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Colloidal rods immersed in a thermotropic liquid-crystalline solvent are at the basis of so-called
hybrid liquid crystals which are characterized by tunable nematic fluidity with symmetries ranging
from conventional uniaxial nematic or anti-nematic to orthorhombic [Mundoor et al., Science 360,
768 (2018)]. We provide a theoretical analysis of the elastic moduli of such systems by considering
interactions between the individual rods with the embedding solvent through surface-anchoring
forces, as well as steric and electrostatic interactions between the rods themselves. For uniaxial
systems the presence of colloidal rods generates a marked increase of the splay elasticity which
we found to be in quantitative agreement with experimental measurements. For orthorhombic
hybrid liquid crystals we provide estimates of all twelve elastic moduli and show that only a small
subset of those elastic constants play a relevant role in describing the nemato-elastic properties.
The complexity and possibilities related to identifying the elastic moduli in experiments are briefly
discussed.

I. INTRODUCTION

Liquid crystalline (LC) phases are found in a large
variety of materials, including the classic examples of
anisotropic small molecules and colloidal particles like
rods and discs [1, 2]. Thermotropic nematic LC phases
formed by molecular rods within a chemically homoge-
neous medium, each about a nanometer in length, are
the most widely known because of their widespread use
in displays and electro-optic devices, where they are sta-
ble in a broad temperature range in-between crystalline
and isotropic fluid phases. Lyotropic nematic LCs formed
by colloidal rod-like particles suspended in a fluid host
medium, like water, constitute another classic example
of such a nematic mesophase, although the physics be-
hind its formation is different from that of thermotropic
nematics [3]. Nematic colloids, where a thermotropic LC
is used to host colloidal particles being one or several or-
ders of magnitude larger than the molecules of the host
medium, have attracted a great deal of interest over the
past decades [4–25]. While spherical colloidal inclusions
are the most widely studied, particles with various ge-
ometrically and topologically complex shapes immersed
in a LC host have been studied too [25–40], including
colloidal objects like gold nanorods [41–51], bacteria [52–
54], carbon nanotubes [55–61] and graphene sheets [61–
63]. Although some colloidal inclusions were composed of
monodomain magnetic or electric dipoles [4, 64–68], the
majority of nematic colloids studied thus far involved di-
electric particles or droplets. The most notable examples
relate to cases in which the orientations of the anisotropic
colloidal nanoparticles mimicks the director pattern of
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the molecular or surfactant-based nematic host medium
[25–40, 56–63], though, even more interestingly, in some
cases so-called anti-nematic order of colloidal rods in a
nematic host medium was observed as well [47]. Com-
bining colloidal and LC systems not only resulted in
new physical properties, such as polarization-dependent
surface plasmon resonance properties in dispersions of
gold nanorods within LCs [43], it also led to the recent
discovery of new soft condensed matter phases formed
by molecular-colloidal composite systems. Introduced as
LCs that combine lyotropic and thermotropic phase be-
havior, hybrid molecular-colloidal LCs have been studied
in recent years as an experimental platform for the cre-
ation of low-symmetry orientationally-ordered fluid orga-
nizations [69], including orthorhombic [70] or monoclinic
nematic LCs [71], and triclinic colloidal crystals [72].

Owing to the LC character of the solvent, surface an-
choring forces introduce an orientational coupling be-
tween the ordering of solvent molecules and the col-
loidal surfaces such that the molecular director tends
to favorably align either normal to the colloidal surface
(homeotropic anchoring) or tangential to it (planar an-
choring) [4, 73]. The surface anchoring properties can be
tuned by controlling the properties of the colloidal sur-
faces [74] as well as the temperature of the LC solvent. A
key attribute of the hybrid LCs is that the surface anchor-
ing energy per particle (relative to its thermal energy) is
strong enough for the colloids to experience considerable
realigning torques with respect to the solvent director,
but at the same time weak enough to avoid bulk discli-
nations or other topological defects around the colloidal
surfaces [12]. These defects possess a well-defined topol-
ogy and are routinely encountered for relatively large ne-
matic colloidal inclusions with strong surface anchoring.
They give rise to strong interparticle forces [5] leading
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FIG. 1. Structure and composition of a hybrid molecular-
rod system: (a) Transmission electron micrograph of colloial
nanorods after acid treatment. (b, d) Upconversion-based
luminescence confocal microscopy images of the nanorods in
a uniaxial nematic LC in a homeotropic (b) and planar (d)
cell. (c) Schematic overview and corresponding luminescence
confocal microscopy image (d) of the nanorods in a uniax-
ial nematic LC. (e) Schematic overview and corresponding
luminescence confocal microscopy image (f) of the nanorods
forming an orthorhombic biaxial nematic LC in a planar cell.

to dynamically arrested composites [75–79]. In contrast,
because of weaker elastic distortions and additional elec-
trostatic stabilization, structure formation in hybrid LCs
is fully reversible and a rich array of phase transitions can
be explored across a wide range of parameters (colloid
concentration, temperature, etc.) without risking the
system to be trapped in a non-equilibrium, metastable
state.

For the case of slender rigid rod-shaped colloids
(Fig. 1), one can show that homeotropic surface anchor-
ing enforces the rods to align with their main orienta-
tion perpendicular to the molecular director. At low rod
concentration a uniaxial hybrid LC is then created in
which the rods adopt anti-nematic orientational order
[Fig. 1(c,d)].

When the concentration of immersed rods is suf-

ficiently large, rod correlations create a biaxial ne-
matic fluid with orthorhombic (D2h) point symmetry
[Fig. 1(e,f)]. The creation of such a well-controlled or-
thorhombic nematic phase provides strong impetus to
revisit its nemato-elastic properties, which is key to un-
derstanding the director-field topology that such a low-
symmetry nematic generates when exposed to various
types of confining boundaries [1]. Various theoretical
routes to consider elasticity of biaxial nematics have been
developed [80–86] that build upon the Oseen-Frank the-
ory for uniaxial nematics [87, 88]. The principal outcome
is that describing the elastic properties of a biaxial ne-
matic fluid in the absence of chirality requires twelve elas-
tic constants instead of the three bulk moduli, related to
splay, twist and bend fluctuations (see Fig. 2) for conven-
tional uniaxial nematics. The twelve elastic moduli can,
at least formally, be connected to several microscopic fea-
tures of the constituent particle, for instance, the biaxial
symmetry of the particle which may be of steric origin
or emerge from some long-ranged anisotropic dispersive
forces [89].

The theoretical predictions are, however, difficult to
validate without the availability of a well-characterized
experimental biaxial nematic system where such inter-
actions can be modelled with reasonable accuracy and
ease. Our hybrid LC meets those criteria given that the
immersed rods in view of their large aspect ratio, rigid-
ity and known surface charge properties, closely follow an
Onsager-type behavior [3, 70] while the coupling between
the surface anchoring energy and rod orientation can be
well understood from a simple mean-field description [69].
A theoretical description based on these two ingredients
allows for a quantitative prediction of the phase behavior
over a wide range of rod concentrations and temperatures
[70].

In this paper we wish to apply the same modelling
strategy to describe the coarse-grained bulk nemato-
elasticity of hybrid LCs from a particle-based theoret-
ical viewpoint. The discussion broadly falls into two
parts. We begin in Sections II and III by considering
the case of uniaxial hybrid LCs where the usual splay,
bend and twist modes are affected by the presence of
anti-nematically oriented colloidal rods. In this study
we focus on rod-based hybrid LCs that operate in the
regime where the colloidal inclusions, in view of their
vanishing thickness, low concentration, and weak surface
anchoring, do not incur strong elastic distortions of the
molecular director field. The latter therefore remains
largely intact. The principal impact of the inclusions
on the elastic properties of the host LC then stems from
the surface-anchoring energy of a single rod which is en-
hanced in the presence of weak distortions of the molec-
ular director [90]. Our theoretical predictions are tested
against experimental measurements of the splay modu-
lus for low-concentration uniaxial hybrid LCs. We find
that our model provides a quantitative prediction of the
increase of the splay modulus with the concentration of
immersed rods. We note that our study reported here
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is a first step in the explorations of elastic properties of
hybrid molecular-colloidal LCs, which in future can be
extended to the regimes where particles induce topologi-
cal defects with significant molecular alignment perturba-
tions around the colloidal particles, both within nematic
colloidal dispersions and in cases when smectic, colum-
nar and crystalline colloidal organizations arise (for the
first two, see examples in our recent studies of colloidal
disc dispersions in molecular nematic hosts of calamitic
mesogens [71]) .

The second part of this article (Section IV) concerns
the elastic moduli of the orthorhombic hybrid LC. We
demonstrate that the twelve moduli can be effectively
classified by considering only their leading order con-
tributions, be they driven by the elasticity of the LC
solvent, by surface anchoring [90] or by repulsive inter-
actions between the colloidal rods [91, 92]. From our
scaling analysis it transpires that there are only a rela-
tively small subset of dominant elastic moduli that can
all be connected to the known elastic moduli of the ne-
matic host, supplemented with weak corrections due to
rod-rod correlations. This approach enables us to fully
specify the bulk elastic anisotropy of an experimentally
realizable biaxial nematic system that holds great po-
tential for exploring colloidal or granular objects with
reconfigurable topology [93] and their self-assembly in
orthorhombic nematic media. We finish our manuscript
by discussing a number of technical complications associ-
ated with measuring the orthorhombic elastic constants
in hybrid colloidal-molecular systems (Section V) and
propose a roadmap and various experimental conditions
that would need to be realized in order to probe all elas-
tic deformations that feature in the continuum elasticity
theory for biaxial nematics (Appendix).

Curiously, we find that the role of thin rod-like colloidal
dopants on the elasticity of the ensuing hybrid molecular-
colloidal LCs can be parallelled to that of chiral molec-
ular additives in the case of chiral nematic LCs formu-
lated by adding chiral additives to a non-chiral molecular
host. For small chiral dopant concentrations, some of the
Frank elastic constants of the chiral nematics are often
taken to be approximately the same as for the non-chiral
nematic host, albeit the chiral additive strongly alters
the structure of the nematic medium at sufficiently high
concentrations. In a similar way, small amounts of col-
loidal additives in the form of very thin rods, organized
anti-nematically, only modestly alter the director fluctu-
ations of the uniaxial nematic LC, while at sufficiently
high colloidal rod number densities an orthorhombic bi-
axial nematic emerges which represents a distinctly dif-
ferent LC symmetry characterized by a different set of
elastic deformation modes. We emphasize that our study
is only the first step in the direction of probing the deli-
cate behavior of molecular-colloidal hybrid LCs. Future
modelling efforts need to accommodate for a wider range
of combined effects due to the perturbation of molecu-
lar order imparted by the colloidal rods, the anisotropic
and long-range nature of the electrostatic interactions,

FIG. 2. Visualization of the principal director fluctuations
δnm [specified by Eq. (1)] of a uniaxial nematic liquid crys-
tal with principal director n in a lab frame spanned by the
orthonormal tripod {m, l,n}.

along with the formation (under certain conditions) of
various smectic and columnar organizations of colloidal
inclusions, and so on.

II. UNIAXIAL HYBRID LIQUID CRYSTALS

Let us first focus on hybrid LCs in which both com-
ponents retain their uniaxial orientational symmetry. As
mentioned previously, in view of the vanishing rod cross-
section the molecular director is only weakly distorted
at short distance from the rod surface. At large length
scales, corresponding to typical range of elastic defor-
mations, the orientation order of the molecules is not
affected by the presence of the colloids. This can be eas-
ily rationalized from the fact that the typical rod cross-
section (D ≈ 25 nm) is much smaller than the surface
anchoring extrapolation length (or Kleman-de Gennes
length) [94], defined as K/w0 ∼ 600 nm taking typi-
cal values for the elastic constant of 5CB K = 6 pN
[69, 95] and surface anchoring coefficient w0 = 10−5

J/m2 [17]. Because of the large energetic cost of bulk
defects and the weakly homeotropic surface anchoring
conditions at the colloidal boundary, the molecular direc-
tor only marginally deviates from the uniform bulk state.
These deviations are moreover strongly localized close to
the tip of the rods such that elastic interactions between
rods do not register at low to moderate rod concentra-
tions where the particles remain relatively far apart. Fur-
thermore, the impact on colloid reorientation induced by
weak perturbations of molecular order at particle surfaces
is overpowered by the strongly anisotropic electrostatic
repulsion between the colloidal rods [70].

We start with defining a molecular director n within a
Cartesian lab frame {m, l,n} such that R = mm+ll+nn
denotes the position within the frame. In a nematic sys-
tem the molecular alignment is assumed to be uniform so
that n does not depend on R. Furthermore, the nematic
symmetry is uniaxial which means that there is no pref-
erential alignment in the ml-plane perpendicular to n.
Elastic fluctuations, however, render the director field lo-
cally non-uniform with respect to R. Let us consider the
three basic deformation modes sketched in Fig. 2. The
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distortions are unidirectional and depict a splay, twist
and bend distortion of the director along the m axis. In
this study we employ a microscopic density functional
approach to computing the elastic constants along the
lines of Refs. [91, 92, 96] in which case it is expedient
to express the spatial variation of n(R) in terms of the
following linear patterns [97]:

n(R) = n + ε


mm, (splay)

lm, (twist)

nm, (bend)

(1)

For later reference, we introduce the following short-hand
notation:

n(R) = n + δnmi , (i = m, l, n) (2)

so that δnmm denotes a splay and δnml a twist fluctuation
of n along the direction of m, etcetera. The distortion
wavenumber ε is constrained to be small ε � a−1 for
all patterns such that than the spatial variation of n(R)
is infinitesimally weak on the scale of the microscopic
lengthscale a representing the typical molecular size or
interaction range. Inserting the parameterizations into
the Frank distortion free energy for uniaxial nematics
[88, 95]:

Fel
V

=
K1

2
(∇·n)2+

K2

2
(n·∇×n)2+

K3

2
(n×∇×n)2 (3)

one easily infers that each pattern in Eq. (1) generates
a non-vanishing contribution of order O(ε2) only for the
corresponding deformation mode with associated elastic
constant K1 (splay), K2 (twist), and K3 (bend).

Since the nematic system is of uniaxial symmetry, we
could have defined a similar set of fluctuations along the
l-direction of the lab frame. Interchanging the indices l
and m gives:

n(R) = n + ε


ll, (splay)

ml, (twist)

nl, (bend)

(4)

written compactly as n(R) = n + δnli with (i = l,m, n).
Clearly, this transformation does not change the defor-
mation free energy Fel and would generate the same elas-
tic moduli if these were computed on the basis of particle-
based density functional theories [90–92, 97]. The
degeneracy obviously no longer holds for the orthorhom-
bic nematic as we will discuss in more detail in Section
IV. In this study, the focus is on bulk elasticity and we
will not consider surface effects such as saddle-splay and
splay-bend fluctuations which only play a role if the liq-
uid crystal is in contact with a curved surface (see e.g.
Ref. [98] for a recent discussion).

We begin by considering a uniaxial hybrid nematic
fluid composed of rods embedded in a uniaxial molecular
LC [Fig. 1(c,d)]. At low particle concentration, rod-rod

interactions are too insignificant to generate nematic or-
der of the colloidal component alone, and the rods are
arranged in an anti-nematic fashion pointing perpendic-
ular to n [Fig. 1(c)]. Since the hybrid system retains
its uniaxial symmetry, only the molecular director mat-
ters and its three basic deformation modes (splay, bend
and twist) are depicted in Fig. 2. Elastic restoring forces
are transmitted through the molecular component as well
as through interactions between the rod inclusions. A
straightforward and transparent way to address the elas-
tic properties of the hybrid system is to assume a simple
superposition of component-specific contributions; one
relating to the pure molecular component 5CB (denoted
by “0”), a second term accounting for the effect of sur-
face anchoring (“s”) and a third contribution arising from
steric and electrostatic rod correlations (“r”):

Ki ∼ K(0)
i +K

(s)
i +K

(r)
i , i = 1, 2, 3 (5)

At low concentration of rod inclusions we expect the
surface-anchoring of the molecular LC at rod surface to

play a dominant role, withK
(r)
i � K

(s)
i . We now proceed

to analyzing each of these contributions in more detail.

A. Elasticity generated by surface anchoring

Following Ref. [90], we consider the Rapini-Papoular
surface anchoring free energy [99] for an ensemble of N
cylindrical rods with a length L, diameter D in a volume
V and number concentration ρ = N/V immersed in a
molecular LC solvent with constant temperature T :

Fs
V

= −1

2
w0ρ

∫
du

∮
dS(n · v0(S))2fU (u · n) (6)

where w0 > 0 denotes the surface anchoring coefficient,
S the cylindrical rod surface and v0(φ) = cosφu⊥1 +
sinφu⊥2 a parameterization for the easy axis normal to
the rod surface in terms of an orthonormal rod frame
{u,u⊥1,u⊥2}. The integral over the rod surface (ne-
glecting end effects for D � L) can be written as∫
dS = (D/2)

∫ 2π

0
dφ
∫ L

0
dt. At fixed polar angle θe and

degenerate azimuthal angle 0 < ϕ ≤ 2π, the rod ori-
entation probability reads fU (u) = 1

2π δ(θ − θe) and the
surface anchoring energy per particle reads:

Us = −π
4
DLw0 sin2 θe (7)

which demonstrates that homeotropic anchoring forces
the rods to align perpendicular to the molecular director
(θe = π/2). The corresponding orientational probability
of each rod is given by a Boltzmann factor:

fU (θ) ∝ exp [−σP2(cos θ)] (8)

in terms of the anti-nematic field strength σ which, at
least in the experimental system at hand, strongly ex-
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FIG. 3. (a) Principal angles describing the orientation u of a single rod with respect to the molecular director n. (b) Each
rod experiences homeotropic surface anchoring across its cylindrical backbone where the molecular director is favored to align
along the easy axis v0 given by a vector parameterizing the circular rod cross-section in terms of the angle φ. (c) Illustration
of the splay, twist and bend distortions of the molecular director in the presence of a rod-shaped inclusion.

ceeds the thermal energy kBT (with kB Boltzmann’s con-
stant):

σ =
πLDw0

6kBT
� 1 (9)

The fact that surface anchoring generates a very strong
re-aligning potential justifies the use of a simpler Gaus-
sian distribution describing small fluctuations of the
meridional angle ψ = π/2− θ

fU (ψ) ∼

√
3σ

(2π)3
exp

(
−3

2
σψ2

)
(10)

which is normalized on the unit sphere via

limσ→∞
∫∞
−∞ dψ

∫ 2π

0
dϕfU (ψ) = 1.

The surface anchoring free energy is easily general-
ized to the case of (weakly) non-uniform molecular di-
rector fields represented by the linear fluctuations δnmi
in Eq. (2). We expand Eq. (6) up to O(ε2) and write
down the free energy cost associated with infinitely weak
long-wavelength molecular director deformations. The
associated elastic contributions originating from surface
anchoring are then expressed as:

K
(s)
i =

δFs
1
2ε

2V
= −1

2
w0ρD

∫
du

∫ 2π

0

dφ

∫ L

0

dt (t(u · ei))2

×
[
(m · v0(φ))2 − (n · v0(φ))2

]
fU (u · n) (11)

with e1 = m, e2 = l and e3 = n as per the different
modes. The integrals are easily solved with the aid of the
Gaussian distribution by applying standard asymptotic
expansion [100]. The resulting scaling expressions for the
elastic modes take a simple form:

K
(s)
1 ∼ 1

4
w0
L2

D
φr

K
(s)
2 ∼ 1

3
K

(s)
1

K
(s)
3 ∼ 1

9
w0
L2

D
φr

1

σ
(12)

where φr = (π/4)LD2ρ denotes the rod volume frac-
tion within the hybrid LC. We conclude that surface-
anchoring between the rod inclusions and the molecu-
lar host primarily enhances the splay elasticity and, to
a lesser extent, the twist mode. The bend elasticity on
the other hand seems hardly affected by the presence of
the rod inclusions provided that the anti-nematic order
is strong (σ � 1).

B. Elasticity generated by rod correlations

The elastic moduli associated with repulsive interac-
tions between anti-nematically organized rods have been
analyzed in detail by one of us in Ref. [90]. The results
are as follows:

K
(r)
1 ∼ kBT

Deff

1

π3
(φr`eff)2(lnW + C1)

K
(r)
2 =

1

3
K

(r)
1

K
(r)
3 ∼ kBT

Deff

4

3π3
(φr`eff)2 lnW + C3

W
(13)

with constants C1 = γE − 7/2 + ln 24 ≈ 0.255269 and
C3 = γE − 23/6 + ln 24 ≈ −0.0780638 and γE Euler’s
constant. The degree of anti-nematic orientation of the
rods is expressed by an effective anti-nematic order pa-
rameter W = σ − 5

4φr`effSr where Sr denotes the con-
ventional nematic order parameter of the rods which, in
case of strong anti-nematic organization should be very
close to its extreme value, Sr ≈ −1/2.

The elastic constants further depend on the rod
geometry through the effective aspect ratio `eff =
(L/D)(Deff/D � ` and rod diameter which roughly ac-
count for the electric double layers surrounding each rod.
Following Odijk et al. [101] we define:

Deff = D

(
1 +

lnA′ + γE + ln 2 + 1/2

κD

)
(14)
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with γE ≈ 0.577 Euler’s constant and A′ an electrostatic
amplitude given by (within the Debye-Hückel approxi-
mation):

A′ ≈ 8πv2`Be
−κD

κ3D2K2
1 (κD/2)

(15)

with v the effective line charge density defined as the
number of elementary charges per unit rod length, κ the
Debye screening constant, `B the Bjerrum length and K1

denotes a modified Bessel function (not to be confused
with the splay elastic modulus). The values relevant to
our experiment are as follows; v ≈ 0.16e/nm which is
sufficiently low to justify the Debye-Hückel approxima-
tion, κ−1 ≈ 120nm. This leads to A′ ≈ 105 and an
effective-to-bare rod diameter Deff/D ≈ 28.

Similar to the surface anchoring contributions derived
previously, the rod correlations primarily impact the
splay modulus. This is in contrast to what is observed for
conventional nematic order of rods where bend elasticity
usually dominates [92]. This scenario we will encounter
in Section III.

C. Experimental measurement of the splay
modulus of the hybrid molecular-colloidal

Experimental measurements of the splay elastic con-
stant K1 were performed in a hybrid molecular-colloidal
LC [70], consisting of high-aspect-ratio inorganic col-
loidal nanorods dispersed in a nematic host [Fig. 1]. The
details of the chemical synthesis, surface treatment, dis-
persion, as well as characterizations of surface charging,
screening by counterions and other were all the same
as described elsewhere [70]. For our experiments, β-
NaYF4:Yb/Er nanorods [Fig. 1(a)] were synthesized by
a hydrothermal synthesis method [70, 102]; therefore,
we describe this system only at a minimum level, fo-
cussing on the characteristics that are relevant to mea-
suring the coarse-grained elasticity of the hybrid system.
The colloidal nanorods were treated using hydrochloric
acid (HCl) to remove ligands used during synthesis and
to control the length-to-diameter ratio of the colloidal
particles within L/D ∼ 40 − 110 via slow etching of the
solid nanocrystals. Hybrid nematics were prepared by re-
dispersing nanorods in a commercially available pentyl-
cyanobiphenyl (5CB, Frinton Labs, Inc.) nematic LC
via solvent exchange and elevated-temperature evapo-
ration, followed by cooling down the dispersion under
vigorous stirring. Nematic LC dispersions of nanorods
were infiltrated in between two glass substrates with
patterned indium tin oxide (ITO) electrodes [Fig. 4(a)]
spaced by glass microfibers setting the gap thickness to 20
µm, which was measured with a interferometric method.
To achieve unidirectional planar boundary conditions
for n, cell substrates were coated with 1wt.% aqueous
polyvinyl alcohol or polyimide PI2555 (HD MicroSys-
tem) and rubbed unidirectionally. We also used com-
mercial planar cells purchased from Instec, Inc. Within

FIG. 4. Measurements of the splay elastic constant K1 of a
hybrid LC: (a) Schematic diagram of a planar cell with pat-
terned ITO electrodes. (b, c) A simplified schematic diagram
of a hybrid LC slab without applied voltage (b) and above
the threshold voltage U∗ (c) where the distorted molecular
director n(r) is no longer spatially uniform. The distortions
are strongly exaggerated for illustrative purposes; in reality
they are very weak at voltages just above the threshold value.
(d) Capacitance and (e) transmittance of a hybrid LC in a
planar cell as a function of the applied voltage.

the 5CB dispersions, the bare nanorod surface imparts
weakly homeotropic boundary conditions for n [Fig. 1(b-
f)]. We used small neodymium magnets (K&J Magnetics,
Inc.) to align nanorods as they orient perpendicular to
the magnetic field lines [70]. A magnetic field applied to
a sample was measured with a LakeShore 460 3-channel
gaussmeter.

The splay elastic constant K1 of a hybrid LC can be
determined from measuring the threshold voltage U∗ of
the Fréedericksz transition for n in a planar cell [Fig. 4(a-
c)] upon the application of an electric field and using
the relation K1 = π−2ε0∆ε(U∗)2, where ε0 is the dielec-
tric permittivity in vacuum, ∆ε = ε‖ − ε⊥ the dielectric
anisotropy of a hybrid LC with ε‖ and ε⊥ the respective
dielectric constants parallel and perpendicular to n [1].

The threshold voltages U∗ were determined from the
dependence of either a capacitance or optical transmit-
tance of a planar hybrid LC cell on the applied voltage.
The former [Fig. 4(d)] was measured at 1.0 kHz using an
impedance gain-phase analyzer Schlumberger 1260 and
the latter [Fig. 4(e)] was measured for a 632 nm laser
beam passing through the cell placed between two crossed
polarizers with n oriented at 45◦ to both polarizer and
analyzer when an AC voltage (1.0 kHz) of continuously
increasing amplitude above U∗ was applied.

The results for a range of rod concentrations are shown
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FIG. 5. Splay elastic modulus K1 of a hybrid LC depicted
in Fig. 1 as a function of the rod volume fraction φr (in %).
The triangles denote experimental measurements, the solid
line represent the (fit-free) theoretical prediction according
to Eq. (5) which is dominated by surface-anchoring mediated

splay elasticity K
(s)
1 [cf. Eq. (12)]. The last three data points

are located within the uniaxial-orthorhombic nematic coexis-
tence region.

in Fig. 5. Taking the experimental values for K
(0)
1 ∼

6.15pN for pure 5CB, σ ∼ 188, rod length L ∼ 1600nm,
diameter D ∼ 25nm, dressed aspect ratio `eff ∼ 1536,
surface anchoring coefficient w0 = 3.7 × 10−5Jm−2,
we predict from Eq. (12) that surface anchoring should
enhance the splay elasticity by about 0.94pN , while
the rod correlations give a negligibly small contribu-
tion (0.002pN , according to Eq. (13)). These predic-
tions are corroborated by experimental results; the lin-
ear increase with the rod volume fraction φr observed in
Fig. 5 suggests that the enhancement of the splay elas-
ticity is chiefly caused by surface-anchoring effects with
rod-correlations playing only a marginal role.

III. UNIAXIAL HYBRID LIQUID CRYSTALS
WITH CO-ALIGNED COMPONENTS

For completeness, we also wish to address the case
when surface anchoring forces the rods to co-align with
the molecular director so that m ‖ n, as, for example,
described in Ref. [28]. We may then repeat the analy-
sis of Section II-A by imposing planar anchoring v0 = u
which forces the 5CB molecules to align along the princi-
pal rod direction. The surface anchoring energy per rod
becomes:

Us = −π
2
DLw0 cos2 θe (16)

which is minimal at θe = 0 or θe = π indicating that the
rods are preferentially aligned along the molecular direc-
tor n. The orientational probability is given by a Boltz-

mann factor equivalent to Eq. (8). For strong surface
anchoring the probability approaches a simple Gaussian
which reads:

fU (θ) ∼ σ

4π
exp

(
−σ

2
θ2
)

(17)

with amplitude:

σ =
πLDw0

kBT
� 1 (18)

As before, knowledge of the rod orientation probability
enables us to analyze the two main elastic contributions,
the one mediated by surface anchoring forces and the
second one imparted by steric and electrostatic rod re-
pulsion.

A. Elasticity generated by surface anchoring

The surface anchoring contribution can be readily es-
timated from the expression in Eq. (11). Inserting the
Gaussian probability Eq. (17) we find in the limit of
strongly aligned rods:

K
(s)
1 ∼ 4

3π
kBT

L

D2
φr

K
(s)
2 ∼ K(s)

1

K
(s)
3 ∼ 4

3
w0
L2

D
φr (19)

Clearly, since w0 � kBT and L� D the bend modulus is
affected the most, while the splay and twist contributions
are identical and independent from the anchoring ampli-
tude. If we assume a planar anchoring strength of about
w0 ∼ 10−5J/m2 and a concentration of φr ≈ 0.1% we

obtain K
(s)
3 ≈ 1pN , whereas the splay and twist counter-

parts are at least about two orders of magnitude smaller.

B. Elasticity generated by rod correlations

In order to gauge the elastic resistance generated by
rod interactions in a strongly ordered uniaxial nematic
we simply quote the scaling results for the splay, twist
and bend elasticity of infinitely thin rigid polyelectrolytes
calculated by Vroege and Odijk [92, 103]:

K
(r)
1 ∼ 7

8π
(φr`eff)

[
1− 1

7
(1 + hY )−1

]
K

(r)
2 ∼ 1

3
K

(r)
1

K
(r)
3 ∼ 4

3π2
(φr`eff)3 [1 + hY ]

2
(20)

Noting that a stable nematic phase requires φr`eff � 1 we
conclude that the bend modulus is much larger than the
other two. As previously, `eff � ` denotes an effective
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FIG. 6. Nematic director frame in an orthorhombic nematic
fluid with D2h point symmetry, spanned by a molecular di-
rector (n, black) and colloidal director (m, yellow). A uni-
directional splay fluctuation δnm

1 along m generates bending
of m (splay-bend correspondence), which is absent for uni-
directional splay along l. Similar distinctions occur for the
twist and bend fluctuations.

aspect ratio correcting for the electric double layer re-
pulsion among the rods. The effect of electrostatic twist,
quantified by the parameter h ≡ (κDeff)−1 has been an-
alyzed in detail Ref. [103]. The twist effect relates to
the fact that parallel rod configurations are strongly dis-
favored (with respect to perpendicular ones) because of
the considerable overlap in electric double layers they
entail [104]. The factor Y depends on the rod concentra-
tion and twist constant and follows from a transcendental
equation:

Y = ln[φr`eff(1 + hY )]− 1

2
lnπ +

1

2
γE −

3

2
(21)

which is easily solved numerically or through the use of it-
erative solutions proposed in Ref. [103]. In general, elec-
trostatic repulsion leads to an enhanced increase with φr
primarily for the bend modulus K

(r)
3 [103]. To illustrate

this, we consider a sample of φr = 0.3% which, using the
electrostatic parameters specified in II-B yields h = 0.18
and Y ≈ 5. The splay and bend moduli, respectively, are

then K
(r)
1 ≈ 0.07pN and K

(r)
3 ≈ 0.28pN which corre-

sponds to a fairly large bend-splay ratio K
(r)
3 /K

(r)
1 ≈ 40.

Combining this with the predictions from Eq. (19) we
conclude that creating a hybrid liquid crystal with co-
aligned molecular and colloidal components provides an
effective means to tune the bend-splay elastic ratio of the
material.

IV. ORTHORHOMBIC HYBRID LIQUID
CRYSTALS

We now turn to the more complicated case of the bi-
axial hybrid LC. This state becomes stable at higher
rod concentration where the rod correlations are strong
enough to break the uniaxial symmetry in favour of an
orthorhombic one characterized by mutually perpendic-
ular molecular and colloidal directors n ⊥m [Fig. 1(e,f)
and Fig. 6(a)]. Govers and Vertogen [85] put forward

a continuum theory for the elasticity of an orthorhom-
bic biaxial nematic fluid which, in the absence of chiral
interactions between the constituent molecules, involves
twelve independent elastic constants. The deformation
free energy is formally given by [85, 86]:

Fel
V

=
K1

2
(∇ · n)2 +

K2

2
(n · ∇ × n)2 +

K3

2
(n×∇× n)2

+
K4

2
(∇ ·m)2 +

K4

2
(m · ∇ ×m)2 +

K6

2
(m×∇×m)2

+
K7

2
(n · (m×∇×m))2 +

K8

2
(m · (n×∇× n))2

+
K9

2
(m · ∇ × l)2 +

K10

2
(n · ∇ × l)2 +

K11

2
(∇× l)2

+
K12

2
(∇ · l)2. (22)

The uniaxial nematic elastic energy density, expressible
in terms of the standard splay, twist and bend elastic
constants, K1, K2 and K3, respectively, can be recovered
from the above expression by eliminating any contribu-
tion that contains the minor, colloidal director m.

A. Classification of the orthorhombic elastic
moduli

An intuitive way to rationalize the existence of twelve
curvature elastic moduli for an orthorhombic nematic is
to start from the consideration that in a biaxial nematic
a unidirectional splay, twist or bend fluctuation each has
two distinct directions because the O(2) symmetry in the
plane perpendicular to the molecular director n is now
broken. Let us recall from Eq. (2) that δnm1 corresponds

to a splay deformation of n along the m-direction, δml
3 a

unidirectional bend deformation of m along the l direc-
tion, and so forth. We are now in a situation where direc-
tor fluctuations δnmi are no longer energetically equiva-
lent to δnli. This is illustrated in Fig. 6(b,c) for the splay
distortion. Based on this, we conjecture the presence of
six independent elastic constants associated with defor-
mations of n. Likewise, given that δmn

i 6= δml
i we must

have six more independent moduli for the corresponding
director fluctuations of m, giving a total of twelve. Plug-
ging in the parameterizations given by Eq. (1) into the
continuum expression Eq. (22) we may straightforwardly
identify each elastic modulus with a director specific de-
formation δn, δm or a combination of the two. These
are indicated in the second row of Table I.

The next step is to connect these fluctuations to the
principal elastic moduli that we can attribute to being
generated either by pure 5CB, by rod correlations or by
surface anchoring, as reflected by the superposition in
Eq. (5). A few remarks are in order. First we note
that a splay-bend correspondence naturally emerges in
orthorhombic biaxial systems since a splay deformation
of one director induces a bend fluctuation along the per-
pendicular director and vice versa. This is illustrated in
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Fig. 6(b). Second, the surface-anchoring mediated elastic
moduli are only relevant when they involve a deformation
of n along m. The transversal ones along l can safely be
neglected as they probe ultraweak deviations of n on the
scale of the rod diameter. By the same reasoning we will
also ignore the effect of surface-anchoring on the director
curvature of the colloids given that the curvature ε will
be much larger than the inverse rod length. Taking these
considerations into account we can readily identify the
principal moduli associated with each Ki. Comparing
the upper two rows we find that the last four moduli can
be linked to (combinations of) the previous ones, namely:

K9 ∼ K1

K10 ∼ K4

K11 ∼ K2 +K5

K12 ∼ K3 +K6 (23)

which implies that we only need to find scaling estimates
for K1 to K8. The leading-order contributions of the first
six moduli may simply be associated with the moduli of
the respective pure components. These are indicated in
the upper part of Table I.

B. Elasticity generated by surface anchoring

We will now address the surface-anchoring contribu-
tions for a strongly biaxial hybrid LC. The rod orienta-
tional probability is assumed to be strongly peaked along
m ⊥ n. We write:

fB(u) ∼ exp
[
−σP2(u · n) + β((u ·m)2 − (u · l)2)

]
(24)

where the biaxial order parameter is assumed large (β �
1), in addition to σ � 1 as for the uniaxial system
(where β = 0). Let us parameterize u ·m = cosψ sinφ,
u · l = cosψ cosφ and u ·n = sinψ in terms of the merid-
ional angle ψ and azimuthal angle φ with the molecular
director n. Expanding the argument for ψ � 1 we obtain
the following asymptotic form:

fB(u) ∼

√
3σ

(2π)3I2
0 (β)

exp

[
−3

2
σψ2 + β cos 2ϕ

]
(25)

with I0 a modified Bessel function. We reiterate that
the surface-anchoring mediated moduli are defined as in
Eq. (11) but with fU replaced by the biaxial distribution
above:

K
(s)
i =− 1

2
w0ρD

∫
du

∫ 2π

0

dφ

∫ L

0

dt (t(u · ei))2

[
(m · v0(φ))2 − (n · v0(φ))2

]
fB(u) (26)

with e1 = m, e2 = l and e3 = n corresponding to splay,
twist and bend, as before. In the limit of asymptotically
strong rod alignment along m we evaluate the orientation

average in the limit σ � 1 and β � 1. Up to leading
order for small ψ we only find only a nonzero contribution
for the splay modulus:

K
(s)
1 ∼ 2

3
w0
L2

D
φr

K
(s)
2 ∼ 0

K
(s)
3 ∼ 0 (27)

The fact that surface-anchoring leads to a much stronger
enhancement of the splay elasticity than for the uniaxial
nematic [cf. Eq. (12)] is not surprising because in the bi-
axial state the rods are strongly directed along m where
the impact of a splayed n on the homeotropic surface an-

choring is the largest (Fig. 3). Although K
(s)
1 can attain

several pNs in magnitude, it does not feature in any of
the elastic moduli listed in Table I. The surface anchoring
elasticity, therefore, does not affect the nemato-elasticity
of our orthorhombic hybrid nematic system, at least in
the limiting case of strong rod alignment along m we
restrict ourselves to here.

C. Elasticity generated by rod correlations

The formation of a stable orthorhombic nematic fluid
requires elevated rod concentration where the moduli as-

sociated with nanorod correlations K
(r)
j (j = 1, 2, 3) are

expected to be much larger than those for the relatively
dilute uniaxial nematic. In order to estimate the extent
to which rod interactions dominate the elastic properties
of the hybrid LC we use the scaling predictions shown
previously in Eq. (20). We infer that at the highest rod
concentration probed in experiment φr = 0.142%, the
bend elasticity generated by the charged rods is much

smaller than that of 5CB (K
(0)
3 ≈ 10pN) so it seems jus-

tified to ignore all contributions in Eq. (22) that involve
splayed and twisted distortions of m.

D. Leading order moduli for an orthorhombic
hybrid nematic

Having demonstrated that both surface-anchoring
terms are much weaker than those due to rod-correlations
and noting that the rod-generated splay and twist elas-
tic moduli are negligible compared to the dominant bend
modulus, we arrive at the following leading order esti-
mates:

K7 ∼ K(0)
1 +K

(r)
3

K8 ∼ K(0)
3 (28)

Applying the same approximations to all twelve con-
stants featuring in the continuum theory Eq. (22) we
arrive at a much more manageable set of moduli that
only depend on the known values for pure 5CB and the
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TABLE I. Classification of the twelve elastic moduli featuring in Eq. (22) of an orthorhombic hybrid rod-molecular system in
terms of the principal deformation modes of the individual components and the leading order contribution from the molecular
host (denoted by superscript “0”), surface-anchoring (“s”) and rod-correlations (“r”). The values given in the last row are
based on a hybrid LC with rod volume fraction of φr ∼ 0.1%.

elastic modulus: K1 K2 K3 K4 K5 K6

director-specific deformation: δnl
1 δnm

2 δnl
3 δml

1 δmn
2 δml

3

principal modulus: K
(0)
1 K

(0)
2 +K

(s)
2 K

(0)
3 K

(r)
1 K

(r)
2 K

(r)
3

current experiment: K
(0)
1 K

(0)
2 K

(0)
3 ∼ 0 ∼ 0 K

(r)
3

estimated value (pN): 6.15 3 10 ∼ 0 ∼ 0 0.3

elastic modulus: K7 K8 K9 K10 K11 K12

director-specific deformation: δmn
3 δnm

3 δnl
1 δml

1 δnm
2 + δmn

2 δml
3 + δnl

3

principal modulus K
(r)
3 +K

(0)
1 K

(0)
3 +K

(r)
1 +K

(s)
3 K

(0)
1 K

(r)
1 K

(0)
2 +K

(r)
2 +K

(s)
2 K

(r)
3 +K

(0)
3

current experiment: K
(r)
3 +K

(0)
1 K

(0)
3 K

(0)
1 ∼ 0 K

(0)
2 K

(0)
3 +K

(r)
3

estimated value (pN): 6.45 10 6.15 ∼ 0 3 10.3

bend elastic constant of the immersed rods K
(r)
3 . We

wish to underline that the estimates only make sense for
the current hybrid molecular-rod nematic system which
consists of slender rods with particular combination of
electrochemical properties regarding surface charge and
screening. For instance, the balance between surface an-
choring and intercolloidal forces is likely to be quite dif-
ferent for short rods for which surface anchoring con-
tributions play a more prominent role. Also, the bend-
splay elastic anisotropy for conventional nematic order
is expected to be different in view of the intricate elec-
trostatic interactions between finite-aspect-ratio colloidal
particles [105, 106]. We reiterate that all predictions pre-
sented here are subject to the condition that the rods be
strongly aligned along their director m.

Going back to the experimental system at hand and re-

calling that the rod-driven bend modulus K
(r)
3 ≈ 0.28pN

is still an order of magnitude smaller than the small-

est elastic modulus of pure 5CB (K
(0)
2 ≈ 3pN) we may

even contemplate a more stringent reduction of the biax-
ial moduli by retaining only the contributions from the
molecular host. A minimal continuum expression can be
obtained by applying the commonly used one-constant

approximation K
(0)
1 ≡ K

(0)
2 ≡ K

(0)
3 = K. Using ba-

sic vector manipulations based on Lagrange’s identity
|a×b|2 = |a|2|b|2− (a ·b)2 and the triple vector identity
a · (b × c) = b · (c × a) we find the following (strongly)
simplified expression for the Frank elastic free energy for

our hybrid biaxial nematic:

Fel
V
≈ K

2

[
(∇ · n)2 + (∇ · l)2 + |∇ × n|2 + |∇ × l|2

+{m · (n× (∇×m))}2 + {m · (n× (∇× n))}2

+(m · (∇× l))2
]

(29)

We will not attempt to further simplify this expression.
An interesting feature of Eq. (29) is that even though the
expression should be applicable only to hybrid LCs whose
rod correlations are pronounced enough to enforce strong
alignment of the colloidal component along m, the rele-
vant elastic modulus is chiefly governed by elastic forces
generated by the molecular LC alone. This is consistent
with the main conclusion of the density-functional study
of Ref. [84] where the elastic fluctuations of the minor
director (in this case m) were found to play a minor role

V. DISCUSSION

The interrelation between the orthorhombic elastic
moduli as borne out from our scaling theory, although
based on solid theoretical arguments, remains largely
speculative and the predictions evidently call for fur-
ther experimental validation. However, using the con-
ventional method of electro-magnetic-field induced direc-
tor distortions (Fréedricksz transition), as we did for the
uniaxial case in Section II-C, poses a number of techni-
cal complications that are specific to these low-symmetry
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orthorhombic hybrid LCs. The most important ones are
the following:

• Identifying all twelve elastic moduli that feature in
Eq. (22) requires a considerable variety of differ-
ent LC cells with specific boundary conditions for
each component as well as external field directions.
A tentative strategy to extract the orthorhombic
elastic moduli from specific LC set-ups is discussed
in the Appendix.

• Both molecular and colloidal directors may be dis-
torted at similar external field strengths, which
makes it hard to disentangle specific director defor-
mation of one component, while keeping the other
one unaffected. This is illustrated in Fig. 7 for the
case of an electric-field generated splay distortion
within the molecular director field n (correspond-
ing to K1 in Table I). In this particular case, simul-
taneous distortions of the colloidal director m can
be suppressed by applying a weak additional mag-
netic field where the negative magnetic anisotropy
of the colloidal rods forces the rods to align perpen-
dicular to B. We note that without such an aux-
iliary external magnetic field, both directors tend
to respond simultaneously to the applied electric
field with the colloidal director responding at even
lower voltages than the molecular LC, making it
difficult to measure the elastic constants associated
with deformations of the molecular director alone.

• The measurements require full control of the an-
choring conditions for both molecular and colloidal
directors. While strong planar or homeotropic an-
choring at the cell walls is relatively straightfor-
ward to achieve for the molecular LC director us-
ing standard techniques used for conventional ther-
motropic LCs, controlling the anchoring of col-
loidal rods within such hybrid systems is far from
trivial. The methods to impose strong tangential
or homeotropic anchoring on the colloidal director
needed for such experiments still have to be devel-
oped (so far only weak surface anchoring bound-
ary conditions for the colloidal director have been
demonstrated).

• In an orthorhombic hybrid LC the nematic order
of both components measured with reference to
their respective principal directors is biaxial [70].
Consequently, the dielectric (and diamagnetic) ten-
sor of each component alone becomes biaxial too,
now featuring three different principal values of di-
electric (and diamagnetic) constants. For example,
the magnetic energy density of a system with or-
thorhombic symmetry subject to an applied mag-
netic field H formally reads [86]:

Fm
V

= −µ0

2
[χnl(H · n)2 + χml(H ·m)2 + χlH

2]

where µ0 denotes the vacuum permeability and
χnl = χn − χl and χml = χm − χl the two relevant
diamagnetic susceptibility anisotropies with re-
spect to the orthorhombic director tripod (Fig. 6a).
Analogously, in case of an applied electric field E
the electric energy density reads:

Fe
V

= −ε0
2

[εnl(E · n)2 + εml(E ·m)2 + εlE
2]

with ε0 the vacuum permittivity and εij = εi − εj
the dielectric permittivity anisotropy. The exper-
imental determination of the respective dielectric
and diamagnetic anisotropies, from which the re-
sponse of the molecular and colloidal directors to
the external electric or magnetic fields can be as-
sessed, adds another level of complexity to measur-
ing the elastic properties of orthorhombic hybrid
LCs. In the Appendix we show that, as a first ap-
proximation, the diamagnetic energy density of an
orthorhombic system can be written in terms of
a superposition of two uniaxial nematic materials
with mutually perpendicular principal alignment
axes. Even in a uniaxial hybrid LC the dielectric
response of the molecular LC is affected by the pres-
ence of the colloidal rods, although this effect can
be straightforwardly accounted for through direct
measurements, as was done in this study (Section
II-C).

It is clear that these technical complications impede a
straightforward extension of the measurements outlined
in Section II-C towards the orthorhombic case, at least
when using techniques based on measurements of the
realignment thresholds commonly utilized for uniaxial
nematics. Alternative methods to address the nemato-
elastic response of liquid crystals include, for instance,
those based on light scattering [1, 107, 108] where ther-
mal fluctuations of the nematic director are probed di-
rectly, without the need to apply an external field. In this
case, however, a theoretical framework needs to be de-
veloped to establish delicate relationships between light
scattering observables under various polarization and ge-
ometric alignment conditions and the different elastic
constants of interest.

VI. CONCLUSIONS

Inspired by recent experimental studies of strongly
anisotropic colloidal rods immersed in thermotropic 5CB,
we have presented a theoretical analysis of the nematic
elastic moduli of such hybrid LCs, starting from consider-
ations of surface anchoring and correlations at the level of
the individual rods. Two classes of nematic symmetries
are considered; uniaxial systems in which the rods are or-
ganized (anti-)nematically within the molecular LC, and
a biaxial system in which rod-rod interactions are strong
enough to stabilize orthorhombic order characterized by
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FIG. 7. Schematic overview of an electric-field-induced
Fréedericksz transition within an orthorhombic biaxial ne-
matic LC in a planar cell. (a) Without applied voltage
(U = 0). (b) If the voltage applied across the slab exceeds
the threshold value U∗ a splay deformation of the molecu-
lar director n is induced while simultaneous realignment of
the colloidal rod director m is prevented by applying a weak
auxiliary magnetic field B .

each component aligning along mutually perpendicular
directors.

We find that in the uniaxial state the elasticity of the
molecular LC is enhanced primarily by surface anchoring
effects with the splay modulus increasing linearly with
the concentration of rods, while the twist and bend mod-
uli remain virtually unaffected by the presence of the
rods. The enhanced splay mode as predicted by theory is
corroborated by experimental results, both demonstrat-
ing that K1 of pure 5CB can be increased by about 20 %
for rod volume fractions as low as 0.1 %.

Having gained confidence in the model, we proceed
to a theoretical analysis of the elastic moduli for the
orthorhombic hybrid LC. We classify the twelve elastic
constants that feature in the generalized Oseen-Frank
expression for biaxial nematics [85] in terms of prin-
cipal contributions which may stem from the LC sol-
vent alone, from surface anchoring between the rod sur-
face and the solvent, or from steric and electrostatics-
driven interactions between the immersed rods. This
enables us to identify and classify the principal elastic
moduli in our hybrid LC in terms of the known bulk
moduli of the LC solvent, while the surface-anchoring
and correlation-mediated contributions are predicted by
theory. Explicit values for these principal moduli are

given that fully specify the elastic anisotropy of our hy-
brid molecular-colloidal LC. A compact expression for
the corresponding elastic energy then follows from a sim-
ple one-constant approximation in which the moduli per-
taining the LC solvent are assumed equal. Despite its
simplified form, the proposed elastic energy of our hy-
brid biaxial nematic LC remains highly non-trivial and
is expected to generate complex director topologies that
are fundamentally different from their uniaxial counter-
parts. We briefly discuss the experimental difficulties
that arise when attempting to measure the elastic con-
stants of an orthorhombic nematic material using thresh-
old field strengths for director switching based on con-
ventional LC cells, and provide a possible roadmap to-
wards systematically extracting all relevant moduli using
Fréedericksz transitions [1].

The results of this work might inspire further exper-
imental and modelling studies exploring the complex
nemato-elastic properties of hybrid molecular-colloidal
LCs as a new breed of orthorhombic materials combining
fluidity with low-symmetry orientational order [70]. Al-
though it is assumed that the elastic interactions between
the colloidal particles due to the molecular nematic host
medium do not play a role in the system considered in
this work (because the colloids experience only weak sur-
face anchoring conditions, have a vanishing cross-section
and their concentration remains relatively low), their im-
portance could be systematically explored in an effort
to generate a much wider array of hybrid LCs that can
also combine the low-symmetry orientational order with
(partial) long-range positional order, including columnar
and smectic structures that were found recently in a sys-
tem of dispersions of colloidal discs within a nematic of
molecular rods [71]. Interestingly, the perturbations of
molecular order and defects created around the colloidal
inclusions depend on the symmetry group of the embed-
ding LC and that of the colloidal inclusion [71] which may
be harnessed to generate hybrid LC “solids” character-
ized by orthhorhombic or monoclinic orientational order
along with symmetry groups that are normally only en-
countered in solids [72]. In the cases of colloidal smectic,
columnar and crystalline phases, it will be interesting to
explore the relations between the solid-like elasticity of
these systems with (partial) positional order and that of
the nematic host medium. The case of strong elastic dis-
tortions incurred by the colloidal inclusions clearly also
prompts a reevaluation of all elastic constants of nematic
molecular-colloidal fluids with uninhibited fluidity by go-
ing beyond the perturbation-free regime considered here.
This we will explore in future studies.
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APPENDIX: ROADMAP TO MEASURING THE
ORTHORHOMBIC ELASTIC MODULI USING

FRÉEDERICKSZ TRANSITIONS

In Section II-C we discussed measurements of the splay
modulus of a uniaxial hybrid LC from locating the cor-
responding Fréedericksz transition. Here, we explore the
full range of transitions that could potentially be real-
ized by varying the anchoring conditions for each com-
ponent as well as the direction of the magnetic field. In
Fig. 8 we have sketched a number of different LC cells
one could envisage for a hybrid molecular-colloidal LC.
As for conventional uniaxial systems [1], the Fréedericksz
transition associated with each particular set-up enables
us to probe a particular elastic modulus (or a combina-
tion of several moduli) of the orthorhombic material that
we will explore below.

We start from the magnetization M of a single uniaxial
rod (of either molecular or colloidal origin) with orienta-
tion n characterized by a parallel diamagnetic suscepti-
bility (χ‖) and a perpendicular one (χ⊥) with respect to
the principal rod axis in response to an applied magnetic
field H [109]:

M = µ0[χ‖(n⊗ n ·H) + χ⊥(I− n⊗ n) ·H] (30)

with ⊗ denoting a dyadic product and µ0 the vacuum
permeability. The magnetic energy per rod is given by:

F rod
m = −1

2
(H ·M) = −1

2
µ−1

0 [∆χ(B ·n)2 +χ⊥B
2] (31)

in terms of the magnetic induction B = µ0(H + M) ≈
µ0H for weak magnetic susceptibility. The last term is
immaterial for the present analysis while ∆χ = χ‖ − χ⊥
denotes the susceptibility anisotropy of the rod. For our
hybrid LC we express the magnetic energy in terms of
a superposition of the molecular and colloidal compo-
nents both assumed to be uniaxially aligned along their
respective directors. For notational convenience we set
the vacuum permeability µ0 to unity without loss of gen-
erality. The magnetic energy of the orthorhombic hybrid
system then reads:

Fm ∼ −
1

2

∫
dV [∆χ(0)(B · n)2 + ∆χ(r)(B ·m)2] (32)

so that

Fm
V
∼ −1

2
φ0∆χ(0)(B · n)2 − 1

2
φr∆χ

(r)(B ·m)2 (33)

FIG. 8. Sketch of possible LC cells that would need to be
realized to measure all twelve elastic moduli for a biaxial hy-
brid molecular-colloidal LC. In all cases, strong anchoring is
assumed of the molecular director (n) and the colloidal one
(m). For each director the anchoring is fixed along a single set
of opposing walls with the same anchoring type [homeotropic
(h) or planar (p)]. Combining the different anchoring sce-
narios and the three orthogonal magnetic field directions one
obtains a large range of different configurations denoted by
Ix, Iy, Iz, IIx, and so forth.

with φ0/r the volume fraction of each component (where

generally φ0 � φr) and ∆χ(0/r) the respective diamag-
netic susceptibility anisotropies which may differ in am-
plitude and even sign. The director field distorted by
the magnetic field can be parameterized in terms of two
independent angles θ and ϕ denoting spatially varying
coupled distortions of the molecular and rod directors.
For setup Ix we write:

n = (sin θ(z), 0, cos θ(z)),

m = (cosϕ(x), 0, sinϕ(x)),

B = B(1, 0, 0) (34)

All other cases can be parameterized likewise.

Inserting all the parameterizations back into the
Oseen-Frank elastic (Eq. (22)) and magnetic free energy
(Eq. (33)) we obtain expressions for the total free energy
change per unit volume. The rest of the analysis pro-
ceeds in a way similar to that of the conventional (uniax-
ial) Frédericksz transition. A formal minimization of the
free energy with respect to θ and ϕ yields a set of cou-
pled Euler-Lagrange equations that can be linearized for
small angular fluctuations. Keeping only the linear order
terms we obtain two decoupled second-order differential
equations. For instance, for the particular cell geometry
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Ix these read:

B2φ0∆χ(0)θ(x) = −(K3 +K8)θ′′(x)

B2φr∆χ
(r)ϕ(x) = (K6 +K7)ϕ′′(x) (35)

Substituting θ(x) = θ0e
iqx and ϕ(x) = ϕ0e

ikx enables
us to derive expressions for the threshold amplitude B∗.
The boundary conditions require that q, k = π/d in terms
of the wall-to-wall distance d. Keeping only the real con-
tributions for B∗ we obtain:

Ix : B∗ = q

√
K3 +K8

φ0∆χ(0)

Iy : B∗ = k

√
K6 +K12

φr∆χ(r)

Iz : B∗ = k

√
K6 +K7

φr∆χ(r)
(36)

and similarly for cell geometry II:

IIx : B∗ = k

√
K4

φr∆χ(r)

IIy : B∗ = q

√
K3 +K8

φ0∆χ(0)

IIz : B∗ =

q
√

K3+K12

φ0∆χ(0)

k
√

K5+K11

φr∆χ(r)

(37)

The threshold magnetic field for all other set-ups are then
as follows:

IIIx : B∗ = q

√
K1

φ0∆χ(0)

IIIy : B∗ = k

√
K6 +K7

φr∆χ(r)

IIIz : B∗ =

q
√

K2+K11

φn∆χ(n)

k
√

K6+K12

φr∆χ(r)

(38)

IVx : B∗ =

q
√

K1+K9+K11

φ0∆χ(0)

k
√

K4+K10+K11

φr∆χrm)

IVy : B∗ = q

√
K2

φ0∆χ(0)

IVz : B∗ = k

√
K5

φr∆χ(r)
(39)

Vx : B∗ = k

√
K5

φr∆χ(r)

Vy : B∗ = q

√
K3 +K8

φ0∆χ(0)

Vz : B∗ =

q
√

K3+K12

φ0∆χ(0)

k
√

K4+K10+K11

φr∆χ(r)

(40)

VIx : B∗ = q

√
K2

φ0∆χ(0)

VIy : B∗ = k

√
K6 +K7

φr∆χ(r)

VIz : B∗ =

q
√

K1+K9+K11

φ0∆χ(0)

k
√

K5+K6+K12

φr∆χ(r)

(41)

and

VIIx : B∗ = q

√
K1

φ0∆χ(0)

VIIy : B∗ =

q
√

K2+K11

φ0∆χ(0)

k
√

K11

φr∆χ(r)

VIIz : B∗ = k

√
K4

φr∆χ(r)
(42)

Wherever two expression are given, only the one giving
the lowest threshold magnetic field B∗ will be of physical
significance. From the set-ups described thus far we are
able to identify the following six moduli:

IIIx → K1

IVy → K2

IIx → K4

IVz → K5

IIIz → K11

IVx or VIz → K9 (43)

Furthermore, if one could design a set-up in which the
Fréedericksz transition of m precedes that of n, one could
extract K10 via

Vz or IVx → K10 (44)

The last five modes can be obtained as follows. First,
upon close inspection of Eq. (22) one deduces that K7

and K8 represent a bend deformation of m specifically
along the direction n and a bend deformation of n along
m, respectively. The corresponding bend moduli for the
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uniaxial systems K6 and K3 are, as required by symme-
try, invariant with respect to the direction along which a
bend deformation is applied. The following four moduli
can thus be determined from (there are several possible
set-ups):

IIy → K3 = K8

IIIy → K6 = K7 (45)

which finally leaves us with K12 (here also several set-ups
are possible):

IIz → K12. (46)

with which all twelve elastic moduli have been identi-

fied. We wish to underline that the schematic outlined
above is by no means unique and that other, possibly
more experimentally viable strategies may be conceivable
based on different combinations of cell geometry and an-
choring conditions, as well as both electric and magnetic
field application, and even combinations of the two. At
the same time, the most significant challenge for experi-
mentally measuring the complete set of elastic constants
of hybrid nematic LCs based on realignment thresholds
relates to the need of defining strong homeotropic and
planar anchoring for the colloidal director, for which the
suitable methodologies still need to be developed. A dif-
ferent approach could involve elastic constant measure-
ments based on light scattering for different polarization
and director orientation geometries, which is also worth
considering.
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[109] An analogous description follows for the case of an ap-
plied electric field E acting on a uniaxial rod with di-

electric permittivity ε‖ and ε⊥.


