-
MHD turbulence on simple geometries.

III. DERIVING CONSTRAINTS ON
PROJECTION-BASED MODELS

We have successfully obtained a POD-Galerkin model
for the dynamic fields in Hall-MHD. However, there
is substantial additional structure in the coefficients in
Eq. (10) because local and global MHD conservation laws
are in principle retained in this low-dimensional basis.
Vanishing ∇·B and the linear independence of the tem-

poral POD modes produce

∇·χBi =0, ∀i. (11)

In other words, there is a local divergence constraint for
each of the χBi , but this does not produce insight into
the coefficients defined in Eq. (10) In contrast, global
energy conservation produces substantial constraints on
the structure of the Galerkin model coefficients.

A. Global conservation of energy

For an examination of the global conservation laws, we
consider isothermal Hall-MHD with a very slowly time-
varying density. This model reduces to ideal MHD and
incompressible resistive or Hall MHD in the appropriate
limits, and produces (Galtier [102] Eq. 3.22)

∂W

∂t
=−
∫ [

ν̃(∇×u)2+
η

µ0
(∇×B)2+

4

3
ν̃(∇·u)2

]
d3x (12)

−
∮ [(

1

2
ρu2+p

)
u+P−4

3
ν̃(∇·u)u−ν̃u×(∇×u)

]
·n̂dS.

Here n̂ is a unit normal vector to the boundary, and

P=
1

µ0
E×B=

ue
µ0
·(B2I−BB)− η

µ2
0

(∇×B)×B, (13)

is the Poynting vector (E is the electric field), which is
often an imposed and experimentally-known function of
space and time. Omission of the Hall term changes ue
to u in Eq. (13). Even with temperature evolution, the
electron diamagnetic term in P does not alter the energy
balance if Dirichlet conditions are used for ρ and T . To
simplify, we assume that u·n̂=u×n̂=0, J ·n̂=0, and
B ·n̂=0 at the wall, consistent with the Hall-MHD HIT-
SI simulation described in Appendix A and modeled in
Section IV B. Now assume steady-state, define a0(t)=1,
and substitute Eq. (6) into Eq. (12),

0≈ ∂W
∂t

=

∮
η

µ2
0

((∇×B)×B)·n̂dS−
∫ [

ν

µ0
(∇×Bu−

∇ρ
2ρ
×Bu)2+

η

µ2
0

(∇×B)2+
4

3

ν

µ0
(∇·Bu−

∇ρ
2ρ
·Bu)2

]
d3x, (14)

=WC+

r∑
i=1

WL
i ai+

r∑
i,j=1

WQ
ij aiaj=

r∑
i,j=0

WQ
ij aiaj ,
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We have padded the matrix in the last step so that WQ
0i=0, WQ

i0 =WL
i for i∈{1,...,r}, and WQ

00=WC . Eq. (14) is

generally satisfied for anti-symmetric WQ
ij , from which it follows that

0=WQ
00=

η

µ0

∮ [
(∇×B̄)×B̄

]
·n̂dS−

∫ [
ν(∇×B̄u−

∇ρ
2ρ
×B̄u)2+

η

µ0
(∇×B̄)2+

4

3
ν(∇·B̄u−

∇ρ
2ρ
·B̄u)2

]
d3x, (15)

0=WQ
i0=

η

µ0

∮ [
(∇×B̄)×χBi +(∇×χBi )×B̄

]
·n̂dS

−2

∫ [
ν(∇×B̄u−

∇ρ
2ρ
×B̄u)·(∇×χBu

i −
∇ρ
2ρ
×χBu

i )+
η

µ0
(∇×B̄)·(∇×χBi )+

4

3
ν(∇·B̄u−

∇ρ
2ρ
·B̄u)·(∇·χBu

i −
∇ρ
2ρ
·χBu
i )

]
d3x,

WQ
ij=−W

Q
ji=

η

µ0

∮ [
(∇×χBi )×χBj

]
·n̂dS

−
∫ [

ν(∇×χBu
i −
∇ρ
2ρ
×χBu

i )·(∇×χBu
j −
∇ρ
2ρ
×χBu

j )+
η

µ0
(∇×χBi )·(∇×χBj )+

4

3
ν(∇·χBu

i −
∇ρ
2ρ
·χBu
i )·(∇·χBu

j −
∇ρ
2ρ
·χBu
j )

]
d3x.

Evaluating Eq. (15) and the Galerkin coefficients in
Eq. (10) relies on the existence of all of the ∇×χi. These
spatial POD modes are evaluated on a discrete set of spa-
tial locations, but in practice we can always choose an in-
terpolation such that the curl operator is well-defined. In
such a case, ∇×χBi and ∇×χBu

i have natural interpre-
tations as the spatial POD modes of the electromagnetic
current and vorticity fields. However, in the present work
these computations only serve as formal manipulations so
we need not evaluate these curls; our data-driven method
in Section IV uses sparse regression to determine these
coefficients from data. Continuing on with our analysis,
we can compute aiȧi for i∈{1,...,r},

aiȧi=

r∑
i,j=1

ai
∂aj
∂t

∫
χiχjd

3x=

∫
1

2

∂q2

∂t
d3x=

∂W

∂t
, (16)

aiȧi=aiC
0
i +aiL

0
ijaj+aiQ

0
ijkajak, i,j,k∈{1,...,r}. (17)

First, note that WQ
i0 =0 produces C0

i =0 for all i∈
{1,...,r}. There are no constant terms in the Galerkin
model. This is a physical consequence of our assumption
that q̄ is steady-state; nonzero constant terms would im-
ply the possibility of unbounded growth in the energy

norm. The anti-symmetry of WQ
ij for i,j∈{1,...,r} con-

strains the quadratic structure of the energy aTa,

aTL0a≈0. (18)

This physical interpretation is also clear; if the plasma is
steady-state but has finite dissipation, the input power,

here manifested through a purely quadratic Poynting
flux P∝ηJ×B, must be balancing these losses. Finally,
there are no cubic terms in the energy, implying

aTQ0aa=0, (19)

or equivalently,

Q0
ijk+Q0

jik+Q0
kij=0. (20)

In other words, the quadratic nonlinearities in the
Galerkin model of Eq. (10) are energy-preserving; this
conclusion did not rely on any assumption of steady-state
and energy-preserving structure in other quadratic non-
linearities is well-studied in fluid mechanics [74, 79, 101].
The lack of nonlinear energy losses is a physical conse-
quence coming from the boundary conditions B ·n̂=0,
J ·n̂=0, u·n̂=u×n̂=0 (and constant temperature).

B. Global conservation of cross-helicity

An analogous derivation can be done to further con-
strain the model-building for systems which conserve
cross-helicity, although this is inappropriate for the Hall-
MHD HIT-SI simulation in Section IV B. Consider the
local form of cross-helicity Hc=u·B. Using Galtier [102]
Eq. (3.36),

∂Hc

∂t
=−∇·

(u2
2

+
γp

(γ−1)ρ

)
B+u×(u×B)− di√

ρµ0
u×
(
(∇×B)×B

)
−ηu×(∇×B)

 (21)

+ν∇·
(
B×(∇×u)+

4

3
(∇·u)B

)
− di√

ρµ0
(∇×u)·

(
(∇×B)×B

)
−(η+ν)(∇×B)·(∇×u).
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Consider again the simplifying case J ·n̂=0, B ·n̂=0, and u·n̂=u×n̂=0. If global cross-helicity is conserved, the
integral form is

0≈
∫
∂Hc

∂t
d3x=

∫ [
ν
∇ρ
ρ
·
(
B×(∇×u)+

4

3
(∇·u)B

)
− di√

ρµ0
(∇×u)·

(
(∇×B)×B

)
−(η+ν)(∇×B)·(∇×u)

]
d3x. (22)

Substituting in Eq. (6) produces terms up to cubic in the
temporal POD modes,

0≈
∫
∂Hc

∂t
d3x=

∂

∂t
(aiaj)

∫
1
√
ρµ0

χBu
i ·χ

B
j d

3x (23)

=Aij
∂

∂t
(aiaj)→

 AijC
0
j ai

AijL
0
jkaiak

AijQ
0
jklaiakal

≈
0

0
0


Note that if the system is energy-preserving, C0

j =0 for
all j, so the first equality is already satisfied. The second
equality determines that AijL

0
jk is anti-symmetric under

swapping i and k, and energy-preservation in Eq. (18)
produces anti-symmetry under swapping j and k. The
most straightforward solution is L0

jk=0 for all j,k; this
solution is precisely the ideal limit corresponding to
η=ν=0. Since Aij is not symmetric, this constraint can
also apply to systems which conserve cross-helicity de-
spite finite dissipation.

Lastly, AijQ
0
jkl, containing only the contribution from

the Hall-term, exhibits the same structure as (and is
compatible with) our constraint on the energy-preserving
nonlinearities in Eq. (19). The simplest solution is
AijQ

0
jkl=0 for all i,k,l, since this corresponds to stan-

dard MHD without the Hall term. Like the analysis of
the linear terms, this constraint indicates that it is possi-
ble that there are indices for which AijQ

0
jkl 6=0 but overall

satisfy AijQ
0
jklaiakal=0, so that nonzero Hall contribu-

tions can still conserve cross-helicity. Lastly, although in-
viscid Hall-MHD has two other time-invariants, enforcing
the remaining invariants may require alternative formu-
lations to the one presented here, since derived fields like
the vector potential are involved.

C. Conservation laws with velocity units

The previous sections have illustrated that our choice
of magnetic field units in Eq. (1) allowed us to relate
global MHD conservation laws to the structure of the
coefficients in the POD-Galerkin model. It is worth ex-
ploring any alterations in velocity units (in closer analogy
to fluid dynamics) q=[u,uA,us],

u2s=
4T

mi(γ−1)
, uA=

B
√
µ0ρ

, (24)

1

2
〈q,q〉= 1

2

∫ (
u2+u2A+u2s

)
d3x. (25)

We have defined a scaled plasma sound speed, us.
If ρ is uniform ρ〈q,q〉/2=W . The isothermal and
time-independent density assumptions allow us to de-
rive another quadratic model in q, for which a POD-
Galerkin model is readily available (the form is identical
to Eq. (10) but the POD modes and coefficients have
changed). Once again, assume u·n̂=u×n̂=0, J ·n̂=0,
and B ·n̂=0 on the boundary, so that∫

ρ

2

dq2

dt
d3x=

∂W

∂t
. (26)

This is equivalent to Eq. (16) in the particular case of
time-independent density. Without this assumption, an
extra term appears, proportional to

∫
u·∇(u2+u2A)d3x.

Although from dimensional analysis this term is poten-
tially very large, this may not be the case for many lab-
oratory devices with strong anisotropy introduced by a
large external magnetic field. For instance, steady-state
toroidal plasmas with large closed flux surfaces would
expect u·∇u2A and u·∇u2 to be small, as the fluid ve-
locity is primarily along field lines and gradients in both
the magnetic and velocity fields are primarily across field
lines. For this reason, in certain devices the use of
q=[u,uA,us] could be a useful alternative to the formu-
lation used in the main body of this work. It is possible
that, in these units, the structure of the nonlinearities
in the associated POD-Galerkin model may prove more
amenable to analysis or computation.

D. Hyper-reduction techniques

Now that we have illustrated how global conservation
laws manifest as structure in Galerkin models, we could
compute the coefficients in Eq. (10) and evolve the sub-
sequent model. However, in order to calculate the model
coefficients, spatial derivatives for ρ, Bu, and B (and
BT if temperature is evolved) must be well-approximated
in the region of experimental interest. In some cases,
high-resolution diagnostics can resolve these quantities
in a particular plasma region. Even if the high-quality
data is available, for instance through simulations, com-
puting these inner products and evaluating the nonlin-
ear terms is expensive, because the fields have the orig-
inal spatial dimension D. This somewhat reduces the
usefulness of projection-based model reduction. Fortu-
nately, there are hyper-reduction techniques from fluid
dynamics [41], such as the discrete empirical interpo-
lation method (DEIM) [103], QDEIM [104], missing-
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point estimation (MPE) [105] and gappy POD [106, 107],
which can enable efficient computations. Instead of using
hyper-reduction, we will turn to emerging and increas-
ingly sophisticated machine learning methods in Sec-
tion IV to discover Galerkin models from data. There are
two primary reasons we have derived the POD-Galerkin
model structure here anyways: 1) it indicates that we
can search plasma datasets for systems of ODEs con-
sisting only up to quadratic polynomials, 2) it provides
a theoretical basis for projection-based model reduction
and hyper-reduction techniques in future MHD work.

IV. CONSTRAINED IDENTIFICATION OF
DATA-DRIVEN MODELS

In projection-based modeling, the expansion in the
POD basis is data-driven, but the projection step is intru-
sive, requiring access to a numerical solver of the known
governing equations. Purely data-driven techniques are
useful because they are non-intrusive and in principle do
not require high-resolution simulations or knowledge of
the governing equations. From the projection-based anal-
ysis in Sections II−III, we are now able to define physical
constraints for improved data-driven models.

This is an opportune time to discover data-driven mod-
els; throughout the scientific community, emerging tech-
niques in system identification and optimization are in-
creasingly facilitating the discovery of physical models
directly from data [21, 56]. We use the sparse identi-
fication of nonlinear dynamics (SINDy) algorithm [57]
to identify nonlinear reduced-order models for plasmas
because SINDy models are parsimonious, having as few
terms as are required to explain the dynamics. This fea-
ture of the SINDy algorithm promotes models that are
interpretable and generalizable.

A. The constrained SINDy method

In our case, we compute a set of POD modes from a
plasma dataset, and then use SINDy to search for low-
dimensional models for a(t) as a sparse linear combina-
tion of elements from a library of candidate terms Θ,

Θ(a)=

 1 a a⊗a ···

. (27)

Here a⊗a is all combinations of aiaj without duplicates,
and similarly for the other candidate terms. We now
assume that the evolution of a can be approximated as

ȧ=f(a)≈Θ(a)Ξ. (28)

The optimization problem solves for a sparse ma-
trix of coefficients Ξ, which represents the coefficients
(strengths) of the candidate terms in Θ. To address

this combinatorically hard problem, it leverages sparse
regression techniques, optimizing for the sparsest set of
equations that produces an accurate fit of the data. To
incorporate known physical laws, a constrained SINDy
formulation was first introduced to conserve energy in
incompressible fluids [34]. The constrained SINDy opti-
mization problem can be written

minΞ||ȧ−Θ(a)Ξ||22+λR(Ξ), (29)

subject to DΞ[:]=d,

where R(Ξ) is a regularizer such as the L0 or L1 norm,
which promotes sparsity in the coefficients Ξ. D is a
constraint matrix that allows us to impose that affine
combinations of the coefficients in Ξ have the fixed
values in d. The original unconstrained SINDy al-
gorithm solves Eq. (29) without using the constraint
DΞ[:]=d. Here a,ȧ∈RM×r, Θ(a)∈RM×N , Ξ∈RN×r,
D∈RNc×rN , Ξ[:]∈RrN , d∈RNc , where N is the number
of candidate terms, Nc is the number of constraints, and
Ξ[:]=

[
ξa11 ··· ξar1 ··· ξa1N ··· ξarN

]
denotes the flattened

or “vectorized” set of model coefficients. Motivated by
the Galerkin model we have derived, we restrict the li-
brary of candidate terms Θ to first and second order poly-
nomials in a(t), although this is not a requirement of the
SINDy algorithm; more complicated nonlinear terms may
also be included for modeling the effect of truncated POD
modes [34] or capturing POD-Galerkin models which ex-
hibit higher order nonlinearities. Ξ is typically identified
via sparse regression, for example by sequentially thresh-
olded least-squares [57, 108], LASSO [109], or sparse reg-
ularized relaxed regression (SR3) [110]. In Appendix B,
we explicitly derive the SINDy constraints required for
the identified models to satisfy the global conservation
laws discussed in Section III.

To summarize, we use a physics-informed sparse re-
gression method that requires only ȧ to discover data-
driven models for the evolution of a. In the next section,
we compute the POD for an example 3D MHD simula-
tion and feed the chronos into the SINDy algorithm to
identify data-driven models that we can use for forecast-
ing future data.

B. Initial results

The theoretical structure of this reduced-order mod-
eling framework is appealing, but its value to the com-
munity ultimately depends on the quality of the analysis
when applied to plasma systems. Guided by the the-
ory, we construct a nonlinear, physics-constrained SINDy
model for an isothermal Hall-MHD simulation of this
device, described in detail in Appendix A. The den-
sity, velocity, and magnetic field are sampled at a set
of equally-spaced 3D points in the volume and sampling
intervals ∆φ=π/16, ∆R≈∆Z≈2 cm. The result is that
each component of u and B has 47712 samples. This
high-resolution is ideal for visualization but substantial
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(a)

(b)

FIG. 3: Summary of the constrained SINDy
performance on a 3D Hall-MHD simulation of the

HIT-SI device described in Appendix A. (a)
Constrained SINDy prediction of a1,...,a16. The true

evolution is in gray, the training data used for the
model-finding is in blue, and the SINDy prediction is in

red (see online version for color). (b) Constrained
SINDy predictions of uz (Test) in the Z=0 midplane are
compared with the true uz evolution at three snapshots

in time, indicating strong algorithm performance.

size reduction can be done with little or no change to
the spatial or temporal POD modes. For instance, in
Figures 2 and 3a, the Z=0 visualizations of the 3D spa-
tial POD modes are constructed from the 1440 sample
locations at Z=0; with a non-uniform set of 50 points
in the midplane, the only change to the visualization is
a smoothing out of the shortest wavelengths. The tem-
poral resolution of the measurements is ∆tk=1 µs. The
analysis is essentially unchanged for time steps as large
as 10 µs, but smaller time steps are required in HIT-SI to
resolve harmonics of the injector frequency that appear
in the temporal POD modes. For instance, at ∆tk=10
µs, the fourth injector harmonic is sampled, on average,
less than twice per period.

From these measurements of the density, velocity, and
magnetic field, we compute the topos and chronos via
the SVD in Eq. (4), obtaining a Galerkin expansion for
the velocity and magnetic fields in magnetic field units,
as in Eq. (6). Now a constrained SINDy model is iden-
tified for the first 16 chronos ai(t) and the forecasting
is illustrated in Fig. 3a. The SINDy model accurately
captures most of the aj(t) dynamics, with larger errors
for the less energetic modes. Some of the low-frequency
content in the aj(t) is not captured by this particular
constrained SINDy model, but this is largely because the
low frequencies are not well-resolved in the time range
used for training. Despite this deficiency in the data, the
SINDy model illustrates strong prediction performance
in the Z=0 midplane reconstructions of the simulation
data in Fig. 3b and forecasts much of the time evolution
for a high-dimensional simulation that used 589,824 grid
points, a tremendous efficiency gain of O(105). Further-
more, this model was obtained by training on a dataset
representing a single discharge. Further improvements
are likely accessible by training on a dataset of many
discharges of varying trajectories.

We have found a quality forecasting model from the
SINDy system identification method, but it is interest-
ing to see how the model quality varies with the algo-
rithm hyperparameters like the model sparsity λ and
model rank r. In Figure 4, we illustrate how the nor-
malized reconstruction errors of X and Ẋ vary in the
“Pareto-space” of (r,λ) for both the unconstrained and
constrained SINDy algorithms, with the goal to explore
the space of possible models obtained from this system
identification technique. Although the exact reconstruc-
tion error values are unique to the simulation examined
here, there are some interesting qualitative features that
we expect to be quite general. The unconstrained SINDy
algorithm indicates a significant region of (r,λ) where
numerically unstable models are found. For r'10, the
models are typically either unstable or too sparse to be
effective for forecasting. In contrast, by construction the
constrained SINDy algorithm conserves the energy and
therefore exhibits no unstable models. This is promising
for discovering models on historically challenging systems
for machine learning methods − multi-scale or turbu-
lent systems that require r�1 to properly capture the
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dynamics. At first glance, it may appear that the con-
strained SINDy errors in Ẋ are worse than the uncon-
strained errors, but the low-error values in the uncon-
strained case are precisely the unstable models. These
nonsparse models are overfitting, leading to instability
in the numerical integration. Finally, we can see that
at λ≈0.091, all the SINDy models are rendered ineffec-
tive. This value is precisely at the driving frequency of
the HIT-SI injectors in this simulation; if λ is larger than
this frequency, SINDy thresholds off the primary dynam-
ics in the system.

V. CONCLUSIONS

A hierarchy of models with varying fidelity is essen-
tial for understanding and controlling plasmas, and our
work provides a principled lower level on this hierarchy −
low-dimensional and interpretable plasma models which
can be used for physical discovery, forecasting, stability
analysis, and real-time control. We have discussed how
these models are obtained from either projection-based
or data-driven methods. Furthermore, we illustrated how
Galerkin plasma models retain the global conservation
laws of MHD, and machine learning or system identifi-
cation methods like SINDy can use these constraints di-
rectly in an optimization procedure for discovering such
models from data. We demonstrated the effectiveness
of this approach for a 3D isothermal Hall-MHD simula-
tion of a self-organized plasma. This framework may
be used more broadly for discovering low-dimensional
models, forecasting, or real-time control of complex plas-
mas. This principled enforcement of global conservation
laws is critical for the stability and success of future low-
dimensional plasma models.

There are a number of potential numerical limitations
to the methodology presented here, including stability is-
sues, the curse of dimensionality, addressing turbulent or
stochastic systems, and extrapolation beyond the train-
ing dataset. Fortunately, all of these potential caveats
are currently the subjects of intense ongoing research ef-
forts. Generally, the systems of nonlinear ODEs identi-
fied by the unconstrained SINDy algorithm tend to have
depreciating stability properties as the number of modes
increases; unless steps to constrain the model structure
are taken, as in the present work and other recent work in
provably stable data-driven models [101, 118, 119], this
may prove a difficult obstacle. Fortunately, there are also
several alternative formulations of the SINDy algorithm
that may be more robust in some circumstances and are
worth exploring on plasma systems [111–117, 120].

In regards to the curse of dimensionality, the SINDy
library grows combinatorially with the number of state
variables and the optimization problem can become very
ill-conditioned and computationally intensive. Even
for the relatively modest candidate library used in the
present work, limited to quadratic polynomials, the size
scales asO(r3) becauseQ0

ijk is a three index tensor. How-

ever, there is recent work utilizing low-rank tensor de-
compositions to significantly reduce memory usage and
computational latency [111]. There has also been con-
siderable recent progress in the modeling of turbulent
systems that exhibit broadband turbulence, which gen-
erally require a prohibitive number of modes to faithfully
reconstruct the field. New approaches bypass this re-
quirement by using stochastic techniques [112, 116, 120]
or finding new data-driven closures for the Navier-Stokes
equations [117, 121]. Finally, extrapolation beyond the
training set is a central challenge for all machine learning
techniques and this issue is primarily addressed in system
identification methods by additional steps to mitigate
overfitting, such as the additional of a sparsity-promoting
regularizer in the optimization problem.

Lastly, to promote reproducible research, the python
code used for this analysis can be found at https:
//github.com/akaptano/POD-Galerkin_MHD. The re-
sults presented below have also been incorporated into
an advanced example of the PySINDy software pack-
age [108].
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A The HIT-SI experiment and simulations

HIT-SI was a laboratory plasma device that formed
and sustained spheromak plasmas for the study of plasma
self-organization and steady inductive helicity injection
(SIHI) [80]. It consisted of an axisymmetric flux con-
server and two inductive injectors (actuators) mounted
on each end as illustrated in the top left panel of Fig.
1. Magnetic coils on each injector, generating helical
fields linking through the flux conserver, were oscillated
in phase at a frequency with values between 10−70 kHz.
The magnetic fields generated by the two injectors were
spatially and temporally 90◦ out of phase, resulting in ap-
proximately constant power and helicity injection. The
fields from these injectors provided the power and mag-
netic helicity to both form and sustain a spheromak dur-
ing experimental discharges, with a quasi-steady-state
period of roughly constant spheromak amplitude lasting
<1 ms. Additional details of the experiment and its op-
eration can be found in references [80, 122, 123].

https://github.com/akaptano/POD-Galerkin_MHD
https://github.com/akaptano/POD-Galerkin_MHD
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FIG. 4: Summary of the (r,λ) space of unconstrained and constrained SINDy models from the HIT-SI simulation.
The unconstrained models approximately separate into three distinct classes. Class I illustrates nonsparse and

typically unstable models. Class II consists of sparse and accurate solutions. Class III denotes solutions which are
too sparse to accurately capture the dynamics. Computed errors are for the testing part of the dataset; the colorbar

(see online version for color) is limited to 101 as unstable model errors grow arbitrarily large. Constrained SINDy
guarantees the energy norm is preserved and thus class I vanishes. Algorithmic advances [101, 111–117] may help

further expand the size of class II.

Simulations of HIT-SI were performed using the Hall-
MHD equations and solved by the NIMROD code [124].
NIMROD discretizes equations in cylindrical coordinates
(R,Z,φ); the R-Z plane is composed of finite elements
and the φ component is expanded in a finite Fourier se-
ries. Mesh convergence was obtained previously by Ak-
cay [125] on a grid with 28×28 finite elements of polyno-
mial degree 4 and 22 Fourier components, so we use the
same grid for the simulation here. Due to the 2D grid, the
HIT-SI injectors cannot be directly modeled in the simu-
lation. Rather, the injectors are implemented as B⊥ and
E‖ boundary conditions at the top and bottom device
surfaces to match the experimental waveforms. A de-
tailed description of the implementation of these bound-
ary conditions can be found in Akcay [126]. Dirichlet
boundary conditions are used for all other variables; the
plasma density satisfies ne=2×1019 m−3 and the temper-
atures satisfy Ti=Te=14 eV. Isotropic viscosity ν=550
m2/s and Spitzer resistivity [96] is used. The remain-
ing boundary conditions are u×n̂=u·n̂=0, J ·n̂=0, and
B ·n̂=0. For more information on the numerical model
used in this simulation, see Morgan et al. [127]. The data
for training and testing are obtained during the approx-
imately steady-state phase of the simulation so that the
energy constraints derived in Section III A are applicable.

B Derivation of the SINDy constraints

In Sec. III, we derived constraints for the POD-
Galerkin model coefficients from global conservation
laws; our goal here is to rewrite these constraints to be
compatible with the formulation of the SINDy system
identification method. The conclusions for the global
conservation of energy were: 1) no constant terms, 2)
an anti-symmetry constraint on the linear part of the
coefficient matrix Ξ, and 3) a more complicated energy-
preserving structure in the quadratic coefficients. Con-
sider a quadratic library in a set of r modes, ordered as
Θ(a)=[a1,...,ar,a1a2,...,ar−1ar,a

2
1,...,a

2
r]. Note that this

arrangement of the polynomials in Θ differs from Loiseau
et al. [74], so the indexing and subscripts are also differ-
ent here. First we will consider the constraint on the
linear part of the Galerkin model in Eq. (10), aTL0a≈0.
We can rewrite this in the SINDy notation as

0=
[
a1 ··· ar

]ξ
a1
1 ··· ξa1r
...

. . .
...

ξarr ··· ξarr


a1...
ar

. (30)

We conclude ξ
aj
i =−ξaij for i,j∈{1,...,r} and identify ξ

aj
i

by accessing the (i−1)r+j index in the vector of model
coefficients Ξ[:]. Note we are only accessing the first r2
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elements of Ξ[:]. For models of linear and quadratic poly-
nomials, N=(r2+3r)/2 and the number of constraints
from anti-symmetry of the linear coefficients is NL=(r2+
r)/2. Thus there are now only rN−NL=r(r2+2r−1)/2
free parameters. Since the constrained SINDy algorithm
solves linear equality constraints of the form DΞ[:]=d,
we can write this out explicitly for r=3,

1 0 0 0 0 0 0 0 0 0 ···
0 0 0 0 1 0 0 0 0 0 ···
0 0 0 0 0 0 0 0 1 0 ···
0 1 0 1 0 0 0 0 0 0 ···
0 0 1 0 0 0 1 0 0 0 ···
0 0 0 0 0 1 0 1 0 0 ···




ξa11
ξa21
ξa31
ξa12
...

=


0
0
0
0
0
0

. (31)

The boundary conditions u·n̂=0, J ·n̂=0, B·n̂=0 guar-
anteed that the quadratic nonlinearities were energy-
preserving, and thus that cubic terms in Eq. (12) vanish,

r∑
i,j,k=0

Q0
ijkaiajak≈0. (32)

This constraint is significantly more involved to reformat.
Written in SINDy notation, this is equivalent to

0=
[
a1 ··· ar

]ξ
a1
r+1 ξa1r+2 ··· ξ

a1
N

...
...

...
...

ξarr+1 ξarr+2 ··· ξ
ar
N




a1a2
...

ar−1ar
a21
...
a2r


. (33)

Expand this all out and group the like terms, i.e. terms
which look like a3i , aia

2
j or aiajak, i,j,k∈{1,...,r}, i 6=

j 6=k. All of the like terms can be straightforwardly

shown to be linearly independent, so we can consider
three constraints separately for the three types of terms.
The number of each of these respective terms is

(
r
1

)
=r,

2
(
r
2

)
=r(r−1), and

(
r
3

)
=r(r−1)(r−2)/6, for a total of

r(r+1)(r+2)/6=NQ constraints. With both constraints,
we have rN−NL−NQ=r(r−1)(2r+5)/6 free parameters,
and Nc=NL+NQ constraints. Further considering the
quadratic case, we find that coefficients which adorn a3i
must vanish, ξaiN−r+i=0. Now define

ξ̃ijk=ξai
r+ j

2 (2r−j−3)+k−1
. (34)

The second type of constraint, with i 6=j, produces

ξaiN−r+j=

{
ξ̃jij i<j

ξ̃jji i>j,
(35)

while the third type of constraint produces

ξ̃ijk+ξ̃jik+ξ̃kij=0. (36)
This relation is equivalent to the energy-preserving con-
ditions in Schlegel et al. [79], but the indexing is not
straightforward, even after fully expanding Eq. (33).
This equation is an arbitrary r generalization to the r=3
constraint used in Loiseau et al. [34]. For the specific case
where the plasma system is Hamiltonian (for instance in
ideal [128], Hall [129], and extended [130] MHD without
dissipation) and the measurements are assumed to be
sufficient to represent the Hamiltonian, one could alter-
natively use formulations of SINDy to directly discover
the Hamiltonian [131] and subsequently derive the equa-
tions of motion. Lastly, if the global energy conservation
constraint on the quadratic terms in the SINDy coeffi-
cient matrix Ξ is written DjkΞk=0, then the quadratic
cross-helicity constraint can be written DjkAklΞl=0.
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