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A new Reynolds-averaged Navier-Stokes model is presented with the property that it admits self-
consistent, high-order spatial profiles in simulations of two-fluid turbulent mixing layers. Whereas
previous models have been limited by the assumption of a linear mixing profile, the present work
relaxes this assumption, and as a result is shown to achieve much better agreement with experimental
profiles. Similarity analysis is presented to derive constraints on model coefficients to enforce desired
self-similar growth rates that are fully consistent with the high-order spatial profiles. Through this
similarity analysis, it is shown that care must be taken in model construction, as it is possible to
construct certain terms in such a way as to leave growth rates unconstrained. The new model, termed
the k-¢-L-a-V model, is then applied in simulations of Rayleigh-Taylor, Richtmyer-Meshkov, and
Kelvin-Helmholtz mixing layers. These simulations confirm that the expected growth parameters
are recovered, and high-order spatial profiles are maintained.

I. INTRODUCTION

Significant effort has been devoted over the years
to the development of Reynolds-averaged Navier-Stokes
(RANS) models for variable density turbulent mixing [1-
22]. A common approach in the development of many
such models is to rely on self-similarity analysis to deter-
mine constraints on model coefficients that will reproduce
certain expected growth parameters [5, 6, 10, 14, 15, 21,
22]. The self-similarity approach generally begins with
an ansatz approximation that turbulence quantities can
be written as separable functions of space and time. For
instance, for an arbitrary model variable g, one might
make the approximation,

g(x,t) =Go(t) f(x) - (1)

In Eq. 1, the assumed form of f determines the spatial
profile of g and is only a function of the self-similar coor-
dinate x = x/h, where h is the mixing layer half-width.
Starting with this separability ansatz, it then becomes
possible to derive algebraic constraints on model coefli-
cients that will enforce the ansatz. The approach is quite
powerful in that its application can be used to derive con-
straints that will allow a model to exactly reproduce de-
sired behavior such as the Rayleigh-Taylor (RT) growth
parameter «, the Richtmyer-Meshkov (RM) growth pa-
rameter 0, and the Kelvin-Helmholtz growth parameter
J.

In previous models such as the k-L [5], k-L-a [10], and
k-L-a-V [15] models, f is assumed to take a quadratic
form for most turbulence variables, and profiles of the
primary mixing quantity (i.e., density in RT mixing or ve-
locity in KH mixing) are assumed to take a linear profile.
These approximations simplify the analysis significantly
but ultimately lead to mixing profiles that disagree with
data in the tails. That is, data from high-fidelity simu-
lation and experimental measurement generally suggests
that profiles of turbulence kinetic energy (TKE) are more

closely represented by a Gaussian, and mixing profiles
more closely represented by an error function or a hyper-
bolic tangent.

Some authors have attempted to minimize this discrep-
ancy by adjusting turbulent diffusion coeflicients in an
ad hoc fashion after first determining self-similarity con-
straints under the assumption of a linear mixing profile
[6]. This approach can improve agreement to an extent
but violates the self-similarity constraints, which can lead
to unintended and hard-to-predict discrepancies in antic-
ipated growth rates. In addition, this approach tends to
have relatively little impact on the mixing profile, lead-
ing to continued discrepancy with data. More recently,
Zhang et al. [21] have introduced an approach for set-
ting model coefficients in the k-L model that relaxes the
assumption of a quadratic profile for k to an extent. How-
ever, even this approach maintains significant restrictions
on the polynomial power of the self-similar profiles for k
and L, and it also relies on the ansatz of a linear mixing
profile.

The present work introduces a new model, termed the
k-¢-L-a-V model, which is developed with the explicit
intent of designing a model that will admit high-order
profiles for both mixing profiles and turbulence variables
through self-similarity analysis. To accomplish this, the
k-¢-L-a-V model solves a transport equation for the tur-
bulence velocity ¢ (which can alternatively be thought
of as the dissipation rate of the turbulence length scale)
in addition to transport equations for turbulence kinetic
energy k, turbulence length scale L, mass-flux velocity
a;, and scalar variance V. Self-similarity analysis of this
model will be presented demonstrating that constraints
on model coefficients can be derived that will enforce ex-
pected growth rates while maintaining the desired high-
order profiles. The model is then applied in simulations
of 1D RT, RM, and KH layers to verify that expected
growth rates are recovered and high-order profiles are
maintained.

The remainder of this work is laid out as follows. First,



in section II, the k-¢-L-a-V model is presented. Then,
in section III, self-similarity analysis is presented to de-
rive constraints on model coefficients necessary to repro-
duce expected RT, RM, and KH growth parameters. The
model is then applied in simulations of 1D RT, RM, KH,
and combined RT-KH mixing layers in section IV to ver-
ify that the desired behavior is in fact obtained. Results
with the k-¢-L-a-V model are compared with results of
the k-2L-a-V model [14-16, 22], and it is demonstrated
that the high-order profiles obtained with the k-¢-L-a-
V model are a much closer match to data. Finally, in
section IV, conclusions are drawn, and recommendations
are made regarding the direction of future research.

II. MODEL EQUATIONS

The k-¢-L-a-V model is derived from the compress-
ible RANS equations for a two-component, non-reactive
gas mixture. In the present work, an overbar denotes
Reynolds averaging, and a tilde denotes mass-weighted
(Favre) averaging. An arbitrary scalar, f, is decomposed
as

f=F+f=Ff+f", (2)

where the Favre average is related to the Reynolds aver-
age through the density, p, according to

f= 3)

SIEL

The Reynolds stress tensor, mass-flux velocity vector,
and density—specific-volume covariance are defined, re-
spectively, in terms of the velocity vector, u;, and the
specific volume, 1/p, by

prij = —puld] (42)

a; = —u!’ (4b)
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Equations (5)—(18) below summarize the k-¢-L-a-V
model, where Y is the mass fraction, v is the volume
fraction, p; is the eddy viscosity, g; is the gravitational
acceleration vector, e is the specific internal energy, ¢
is the turbulent velocity, L is the turbulent length scale,
and V is the model variable for variance of the mass frac-
tion. Subscripts H and L, as in Yy or vy, indicate scalar
fractions associated with the heavy and light species, re-
spectively. The model coefficients C4, Cp, Cp, Cp1, Cpa,
Cp3, Cr1, Cra, Cr3, Cy1, Cya, Cys, Na, Ney Ni, Ny,
Ny, Ny, Ny, and Cye, are determined through similarity
analysis. The model equations are
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P7ij = Caen2p1tSi5 — gﬁ/ﬂsz’j ; (17)

and

~ ~ 2
- (3—’}’ - 3—L> V. (18)
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The k-¢-L-a-V model as it is presented above is formu-
lated under the assumption of two-fluid mixing, as this
form lends itself most easily to self-similarity analysis.
As discussed in Appendix A, it is possible to formulate
the model for an arbitrary number of mixing species.
For simplicity, however, the remainder of the present
manuscript will focus on the special formulation for two-
fluid mixing.

It has long been recognized that a transport equation
may be derived for any turbulence model variable of the
form ¢™L"™ for arbitrary exponents m and n [23-25].
Moreover, transport equations of this form are generally
expected to include right-hand-side contributions due to
shear production, buoyancy production, dissipation, and
diffusive transport [25]. Although the transport equation
for ¢ given by Eq. 10 is arrived at fairly heuristically, we
note that it is dimensionally correct, Galilean invariant,
and includes terms corresponding to the four contribu-
tions previously mentioned. Although models involving
a transport equation for turbulence velocity (i.e., m = 1,
n = 0) are not frequently encountered, there have been
some explorations of this form [26].

Generally speaking, what sets the present work apart
from previous models that have explored use of the tur-
bulence velocity as a primary turbulence variable is the
presence of a second turbulence velocity in the present
model in the form of Vk. As;imilarity analysis will re-

veal in section III, the ratio v is expected to approach

a constant value at the center of a mixing layer in both
buoyancy-driven and shear-driven mixing regimes. How-
ever, the constant that is approached is different for the
two regimes, similar to the behavior of the ratio of trans-
port to destruction length scales in two-length-scale mod-
els [14]. Thus, the utility of having two turbulence ve-
locities is in providing the necessary degree of freedom to
simultaneously match growth rates in both the buoyancy-
driven and shear-driven regimes. While it may be pos-
sible to develop a two-length-scale model conforming to
the same high-order spatial profiles as the present two-
velocity model, the analysis was found to simplify consid-
erably using the two-velocity form of the present work.
A peculiar feature of the k-¢-L-a-V model worth not-
ing at this time is the appearance of the scalar variance
V in the denominator of production terms in Egs. 10 and
12. The necessity for this development will be discussed
in greater detail in section III, but the presence of V' in
shear production terms indicates that the present model
requires scalar transport. In other words, the k-¢-L-a-V

model would not correctly predict free shear growth in a
single fluid flow unless one fluid stream has been injected
with a passive scalar. In this sense, the k-¢-L-a-V should
be thought of as a model specifically for two-fluid mixing.
With this caveat noted, the next section discusses devel-
opment of the model under the assumption of high-order
spatial profiles.

IIT. SIMILARITY ANALYSIS

Self-similarity analysis is a powerful tool that has been
applied previously to derive constraints on model coef-
ficients in the k-L [5, 12], k-L-a [10], k-2L-a [14], and
k-2L-a-V [15, 22] models. In the present work, we relax
the assumption of a linear mass fraction profile that was
utilized in all of these previous works. To begin, a change
of variable is introduced in terms of the mixing layer half-
width h(t) such that x = z/h. In the following sections,
it is assumed that a scalar profile across the mixing layer

is given by
1 X A2\ Yy ~
)=~ (1=%)" dt. (19)
~1

In Eq. 19, ny is an arbitrary exponent, and A is a normal-
ization constant given in terms of the gamma function I’
by

I'(ny +1)

AV v D)

(20)

In the case of an RT or RM mixing layer, the scalar profile
represents species mass fraction across the mixing layer,
while in the case of a KH mixing layer the scalar profile
is a passive tracer in one fluid stream.

In all cases, the self-similarity ansatz is applied such
that we assume turbulence variables are separable func-
tions of time and space. From prior work [10], it has been
shown that L must assume a spatial profile of the form
fY2, where f = 1 — 2, in order to constrain the rela-
tionship between L and h. Additionally, it is recognized
that in order to maintain consistency with the diffusive
terms, the eddy viscosity must assume a spatial profile
of the form f!, which constrains the spatial profile of ¢
to also follow a profile of the form f!/2. With these con-
straints in place, the separability ansatz is summarized
according to,

k(x:t) = Ko (t) ™ (x) (21a)
o (x.t) =P (t) f*(x) (21b)
L(x,t) = Lo (t) f** (), (21c)
a(x;t) = Ao () f™(x) (21d)
V(x:t) = Vo (t) "+ (x) (21e)



Generally speaking, there is no reason why the subse-
quent analysis could not be performed for arbitrary ex-
ponents ny and ng; however, a priori observation sug-
gests that optimal agreement with experimental data oc-
curs when ny = ny + 1. Moreover, it is found that best
agreement occurs when ny & 3/2. Thus, to simplify the
algebra required, moving forward it is assumed ny = 3/2
and ny = 5/2.

As a final comment before continuing on to the details
of self-similarity analysis, it is interesting to note that
the k-¢-L-a-V model does not utilize separate transport
equations for production and destruction length scales
like the k-2L-a or k-2L-a-V models [14, 22]. By instead
utilizing the ¢ equation, the k-¢-L-a-V model effectively
transports two different turbulent velocities: (1) ¢ which
is utilized in both destruction and diffusive transport
terms and (2) vk which couples back to the momentum
equation through the isotropic Reynolds stresses. As the
following analysis will show, this approach is able to re-
cover the same self-similar growth parameters for RT and
KH flow as the two-length-scale models.

A. Similarity of an RT mixing layer
1. Similarity of the L equation

For a 1D RT mixing layer in the limit of zero Atwood
number, Eq. 11 reduces to

DL . . 0 (moL
PO = Cripg + 7 (N_L%> : (22)

Assuming Ly = Bh for some proportionality constant (
and substituting Eqs. 21 into Eq. 22 then results in the
following expression after some algebra

L():PO 2[3—2—01/1 X2+PO CLl_ﬂ_Q (23)
NL NL ’

where the dot notation has been used to indicate differ-
entiation with respect to time. The separability ansatz
requires the term that is quadratic in x must vanish,

which is satisfied if 32 = Cr1 Nz /2. Utilizing this con-
straint further reduces Eq. 23 to

Lo = %PO . (24)

2. Similarity of the a equation

Similarly, for a 1D RT mixing layer, Eq. 12 reduces to

Da b O . _ o

R M
2k [ |oFy 0 (o
3V38 |y, Y| 0x Oz \N,0xz)

(25)

Note at this point the presence of V3/8 in the denom-
inator of the production terms in Eq. 25. Since V is
unitless and approaches a predictable steady-state value,
it is used here effectively as a correction to the expected
spatial profiles for the two production terms such that
each term on the right-hand-side of Eq. 25 should con-
form to the expected f™* profile. Recognize that this is
only necessary because of the high-order nature of the
mixing profile. If low-order profiles are assumed, as in
previous models, no such correction is necessary.

By applying the low-Atwood number approximation
that p~ (pg + pr) /2, it can be shown

~ 2 2
<Z_H - Z_L> = <AT2> , (26)
Yy YL 1— A7

where Ar = (pg — pr) / (pm + pr) is the conventional
Atwood number. Utilizing Eq. 24 to expand the mate-
rial derivative, recognizing for a hydrostatic mixing layer
that % = —pg, and substituting Eqgs. 21 and 26 into
Eq. 25 leads to an expression similar in form to Eq. 23.
The resulting expression contains second-moment terms
proportional to x? which must simultaneously go to zero
with zero-moment terms. Satisfaction of this require-
ment introduces the constraint that N, = 5Ny, which
reduces both second-moment and zero-moment terms to
the same expression,

. 4ATﬁ KO CLI AOPO
Ag=—[Ca+ L
0 < A 3AV03/8 AOPO 2 ) Lo
—4CpVy A2y . (27)

3. Similarity of the ¢ equation

For the 1D RT mixing layer under consideration,
Eq. 10 reduces to

D¢ ¢* a 9 (e 09
p— =Cp1p— — Cpsp—= — == . (28
th :DlpL p3p¢v3/gg+ ax Np 6$ ( )
Following the same approach as before, Eqs. 21 and 24
are substituted into Eq. 28, and the resulting expression
requires N, = Nr. Substitution of this constraint back
then reduces the ¢ equation to

(29)

) 2
pO:(Cpl_%>P_0 C Ay

2 LO — Yp3 PO‘/Og/Sg .



In addition, it is anticipated that Ay and Py should be
related according to Ay = C, Py, for some proportionality
constant C,. One way to reduce Eqgs. 27 and 29 to the
same expression is if the following constraints are satisfied

Co = —247/C5, (30)

Op3 = ‘/0 ) (31)

and

c 28 Ko
A= ——om —— T3

3AVY/8 Ty S
If we now invoke the ansatz that h = aApgt?, we can

utilize Eq. 24 and substitute into Eq. 29 to arrive at an
expression for the RT growth parameter o

—Cy . (32)

Y CL V8 Th
25 (3-48%)

At this point, it is somewhat easier to highlight the
utility of having V3/8 in the denominator of the buoy-
ancy production term in the ¢ equation. In order to
derive similarity constraints, each term in Eq. 28 must
conform to the same spatial profile. As discussed previ-
ously, 8 can only be fixed as a constant when L takes
an f1/2 profile. This requirement fixes the profile for ¢
to be f1/2 as well. Since a must have the same spatial
profile as k, which we want to have a higher-order profile
of the form f™*  the buoyancy production term in the ¢
equation must assume a form paF ~'g, where F' has units
of velocity and a spatial profile f*~1/2. A second con-
sideration for the form of F is that one must be able to
derive a constraint on «, which arises from the reduced ¢
equation as in Eqgs. 29 and 33. It turns out that if the con-
struction of F' = k/¢ is used, « assumes a dependence on
the ratio P}/Ko, which cannot be uniquely constrained
through similarity analysis. Similarly, if F = k/¢, the
RT growth rate also cannot be constrained. Thus, it is
desirable to construct F' in such a way as to avoid this
outcome, which is what motivates the current form. As
the next subsection will discuss, [y can be shown to reach
a predictable steady-state value, which enables a to be
constrained according to Eq. 33.

(33)

4. Similarity of the V' equation

For a 1D incompressible mixing layer, the RT mixed-
ness parameter is defined by

To simplify Eq. 34, recognize for ny = 3/2,

1

n 256

Vo/ (1) My =2 (35)
. 315

~ 0.234. (36)

Substituting Eqs. 35 and 36 back into Eq. 34 and rear-
ranging to solve for Vj gives

Vo~ 0.288(1 — Opy) . (37)

The V equation for a 1D RT mixing layer is then given
by

DV OV Oy _¢
P —Cv1Mt—ax e CvszV
a_ 0 we OV
+C’V3VEpg + % (N_V %) . (38)

Recognizing from Eq. 37 that Vo = 0 and substituting
Egs. 21 and 26 into Eq. 38, one arrives at an expres-
sion that requires Ny = 8Ny. When this constraint is
applied, the following expression is obtained

_ COviCLiNp (

C
0= =05 cvz+ﬂ)vo

2

K
+2Cy3v/ CB%L_ZATQ' (39)

Equation 39 can then be rearranged to solve for a con-
straint on Cy 3,

Com 1 Lo K %) Vi CviCriNg
V3 =3 EVodrg Ko va o5
(40)

where Vjy has been determined previously in Eq. 37.

5. Similarity of the k equation

For the hydrostatic 1D RT mixing layer, Eq. 9 becomes

_Dk  _ pok O [ e Ok
PE——PGQ—CDT+%<E% . (41)



As before, substituting into Eq. 41 results in an expres-
sion that requires Ny = 5N to simultaneously satisfy
the second-moment and zero-moment terms. Imposing
this constraint then reduces the k equation to

. Cr1\ PoK
Ko =2v/CpPyArg — (CD + #) (}J 0. (42)
0

Continuing, it is assumed that K should be proportional
to the mixing layer growth rate according to Ky = vh =
2vaAr gt for some proportionality constant . Substitut-
ing this expression back into Eq. 42, the following expres-
sion for « can be obtained

2 8VCr

o= — . (43)
201 (&2 +1)
This allows one to write
K 4y%a 2y/C
L—O = ’Yﬂ ATg = - B ATg. (44)
0 Cr1 (CLDI + 1)
In addition,
VKo _ 2vaArgt _ Criy (45)
Py~ ohpaArgt 2 B
or, after substituting Eqs. 43 and 33,
Cyp
Ko _ _ 1 3-4gp (46)
2 C :
L

Then, substituting Eq. 46 back into Eq. 32 results in the
following complete constraint for C'4

Cpl

p__3-da, (47)
N 6AVHVCp g_LDl +1 L

Ca

Similarly, substituting Eq. 44 back into Eq. 40 results in
a complete constraint for Cy 3.

1

Cys=—"F—X
VoCra (%)
N
[(Cvz + CQLI) Vo — 70‘/126’;21 L (48)

6. Energy balance in an RT mizing layer

The energy balance within a 1D RT mixing layer can
be written as

Ex (t) = APE— U . (49)

where Fx is the total turbulence kinetic energy inte-
grated across the layer, APE is the change in potential
energy over time, and V¥ is the energy dissipated into
internal energy given by

t h
(1) = /O /_ h CDﬁ%dxdt . (50)

By substituting Eqgs. 50, 19, and 21, into Eq. 49 and
then differentiating with respect to time, the following
additional constraint derived

S——— e 1
Cn 8n2A2 N, ~ 5042 Nj (51)

7. Similarity of the scalar and internal energy equations

The procedure for performing similarity analysis of the
scalar and internal energy equations follows closely the
approach outlined in previous subsections. Egs. 21 and
24 are substituted into Eqgs. 6 and 8, and constraints are
sought that simultaneously satisfy the second-moment
expressions and the zero-moment expressions. For the
sake of brevity, the details of these analyses are omitted
here, but the result is the derivation of the following ad-
ditional constraints on diffusion coefficients N, and Ny

N.= Ny = N. (52)

B. Similarity of a KH mixing layer

The case of a quasi-1D shear layer is now considered
such that u, is a linear function of a single spatial dimen-
sion, y, and u, = 0. In terms of the similarity variable,

X = y/h(t),

U, x=>1
Uy(x) = qUe[l —A+2A4Y, (x)], —-1<x<1 (53)
U17 X S —1

where Y, is an indicator function that takes a similar
form to Eq. 19,

nw=4 [ (1-%2)™ dx (54)

In Eq. 54, a priori observation suggests that n, = 3/4
should provide good agreement with experimental veloc-
ity profiles. Thus, for n, = 3/4,
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The convective velocity is then defined as
. Us + Uy

= 5 ,

and A is the KH-analogue Atwood number defined by

U. (56)

_Ug—Ul
_U2+U1'

(57)

1. Similarity of the L equation

For the quasi-1D KH mixing layer, Eq. 11 reduces to

Iy \
ClevPL
devp d)((ay)]

0 oL
b= (L2 (58)

Oy \ Np 0y
Following a similar approach as before, it is assumed that
Ly is proportional to h such that Ly = Sh. Substituting

Egs. 21 and 53 into Eq. 58 results in second-moment and
zero-moment expressions that are reduced only if

DL L
—— =Cr1p Cr3—
P Dy 11p¢ + CL3 -

B CriNpA?
T 242 —ON.Cr3Caen

5 (59)

where ® is the inverse of the KH turbulence intensity
defined according to

AU?
P = 60
e (60)
Utilizing Eq. 59 reduces the L equation to
. Cr,1A?
Lo L1 Py. (61)

T 242 — ON.C13C00

2. Similarity of the momentum equation

For an incompressible shear layer described by Eq.
(53) with no body force, Eq. 7 reduces to:

_Di, 9 _
B = gy T (62)

Substituting into Eq. (62) gives

D,
Dt

Of Oty
= CyonLoPo [ 22
! Oo(ayay

821,
T a;2> . (63)

Evaluating the derivatives and substituting Eqgs. 59 and
61 into Eq. 63 yields the following constraint

2
e — Oy . 4
7N, Ca (64)

8. Similarity of the V' equation

For the KH mixing layer under consideration, it is as-
sumed that one of the fluid streams is injected with a
passive tracer Y. As before, it is assumed that this tracer
has a profile given by

voo-g [ 03w @)
where
5 s
Ayzﬁl;(é)) :‘%. (66)

The model equation for the variance of Y in the pseudo-
1D KH mixing layer is then given by

=L O oyl 4+ 2
"t Vit 9y Oy vePp + oy

DV oY oY ) o [ w OV
NV 6y ’

(67)

Following the familiar procedure, Eq. 67 is reduced when
Ny = 8Ny, which results in the following expression

s 5
Cvr gz = Cvalh = Vo =0. (68)

Similar to the approach described in Eqgs. 34 through 36,
it is recognized that V should reach a constant value
Vo ~ 0.288 (1 — Okp) in terms of the KH mixedness,
Ok pm. Then, rearranging Eq. 68 to solve for Cyq gives

CVl = 0.288 (1 — eKH) X
20\/214%/14% — CVQA%/@NLCLgcdey + OLlA%/Ai
NpCr1 A2

(69)

4. Similarity of the k equation

Equation 9 reduces to the following for the KH mixing
layer under consideration
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Recognizing for a steady-state shear layer that Ko = 0
and simplifying as before, Eq. 70 is reduced when Ny =
5Ny, which reduces it to

B2AU? Py 582 KoPy
U i e R O T

Cevi
TR Ly Ni Lo Lo

Substituting Eq. 59 into Eq. 70, the following expression
can then be obtained for the KH turbulence intensity

. NiCaeo (1 +Crs3 gﬁ)
b =
4 (1+282)

(72)

Or alternatively, by rearranging Eq. 72, the following
constraint can be determined for Cp3

2 C —1
e (A2 (1 + 20—51) o

CL3 - E NLCdev

—1|. ()

5. Similarity of the ¢ equation

The ¢ equation for the quasi-1D KH mixing layer is
given by

28 O P 4 Oy DTy =
P =P O P gy

N, 0y
(74)
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Similar to the approach for the %k equation, it is recog-
nized also that Py = 0 for a steady-state KH mixing layer.
Then, substituting into and simplifying Eq. 74 requires
N, = N, which results in the following

P} 1 1
Cp1 -+

5 13
LO A’LQL L0V03/8

202
Cp2cdevAU ﬁ Np LO

=0.
(75)

Substituting Eq. 59 into Eq. 75 and rearranging leads to
the following expression

1:)()2 o CpQNLOdev
AUZ 42V — VB Sl (242 — ®NLCLsCleo)

(76)

6. Mixing layer growth parameter

For the case of a spatially evolving shear layer the non-
dimensional growth rate § is defined as:

dh
dz
It is therefore possible to write for a temporally evolving
shear layer:

]

(77)

. dhdx

h=—— =40U,. 78
dzx dt (78)

Recalling that Ly = Sh and substituting Egs. 59 and 76

into Eq. 78, the following additional constraint is deter-

mined

§\? [242 — ®NLCr3C e0]
Opg =\ — X
A 4A2C11Ceyp
3/8 Cp1

|:A121/‘/03/8 -W (242 — ®NCr3Cqe0)

L1 79)

C. Decaying homogeneous isotropic turbulence

In the absence of mean velocity or pressure gradients,
the model equations reduce to

¢ (0)
& uo (1)
Lo (52)
W, ®

These equations are solved in terms of a reference time,
to and decay exponents, n and m:

k= Ko (1 + i) , (84a)
to
¢ 1-n/2

L=Lo (1 + —) : (84b)
to
+ —n/2

¢ =P (1 + —) : (84c)
to
t —m

V=" <1 + t—> (84d)
0



TABLE I. Summary of physical parameters used to constrain
k-¢-L-a-V model coefficients.

m &' §/A Okn

a@RTn

0.06 0.80 1.11 1.33 0.035 0.08 0.80

Substituting Eqs. 84a through 84d back into Eqgs. 80
through 83 leads to the following constraints after some
algebra

Cp  2n
Opl - n
Cvg 2m
—_— = . 87
CLl 2—n ( )

D. Summary of constraints

Equations 31, 33, 48, 47, 51, 64, 69, 73, 79, and 85
through 87 represent 12 constraints on model coefficients
Cp3, Ni, Cvs, Ca, CB, Cyev, Cy1, Cr3, Cp2, and the

: Cp Cpl Cva 1 -
ratios 52, &, and o2 in terms of physical param

eters a, Opr, Oxm, ®°1 §/A, n, and m. In addi-
tion, constraints have been determined on diffusion co-
efficients such that N, = N, N = 5N, N, = 8N,
and N, = Ny = N, = Ni. We have thus determined 18
constraints on the 20 model coefficients previously enu-
merated. To complete the model, the following constraint
is applied to Co to ensure that the total velocity diver-
gence contribution to the L equation is 1/3 [5, 16],

CL2=%+§CL3. (88)
To resolve the remaining degree of freedom, a value
should be chosen for Cp; or one of the dissipation co-
efficients Cp, Cp1, or Cya. For simplicity, the present
work takes Cp = 1, which completes the set of con-
straints on model coefficients for the k-¢-L-a-V model.
Table I summarizes the values of physical parameters
used, while Table II summarizes the full set of model
coefficients through the similarity constraints. Note that
by selecting a different value for C'p, one could derive
a different set of model coefficients consistent with the
physical parameters in Table I. The difference among
such coefficient sets would be the value of the propor-
tionality constant 3, which effectively sets the scaling on
most model coefficients.

IV. NUMERICAL RESULTS

The k-¢-L-a-V model is applied here to the simulation
of several one-dimensional RT, RM, and KH test prob-
lems. The model is implemented in the Ares code, which
is a second-order arbitrary Lagrangian/Eulerian (ALE)
hydrodynamics code developed at Lawrence Livermore
National Laboratory (LLNL) [12]. Results with the k-
¢-L-a-V are compared with results obtained with the k-
2L-a-V model [14-16, 22] to highlight differences that are
realized due to the high-order spatial profiles of the k-¢-
L-a-V model. While comparisons here are made against
the k-2L-a-V model specifically, they should be consid-
ered representative comparisons for all “k-L-type” mod-
els which utilize the same assumptions of a linear mixing
profile and quadratic TKE profile in their construction.
In addition, model results are compared with data from
large-eddy simulation (LES) or experiment where avail-
able.

A. Rayleigh-Taylor mixing layer

We first consider a one-dimensional hydrostatic RT
mixing layer between two ideal, monatomic gases subject
to constant acceleration at Atwood number A7 = 0.05.
This problem is set up in a domain of size 1 cm with
1600 uniformly spaced computational zones. Turbulence
length scales are initialized to zero everywhere except for
the two zones bordering the interface at y = 0, where
L = X = 4.0 x 1075 cm. Turbulence kinetic energy
is initialized to zero everywhere except the two interface
zones, where k is initialized to 1.0 cm?/s?.

In Fig. 1a, the mixing layer width, the maximum tur-
bulence kinetic energy Ky, and the maximum turbulence
length scale Ly are plotted for simulations using the k-
2L-a-V and k-¢-L-a-V models. By plotting these quanti-
ties against A7 gt?, they increase linearly, which implies
quadratic growth of the form aApgt?. While the evo-
lution of the mixing layer width h is nearly identical for
both models, the magnitudes of Ky and Lg are uniformly
lower for the k-¢-L-a-V model. Figure 1b illustrates that
for both the k-2L-a-V and k-¢-L-a-V models, the real-
ized growth parameter o = h/(Argt?) asymptotes to the
expected value 0.06, which was used to set the model co-
efficients. Figure 1c additionally plots the RT mixedness,
as defined by Eq. 34 for both the k-2L-a-V and k-¢-L-
a-V models. As expected, both models quickly achieve
the self-similar value of ©® p = 0.8. While the transient
period is not very long for either model, the k-¢-L-a-V
model demonstrates a somewhat shorter transient period.
In Figs. 1b and lc, the reference time tog = \/Ao/ (Arg).

Figure 2 highlights the main difference between the k-
2L-a-V and k-¢-L-a-V models as well as the chief advan-
tage of the k-¢-L-a-V model. In Fig. 2, spatial profiles of
heavy species mass fraction, normalized TKE, and scalar
variance are plotted from 1D simulations using the two
RANS models along with comparison profiles from LES



TABLE II. Model coefficients for the k-¢-L-a-V model.

Cicv CB Cp Cr1 Cr2 CrLz Cpn Chp2

Chs

Csq Cvi Cv2 Cvs Nyera Nrop Nv

24.0 0.485 1.00 0.400 0.472 0.208 -0.500 3.44x10~* 0.0576 0.893 30.5 1.20 0.985 0.0594 0.0119 0.0951
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FIG. 1. Three measures of evolution of a 1D RT mixing layer. (a) Mixing layer half-width h, turbulence kinetic energy Ko, and
turbulence length scale Lo as a function of time for both the k-2L-a-V and k-¢-L-a-V models. Dimensions are in cm for h and
Lo but in (em/ps)? x 1079 for Ko. (b) The RT growth parameter, a = h/(Argt?) is plotted as a function of non-dimensional
time for both k-2L-a-V and k-¢-L-a-V models. (c) Steady-state mixedness with both the k-2L-a-V and k-¢-L-a-V models.

by Morgan et al. [27]. As these plots show, the high-order
spatial profiles realized by the k-¢-L-a-V model match
much more closely with the LES results than the k-2L-a-
V results. While the peak magnitude in scalar variance
(Fig. 2¢) with k-¢-L-a-V appears slightly over-predicted
with respect to LES, it is interesting to recall that the
steady-state mixedness of both RANS solutions is exactly
0.8. Given the close agreement between LES and k-¢-L-
a-V in the spatial profile of ffH, one must conclude that
the mixedness of the comparison LES is slightly greater
than 0.8.

Figures 3 through 5 demonstrate the impact of increas-
ing Atwood number on spatial profiles of heavy species
mass fraction, normalized TKE, and scalar variance. In
each of these figures, results with the k-2L-a-V model
are plotted on the left, and results with the k-¢-L-a-V
model are plotted on the right. As the k-¢-L-a-V model
is pushed towards higher Atwood number, the spatial
profiles stay smooth due to the high-order nature of the
self-similarity solution. With the k-2L-a-V model, the
magnitude of discontinuity in the first-derivative of spa-
tial profiles becomes exaggerated around y = —1, which
could impact problem stability at higher Atwood num-
ber. In addition, the k-2L-a-V profiles demonstrate some
amount of drift away from xy = 0 (previously observed
with the k-L-a model as well [10]), which is not present
in the k-¢-L-a-V model results.

B. Richtmyer-Meshkov mixing layer

We next consider simulation of the Mach 1.5 air/SFg
shock tube experiment (A7 & 0.67) by Vetter and Sturte-
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vant [28]. The shockwave is driven from air into SFg,
reflected from the end wall, and eventually re-shocks the
fluid interface. In this particular experiment, a rarefac-
tion wave additionally interacts with the mixing layer
shortly after the second shock.

Simulation results are found to be well-converged with
2560 zones in the 60.0 cm SFg test section, 3840 zones of
shocked air (157 cm), and 80 zones of ambient air (6.0
cm). An initially diffuse interface of width hg = 0.11 cm
is assumed, and the initial conditions are

Yy

ol

1
Ysr, (y,0) = 3 [1 + tanh ( ;

L(y,0) =4 X0 Ysrs (y) [1 = Ysrs (v)]

k(y,0) = 4ko Ysry (y) [1 = Ysre(y)] - (89)

The initial length scales and turbulence kinetic energy are
initialized with a smooth profile, where kg = 1.0x10~°
em?/us?, and \g is chosen to give nearly the same be-
havior on first shock for both models. For the k-2L-a-
V model, \y = 0.11 c¢m, and for the k-¢-L-a-V model,
)\0 =0.02 cm.

Mixing layer width as a function of time is plotted for
both RANS models in Fig. 6 and compared against exper-
imental data from Vetter and Sturtevant [28]. By design,
initial conditions have been selected for both models to
give nearly identical behavior on first shock and to pass
roughly through the first-shock experimental data points.
When compared in this way, the k-¢-L-a-V model is ob-
served to predict somewhat less growth immediately after
the second shock has passed. The most likely reason for
this difference seems to be the smoother profiles achieved
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FIG. 6. Mixing width as a function of time for the Vetter

and Sturtevant shock tube experiment [28]. Symbols indicate

experimental data, while solid lines indicate simulation results
with the k-2L-a-V and k-¢-L-a-V models.

by the k-¢-L-a-V model, highlighted previously in Figs. 3
through 5, which should lead to reduced-magnitude gra-
dients that appear in buoyancy production mechanisms
during shock passage. As a result, for this particular se-
lection of initial conditions, the k-¢-L-a-V mixing layer
width passes more-or-less through the cloud of second-
shock data points. Of course it is worth pointing out
that by reducing the choice of \g for the k-2L-a-V model,
it is possible to achieve a nearly equivalent result for
the second-shock data points with a lower crossing point
through the first-shock data.
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C. Kelvin-Helmholtz mixing layer

Next, we consider KH mixing layer simulations run
with 960 uniformly-spaced computational zones on a do-
main extending from y = —48.0 cm to y = 48.0 cm. Tur-
bulence length scales are initialized to zero everywhere
except for the two zones bordering the interface at y = 0,
where L = 0.44 cm. Turbulence kinetic energy is addi-
tionally initialized to zero everywhere except for the two
interface zones, where k is initialized to 0.01 (AU)?. The
initial velocity profile is chosen to match the Bell and
Mehta experiment [29] such that @, = U; = 900 cm/s
for y < 0 and u, = Us = 1500 cm/s for y > 0, corre-
sponding to A = 0.25.

Figures 7 and 8 compare the basic measures of self-
similar behavior expected for a KH mixing layer between
the k-2L-a-V and k-¢-L-a-V models. In Fig. 7, the mix-
ing layer width as a function of time is plotted along
with the non-dimensional growth parameter §/A. From
Fig. 7b, it is clear that both models approach the ex-
pected growth parameter of §/A = 0.08 and therefore
result in the same KH growth rate. However, the k-
¢-L-a-V model is observed to have a shorter transient
period and reach the self-similar state quite a bit sooner
than the k-2L-a-V model. Similar behavior is observed
in Figs. 8a and 8b as well. These figures plot, respec-
tively, the KH mixedness and the turbulence intensity
k/(AU)? as a function of time. Both models are ob-
served to reach the same expected self-similar values, 0.8
for the KH mixedness and 0.035 for the turbulence in-
tensity. As with the growth parameter, however, the k-
¢-L-a-V model demonstrates a shorter transient period
and reaches the steady-state much sooner. Recall from
Fig. 1a that in the 1D RT simulations, at effectively the
same mixing layer width, the k-¢-L-a-V model predicted
a lower magnitude for both Ly and Ky compared to the k-
2L-a-V model. Similar behavior was observed in the RM
results illustrated in Fig. 6, where the initial turbulence
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length scale needed by the k-¢-L-a-V model was about
a factor of five less than that of the k-2L-a-V model to
achieve the same first-shock growth. This behavior in-
dicates that the proportionality constant [ is greater for
the k-¢-L-a-V model than the k-2L-a-V model. Thus, in
the present KH simulation results in which both models
are initialized with the same value of L, the k-¢-L-a-V
model grows the mixing layer width more rapidly ini-
tially until it becomes resolved and begins to grow self-
similarly. As a result, the transient period is observed to
be shorter.

Spatial profiles of average streamwise velocity u, and
TKE are plotted in Fig. 9 with comparison results from
LES by Morgan [22]. As before with the RT profiles,
the high-order spatial profiles realized with the k-¢-L-
a-V model demonstrate much closer agreement with the
LES than the k-2L-a-V results. One interesting aspect of
the comparisons in Fig. 9b is that the TKE profile from
LES appears to extend beyond the bounds of the spatial
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similarity variable x € [—1, 1], a characteristic which can
also be observed in experimental data by Bell and Mehta
[29]. This behavior is in contrast to the RT case (Fig. 2b)
and could suggest that KH intermittency effects are still
not fully accounted for in the present similarity analysis.
However, the difference between RANS and LES TKE
profiles is nonetheless much improved with the k-¢-L-a-
V' model.

D. Combined Rayleigh-Taylor-Kelvin-Helmholtz
mixing

In order to consider model behavior during transi-
tion between shear-dominated mixing and buoyancy-
dominated mixing, the k-¢-L-a-V model is now applied
to the simulation of combined RT-KH instability. In this
case, the relative strength of buoyancy to shear effects is
given by the Richardson number,
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A quasi-1D mixing layer is simulated at A7 = 0.05 and
A = 0.50 for varying intensity of gravitational accelera-
tion. Figure 10 provides two representations of the re-
lationship between the two turbulence velocities, ¢ and
Vk, and how this relationship changes as a function of
Richardson number. In Fig. 10a, normalized spatial pro-
files of k and ¢ are plotted along with the normalized
ratio % As expected, k conforms to an f5/2 profile,
and ¢ conforms to an f/2 profile; thus, the ratio k/¢?
assumes a profile of the form f3/2. The magnitude of
the normalization factor i—f:: however, is given by Eq. 46
in the limit of RT mixing and by Eqs. 72 and 76 in the
limit of KH mixing. Substitution of the values in Ta-

14

p2

Ko

0 as a function of Richardson number.

bles I and II into these equations gives expected limits of
i—,‘i ~ 1.60 x 103 for KH flow and and %’2) ~2.94 x 1071
for RT flow.

Figure 10b plots the magnitude of the normalization
factor %2) as a function of Richardson number. Note
that the black curve in Fig. 10b is generated as a com-
posite from several different simulations with varying in-

tensity of gravitational acceleration that overlap across
. . P}
Richardson numbers. From this figure, we see that -

varies smoothly between the expected limits as Richard-
son number increases from the shear-dominated regime
to the buoyancy-dominated regime. Similar behavior was
observed for the ratio of length scales in simulations of
combined RT-KH mixing with the k-2L-a model [14].
Specifically, with the k-2L-a model, the ratio of the de-
struction length scale Ly to the transport length scale
L; was found to vary between two constant limits as the



Richardson number is increased from shear-dominated to
buoyancy-dominated flow. We observe that the two tur-
bulence velocities in the present k-¢-L-a-V model play
a similar role to the two turbulence length scales in the
k-2L-a model in allowing the smooth transition between
shear-dominated and buoyancy-dominated flow.

More generally, the magnitude of the ratio %2 is inter-
esting as a potential diagnostic because of this behavior.
Since 4;5 is expected to vary between two known self-
similar values, the magnitude of this ratio in more com-
plicated simulations might provide some indication about
whether local mixing behavior is dominated by shear or
buoyancy effects.

V. SUMMARY AND CONCLUSIONS

The present work has introduced a new RANS model
for variable density turbulent mixing, termed the k-¢-
L-a-V model. This new model differs from other sim-
ilar models in that it has been designed to relax the
assumption of a linear mixing profile. In contrast to
models which have attempted to achieve similar behav-
ior through ad hoc adjustment of diffusion coefficients,
the k-¢-L-a-V model achieves high-order spatial profiles
that are self-consistent with similarity analysis. This al-
lows one to determine model coefficients that will ex-
actly reproduce desired growth rates while maintaining
high-order spatial profiles. Although the present model
utilizes a transport equation for scalar mass fraction vari-
ance V, it is worth noting that the present approach could
alternatively be applied to construct a similar model that
might instead solve for density variance, temperature
variance, or the density-specific-volume covariance, b.

In Section III, a full description of the self-similarity
analysis for the k-¢-L-a-V model was presented, and a
complete set of constraints were determined for model
coefficients. Using these self-similarity constraints, a set
of model coefficients was then determined based on seven
physical growth and decay parameters from RT mixing,
KH mixing, and homogeneous isotropic turbulence. The
k-¢-L-a-V model was then applied in simulations of RT,
RM, and KH mixing layers and compared with results
from the k-2L-a-V model. Through these comparisons,
it was shown that the expected growth parameters were
recovered exactly and that, in contrast to the k-2L-a-V
results, the high-order spatial profiles achieved by the k-
¢-L-a-V model agreed more closely with data from high-
fidelity LES. In addition, it was found that transient be-
havior prior to achieving steady-state behavior tended to
be shorter with the k-¢-L-a-V, and smooth spatial pro-
files persisted at higher Atwood numbers which could po-
tentially contribute to improved numerical stability and
reduced spurious growth.

While many practical problems of variable density mix-
ing may only be sensitive to low-order effects such as
mixing layer growth rates, work by Mackay and Pino [30]
has suggested that a linear mixing profile in applications
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of inertial confinement fusion could contribute to inac-
curacy in predicting higher-order observables such as the
reaction-weighted ion temperature. In this regard, the k-
¢-L-a-V model might be expected to behave better than
a model with linear spatial profiles like k-2L-a-V. Of
course, this remains to be shown and should be explored
in future work.
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Appendix A: Model extension for multicomponent
mixing

It is possible to formulate the k-¢-L-a-V model in such
a way that it is not restricted to only two-fluid mixing.
Broadly speaking, the manner in which this extension is
approached is to replace the two-fluid closure for b with
the multifluid closure utilized by the k-L-a model [10].
In addition, the shear production term involving gradient
of mass fraction in Eq. 12 is replaced by the gradient of
density, and production terms involving V' are summed
over all components. Eqs. Al through A3 summarize the
multicomponent extension of the k-¢-L-a-V model.

Dy, ¢ 1 o
Por ~OnP +C”2¢Za V3R b,
a; 8]_? 0 Mt a(b
Cpg————e— — Al
+ p3¢za Va3/8 Ox; Oz (Np ox; )’ (A1)
_Daj o b 8? _¢
"D TP Y o Caprai (A2)
v Tu_O9p 90 (0
S V£/8 Ox;  Ox; \NgO0x; )’
b= p% ~1. (A3)
@ patcp

In Eq. A3, cis a correction factor term that can be used to
avoid the closure diverging at high Atwood number. For
low and moderate Atwood number ¢ = 0. Note that since
the similarity analysis in section III utilizes an ansatz
on the form of the mass-fraction profile rather than the
volume-fraction profile, the effect of replacing mass frac-
tion gradients with the density gradients in Eq. A2 is
that the self-similarity results determined in section ITI
will only approximately hold for the multicomponent ex-
tension except in the limit of low Atwood number where
Vo R Yy
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