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Abstract
Neural crest cells are embryonic stem cells that migrate throughout embryos and, at different target
locations, give rise to the formation of a variety of tissues and organs. The directional migration of
the neural crest cells is experimentally described using a process referred to as contact inhibition
of locomotion, by which cells redirect their movement upon the cell–cell contacts. However, it is
unclear how the migration alignment is affected by the motility properties of the cells. Here, we
theoretically model the migration alignment as a function of the motility dynamics and interaction
of the cells in an open domain with a channel geometry. The results indicate that by increasing
the influx rate of the cells into the domain a transition takes place from random movement to an
organised collective migration, where the migration alignment is maximised and the migration time
is minimised. This phase transition demonstrates that the cells can migrate efficiently over long
distances without any external chemoattractant information about the direction of migration just
based on local interactions with each other. The analysis of the dependence of this transition on the
characteristic properties of cellular motility shows that the cell density determines the coordination
of collective migration whether the migration domain is open or closed. In the open domain, this
density is determined by a feedback mechanism between the flux and order parameter. The model
also demonstrates that the co-attraction mechanism proposed earlier is not necessary for collective
migration and a constant flux of cells moving into the channel is sufficient to produce directed
movement over arbitrary long distances.

1 Introduction
Neural crest cells are motile embryonic cells which are present in all vertebrates and produce a
variety of derivatives including neurons, pigment cells of the skin, cartilage, bone, muscle, and
connective tissues of the skull, face, neck, and heart [1–4]. Following the formation of neural crest
cells during vertebrate embryogenesis, the cells undergo an epithelial-to-mesenchymal transition
which enables them to migrate long distances along specific pathways to different target locations
throughout the embryo, where they differentiate into various essential cell types [1, 4, 5]. Due to
this widespread contribution of neural crest cells to nearly every major organ, these cells serve
as an important model system to study the physiological and pathological processes, e.g., birth
defects and invasive cancers; reviewed in [6].
The migration of neural crest cell populations is a prime representation of the collective migration
of a loosely associated stream of cells, because their migration as a collective emerges from their
occasional temporary interactions [7–12]. Both in vivo and in vitro experiments describe the direc-
tional migration of the neural crest cells using contact inhibition of locomotion (CIL) by which cells
reshape and change their direction of movement upon the cell–cell contacts [13, 14]. CIL is also
found to enhance the collective chemotaxis of neural crest cells towards a chemoattractant, where
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the cell density promotes the cells chemotactic response [15, 16]. In contrast, dispersed single cells
are unable to move towards the chemoattractant [11, 17]. This presents the crucial role that CIL
plays in the migration of neural crest cells during health and disease [7, 9]. For instance, the loss
of CIL behaviour contributes to the malignant invasion, where the malignant tumour cells spread
to the healthy tissues [7]. This suggests that targeting the collective behaviour of a cell population
may be effective in controlling the associated diseases, e.g., cancer metastasis [18].
A major class of theoretical models for collective migration has been developed in the area of
animal migration. These models capture the group-level migratory properties using simple inter-
action rules, e.g., local alignment, attraction, and repulsion [19–24]. In these models, animals are
represented as point particles which interact via non-local rules, because they use sight to interact
with other animals at a distance. In the context of the cell migration, however, the directionality of
the migration relies on the localised information provided by direct physical contacts or chemical
signals [25].
In addition, the motility of multiple diffusive species (subpopulations), where the motility of a total
population of motile agents or particles represented as a system of interacting subpopulations, has
been studied in on-lattice [26] and off-lattice [27] models. These models describe the distribution
of particles in space and time using systems of partial differential equations. Such approaches can
be useful in tracking a subpopulation of cells within a larger population, e.g., the movement of
neural crest cells along the developing intestine, where donor quail cells were grafted into a chick
host [28].
To describe the collective behaviour of neural crest cells, earlier theoretical models have used var-
ious computational techniques (e.g., agent-based and Potts models) and analytical methods (e.g.,
partial differential equations) [28–32]. We have developed a two-dimensional computational model
for the migratory dynamics of neural crest cells driven by CIL [33]. We modelled cell shapes
as closed contours and analysed the alignment patterns of the migration in a closed domain as
functions of the cell density and shape [33]. CIL and chemoattraction toward a secreted chemical
molecule have been suggested by earlier computational models as key mechanisms to spontaneous
collective migration [34–37]. Although experiments have provided evidence to support the presence
of neural crest chemoattractants in vivo [11, 38, 39], it is well documented that neural crest cultured
in vitro in the absence of any external chemoattractant exhibit directional collective migration [11,
31, 40]. Yet, it remains poorly understood how the transmission of alignment information through
the cell-cell interactions can affect their collective movement in an open domain, depending on the
influx rate of cells into the domain and their motility properties.
Here, we analyse the role of the alignment interactions among cells (equivalent to CIL [19, 33])
in the collective migration of cells in an open domain with a channel geometry, in the absence
of cell proliferation and chemotactic signals. The open channel geometry is more realistic for the
migration of neural crest cells, compared with a closed domain, as it enables us to compare our
theoretical results with experiments and other modelling studies. In addition, we consider the mi-
gration of a stationary, continuous stream of cells within a channel, where cells enter the channel
at a constant rate, rather than than the migration of a finite cell cluster in a channel studied in
[31, 34]. Furthermore, we consider a simplified model based on interacting point particles describ-
ing cell-cell contacts within a certain interaction radius, based on [19], without modelling the cell
shapes explicitly as implemented in the Cellular Potts Models [31] and the biochemical models
[34]. Our model demonstrates that the alignment information transmitted through the cell-cell
interactions, in the presence of a constant influx of cells into the channel, is sufficient to generate
a directed collective migration over long distances. In this regime, we further analyse how the
individual cell-level motility and channel properties (e.g., width of the channel and the influx rate
of the cells into the channel) would influence the properties of the population-level motility, in-
cluding the alignment of collective migration, the migration time for a cell to cross the domain,
and the cell density in the domain. The results are discussed in the context of experiments and
other theoretical studies.

2 Model description
First, we run preliminary simulations using a model where the cell shapes are modelled as contours,
similar to the one described in [33]. Then, based on these observations we study the same problem
in more details using the simplified, but computationally more efficient particle-based model [19].
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Briefly, in [33], the migration of cells was modelled in a closed square shaped domain with periodic
boundaries. The shape of the cells was initialised as contours (composed of a circular core sur-
rounded by a deformable region representing cell protrusions) in polar coordinates with a Gaussian
function of the angle θ:

Q0 (θ; θ0) = R0 +Ae−(θ−θ0)2/2ω2

, θ0 − π < θ < θ0 + π, (1)

where R0 is the radius of the cell core, A and ω are the cell shape parameters, θ0 is the instantaneous
cell orientation [33]. Numerically, the contours are approximated by a discrete set of m points,
corresponding to equally distributed orientations θk = 2πk/m, where k = 1, ..,m. The cell shape
function Q0 (θ; θ0) is then used to determine the cell velocity in the direction of net force produced
by cell protrusions:

~v (t) = V0

∫ 2π

0

(Q0(θ)−R0)~nθdθ (2)

where V0 is a constant velocity parameter and ~nθ is the radial unit vector in the direction θ. In the
absence of cell-cell interactions, a single cell moves with the velocity given by Equation (2) with
an additional random noise:

d~r
dt

= ~v (t) + ~η(t), 〈~η(t) · ~η(t− τ)〉 = σ2δ(τ) (3)

where ~η(t) is an uncorrelated white noise with the intensity σ. When two cells collide, due to CIL,
their protruded contours collapse and, as a result, the cells redirect their movement. In numerical
simulations, overlapping protrusions are detected and in the corresponding radial directions the
contours are reset to the core radius. The collapse of protrusions breaks the symmetry of the cell
with respect to the original orientation axis. Due to this modified shape of the contour the cells
move away from each other and gradually regain their normal shape and velocity by reforming
protrusions symmetrically along the new movement direction. At each time-step, the velocity
vector is determined from the newly updated cell shape Q0 (θ; θ0) according to Equation (2),
and the orientation of the velocity vector is combined additively with the noise corresponding to
Equation (3). The resulting direction θ0(t) determines the orientation of the target Gaussian cell
shape Q0 (θ; θ0(t)) according to:

∂Q(θ, t)

∂t
= −γ[Q(θ, t)−Q0 (θ; θ0(t))] + ξ(θ, t) (4)

where γ is the regrowth rate of the cell contour; and for a more realistic representation of the
cells here we also include a noise term ξ which describes random fluctuations of the cell protru-
sions, since pseudopodia are randomly distributed along the cell perimeter [41]. Note that θ0(t) is
determined by the orientation of the cell velocity vector ~v (t) defined by the integral in Equation (2).

Results from preliminary simulations with this contour-based cell model are shown in Fig. 1.
Starting with an empty channel with solid reflecting boundaries at the top, bottom, and left, the
cells enter the channel on the left side at a constant rate with random initial direction, uniformly
distributed between 0 and 2π. When a cell hits a boundary its shape changes so that the part of
the protrusion that is outside of the domain is removed which leads to a change in the direction
of movement. For simplicity, it is assumed that cells exit the channel from the right end of the
channel. Therefore, when the cells reach the right end of the channel they are eliminated from the
simulation. The simulations were run until the cell numbers in the channel reached an approximate
steady state ; see Fig. 1(c). The simulation was repeated with different values of the input cell
flux into the channel. The main observation from these simulations is that when the input flux is
relatively high the migration is well ordered, i.e., cells move in approximately the same direction,
and when the input flux is low there is a lower cell density in the channel and the cells often loose
the overall direction of the migration and follow a longer random forward-and-backward trajectory
to get through the channel; see Fig. 1(d) and Movies 1 and 2 in the Supplemental Material [42].
The collective alignment of migrating cells can be characterised by the order parameter:

Φ =
|
∑
i ~vi|∑
i |~vi|

(5)
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where Φ varies between 0 (uncorrelated random movement) and 1 (fully aligned migration). The
order parameter as a function of time for two values of the input flux is shown in Fig. 1(c).
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Figure 1: Migration of cells simulated with the contour-based model. (a, b) Snapshots of cells in
an open migratory domain with a channel geometry and dimensions Lx = 40 and Ly = 10, where
top and bottom boundaries are reflective. Flux rates f are 0.02 (a) and 0.2 (b). Other simulation
parameters are: R0 = 0.5, A = 0.5, ω = 2, V0 = 1, γ = 0.5, ξ = 0.1, and η = 0.1. For each
cell shape, red arrow: the instantaneous cell velocity; black circle: cell body with radius R0; blue
contour: cell shape; see Equation (1). (c) Simulations are run long enough to observe that the
number of cells in the channel remains steady. (d) Order parameter Φ versus time. For f = 0.2,
Φ = 0.83± 0.04. For f = 0.02, Φ = 0.39± 0.17.

In order to characterise the properties and more detailed parameter dependence of the cell migra-
tion in the open channel, we use a simplified particle-based computational model. We have shown
earlier [33] that in a closed domain the contour-based cell model has similar properties and pro-
duces qualitatively similar phases of ordered coherent and irregular movement as the self-propelled
particle-based model introduced in [19]. The effective alignment interaction of the Vicsek model
[19] was found to also arise from various other types of cell-cell interactions [43–48]. Therefore, we
model the migratory properties using the particle-based cells in an open domain.
We assume that the self-propelled cells (particles) enter the domain on the left side of the channel
at a fixed rate f , defined as the number of new cells added per unit time (see Movie 3 and 4 [42]).
The model is discrete in time so the time-step taken to update the cell positions is the time unit,
∆t = 1. Following [19], each cell i moves in the domain by updating its position ~ri = (xi, yi) at
each time-step as:

~ri (t+ 1) = ~ri (t) + ~vi(t)∆t (6)

with a constant velocity of magnitude v0:
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~vi (t) = v0~ni. (7)

To determine the direction of the self-propelling particles that interact, in a well-known model
Vicsek and colleagues used the average velocity direction of the neighboring particles [19]. Without
considering information about the movement directions of neighbors, the collective direction can
be determined by assuming only short-range interactions [49]. This later experimentally motivated
model exhibited a continuous phase transition from a disordered into an ordered state, which indeed
belongs to the same universality class as the model in [19]. Therefore, following the fundamental
model in [19], here, the direction of the displacement ~ni = (cosαi, sinαi) is calculated as:

αi (t) = 〈αj (t)〉R + ∆α (8)

where 〈αi (t)〉R is the average of the velocity directions αj of the cells (including cell i) within an
interaction circle of radius R surrounding cell i. ∆α is a random noise term uniformly distributed
over the interval [−η/2, η/2] [19]. When a cell hits the top or bottom boundary, the orientation
of the particle is reflected as αi → 2π − αi. We also used reflecting boundary conditions on the
left end of the domain by changing the orientation of the particles when they cross x = 0 as
αi → π − αi. Finally, when a cell reaches the right end of the channel, it is removed from the
simulation, resembling a target region where neural crest cells stop migrating and differentiate into
various cell types [29, 50].
Since the cells are moving in an open domain, the cell density ρ is not prescribed as in the closed
system studied earlier [19, 33], and is determined by the influx rate of the cells. By simplifying
the cell shapes into a single cell-cell interaction radius, the number of free parameters is reduced,
having only the flux parameter f in addition to the three cell parameters v0, η, and R. We will
choose the interaction distance as the length scale unit in the particle based simulations, i.e., R = 1.
Using the simulations based on Equations (6-8), we focus on three characteristics of the collective
migration: the alignment of migration calculated using the order parameter defined in Equation
(5), the migration time, and the cell density in the domain. The migration time tm for a cell is
defined as the time taken for crossing the channel from left to right. Finally, the cell density ρ
is calculated by binning the domain along the x-dimension, where the width of each bin is five
length-units. The cell density ρ is then calculated as the average number of cells located in each
bin divided by the area of the bin.

3 Results and discussion
We first examine how the properties of the migratory dynamics Φ, ρ and tm change in response
to the influx rate f of the cells into the domain. Typical snapshots of the cell distribution in the
channel in the stationary regime, are shown in Fig. 2(a-c). We find that increasing the flux rate f
promotes the migration alignment, accelerates the average migration time, and increases the cell
density in the domain; see Fig. 2(d-f). The distribution of the migration times also shows that at
lower input flux, in addition to the increased average migration time, the variability of the time
needed to cross the channel also increases (see the broadening of the distributions in Fig. 2(f))
indicating the increased randomness of the individual cell trajectories.
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Figure 2: Migratory dynamics simulations of the particle model. (a-c) Snapshots of cells, modelled
as self-propelled particles, in an open channel with dimensions Lx = 400 and Ly = 60, where the
top and bottom boundaries are reflective. Flux rates are 2 (a), 4(b), and 20 (c) at time 500. Other
simulation parameters are v0 = 2, η = 1, and R = 1. Each red arrow: velocity of a cell. Blue
trajectory: displacement trajectory of a cell randomly selected at the start of the simulation. (d)
Order parameter Φ versus time. For f = 2, Φ = 0.34 ± 0.09. For f = 4, Φ = 0.48 ± 0.07. For f
= 20, Φ = 0.80± 0.03. Parameter values correspond to mean ± standard deviation (SD). (e) Cell
density ρ versus the binned length of the domain, where each bin is five length-unit wide. ρ are
0.19±0.05, 0.28±0.03, and 0.84±0.02 for flux rates f = 2, 4, and 10, respectively. (f) Distribution
of the migration time tm needed for cells cross the domain. For f = 2, tm = 587.07± 219.34. For
f = 4, tm = 419.76± 111.19. For f = 20, tm = 251.14± 14.94.

For comparison, we also simulated the migration in the case when the interaction between the
particles was switched off, i.e., the interaction radius R was set to zero (Fig. 3). In this case the
cells follow discrete random-walk trajectories, with step-size v0 and random direction αi(t+ 1) =
αi(t) + ∆α. In the absence of interactions, the particles have no information about the direction
of migration. This leads to a highly non-uniform distribution along the channel with more cells
accumulating on the left side of the domain where they enter the channel; see Fig. 3(a, c). The
stationary density distribution along the channel can be described by a one-dimensional diffusion
equation with constant flux (f) boundary condition on the left, and zero density on the right:

∂ρ(x, t)

∂t
= D

∂2

∂x2
ρ(x, t), −D ∂

∂x
ρ|x=0 = f, ρ(x = Lx, t) = 0 (9)

where D is the diffusion coefficient of the cells. The stationary solution of the diffusion Equation
(9) corresponds to a constant density gradient ρ(x) = (Lx−x)f/D which agrees with the numerical
simulations shown in Fig. 3(c). Therefore, results in Fig. 3 demonstrate that in the absence of
alignment interactions (i.e., without CIL) the influx of cells is not sufficient in itself to generate a
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directed collective migration.
We also examine the migratory dynamics when cells move with the maximum noise intensity (i.e.,
η = 2π). The model predicts a non-uniform distribution of particles along the channel, similar to
the diffusive behaviour found for the non-interacting cells with a lower η; see Fig. 3(c). Likewise,
the order parameter reduces to Φ ≈ 0.1, confirming the role of the directional interactions in
aligning a collective migration; Fig. 3(b). In this diffusive regime, the cell density is higher on the
entry side of the channel resulting in an increase in the migration time; see Fig. 3(d).
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Figure 3: Migratory dynamics of non-interacting particles (i.e., R = 0) with the maximum noise
intensity (i.e., η = 2π). (a) A snapshot of non-interacting particles in an open domain with
dimensions Lx = 400 and Ly = 60 at time 500. Simulation parameters are f = 20, v0 = 2, and η =
1. Each red arrow: velocity of a cell. Blue trajectory: displacement trajectory of a cell randomly
selected at the start of the simulations. (b) The order parameter Φ is equal to 0.14 ± 0.07 (for
η = 1) and 0.08 ± 0.04 (for η = 2π). (c) Cell density ρ versus the binned length of the domain,
where each bin is five length-unit wide. Lines: fit of ρ(x) = (Lx−x)m, where the slope m, which is
equal to 0.14±0.01 (for η = 1) and 0.22±0.01 (for η = 2π), corresponds to f/D; see Equation (9).
Least-squares fitting was performed using MATLAB (version 2017b, The MathWorks, Inc.). (d)
The migration time tm is equal to 1338.35± 847.16 (for η = 1) and 1702.28± 933.48 (for η = 2π).

With increasing flux rate f , the random movement of cells changes to organised collective migra-
tion, where the migration alignment is maximised and the migration time is minimised; see Fig.
4(a, b). A similar transition from a sparse domain into a dense one is also obtained with increasing
f ; see Fig. 4(c).
These results motivate us to test the effect of the input flux rate on another cell mobility charac-
teristic: the directional persistence of the cell’s displacement trajectories. The persistence length
P of cell trajectories determines how far cells can migrate within the channel in a given amount
of time, and is determined by fitting the following equation:

〈R2〉 = 2P 2

(
L

P
− 1 + e−

L
P

)
(10)

to the mean squared displacement 〈R2〉 of the trajectories of length L [51–53]. We explore the
persistence length P versus the input flux f with varying the noise intensity η. First, we calculate
the mean square of the end-to-end distance R of the particle trajectories of various lengths L
generated from the simulations; see symbols in Fig. 5(a). Then, fitting Equation (10) to the 〈R2〉
versus L calculations estimates P ; see curves in Fig. 5(a). We find that the persistence length of
migrating cells increases with the input flux. It is also found that the noise intensity lowers the
persistence length; see Fig. 5(b).
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Simulation parameters v0 = 1 and R = 1 for η = 0.5 and 1.5 with an open domain of dimensions
Lx = 400 and Ly = 60.

We further examine how the migratory characteristics change depending on the cell’s parameters.
In addition, we analyse the effect of the width of the domain Ly on these characteristics, since
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earlier studies have shown that a spatial confinement [31] and growing domain [25, 54] may affect
the collective migration of cells.
The cell velocity parameter v0 is found to have no significant effect on the migration alignment,
but increasing v0 lowers the migration time and cell density, as shown in Fig. 6(a-c). Using
a continuum representation of the moving cells, we can describe the flux in the channel as the
product of the average velocity and density. The average local velocity of cells can be written as
the product of the individual cell velocity (v0) and the order parameter Φ. In a stationary state,
when the average density is approximately constant in time, the flux inside the channel is balanced
by the input flux of cells entering the channel leading to the relationship:

f = v0Φρ. (11)

The validity of this relationship, in the form of ρ(v0) = (f/Φ)v−1
0 is shown in Fig. 6(c).

Thus, in the open channel the stationary cell density is determined by the input flux through the
following feedback mechanism: increasing the input flux f leads to higher density, which produces
more ordered alignment of the cells’ movement. This is a consequence of the relationship between
the density and order parameter already well established in closed domain with constant prescribed
density [19, 33]. The increased order parameter raises the flux of cells through the channel and
reduces the density, thus producing a negative feedback and a stable equilibrium density.
The analysis of the stochasticity of the cells movement indicates that increasing the noise intensity
η can transition a coordinated migration to a random movement of cells. The randomness in the
movement of the cells blocks their coordination in migrating as a collective. In turn, this leads to
an increased cell density in the domain; see Fig. 6(d-f).
Finally, we find that the collective migration becomes more aligned and faster with narrowing the
domain; see Fig. 6(g-i). A narrow domain increases the chance of cell collisions, suggesting that
spatial confinement strengthens the effect of CIL in coordinating the collective migration. For
example, the order parameter decreases with the domain width; see Fig. 6(g). Narrowing the
domain (at fixed f, v0, η, and R) accelerates the cell collision rate, resulting in a faster convergence
of the displacement directions αi to an aligned direction. Accordingly, enhancing f , would increase
Φ. When the input flux f is proportional to the width of the domain (e.g., for f = 1 with Ly = 30,
one cell enters the domain every second time-step), negligible changes in Φ, tm, and ρ are found;
see dashed curves in Fig. 6(g-i).
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Figure 6: Migratory dynamics of cells calculated using the particle model. Order parameter Φ (top
row), migration time tm (middle row), and cell density ρ (bottom row) versus cell velocity v0 (a-c),
noise intensity of the cell motility η (d-f), and width of the open domain Ly (g-i). Lx = 200. In
(a-f), Ly = 60. In (a-c), η = 1 and R = 1. Dashed curves in (c) calculated as f/(v0Φ) normalised
to Ly. In (d-f), v0 = 1 and R = 1. In (g-i), v0 = 1, η = 1, and R = 1. Dashed curves: mean Φ,
tm, and ρ versus Ly for different flux density values, proportional to Ly. Shaded region: SD. For
example, with f = 1 and Ly = 15, one cell enters the domain every four time-steps.

To represent the relationship between the average cell density ρ and the order parameter Φ in an
open domain, we can eliminate the flux parameter f in the calculations of ρ(f) and Φ(f) in Fig.
4(a,c). The result of this is shown in Fig. 7(a). Higher cell density, which is produced by increased
incoming flux of cells, leads to a more coordinated ordered migration. We can now compare this
result to the closed system where there is no flux across the domain and the cell density is an
externally controlled parameter determined by the initial condition. We find the same transition
from disordered to ordered collective movement in response to the cell density ρ; see Fig. 7(b). We
further explore this relationship between ρ and Φ with the contour-based model. While the order
parameter and density both increase with the input flux, similarly to the particle model, the cell
density in the channel saturates at a maximum value; see Fig. 8(a, b). This illustrates the effect
of the volume exclusion (i.e., a cell cannot occupy space that is already occupied by another cell
[55]) in the contour-based model, which is absent in the particle model; compare Figs. 4(c) and
8(b). However, the maximum density is reached at flux values when the system is already in the
ordered migration regime, therefore volume exclusion does not affect the relationship between ρ
and Φ. We again find a consistent transition from disordered to ordered migration in the ρ versus
Φ relation obtained from the contour-based cell model with both open and closed domains; see
Fig. 8(c). These agreements show that the simplified particle model can reproduce the results of
the more complex contour-based model in [33]; see Movies 3 - 5 [42].
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Our results are in agreement with experimental and earlier theoretical findings. Experiments have
shown that CIL dramatically increases the percentage of the neural crest cells that reach their
target region over time [29, 31]. Likewise, Woods et al. [30] found that the cell-cell interactions
reduce the time taken for the cells to reach a target location. These observations confirm our
results on the migration alignment and time in Fig. 2(d, f), which are further analysed versus the
motility properties of the cells.
The analysis of the effect of the randomness in the movement of the neural crest cells in Fig.
6(d-f) has shown that stochastic fluctuations in the movement of cells limit the coordination of
the migration. This agrees with our earlier results in [33], and the flocking models (where the self-
propelled particles had non-local interactions) [19, 49], the self-propelled short-range interacting
agents in swarm migration [56], and the self-propelled interacting cells [57] that the amplitude of
the stochasticity of the movement of cells leads to random movement.
In addition, previous experimental and theoretical studies on the effect of the spatial confinements
on the migration of neural crest cells have shown that removing the lateral confinement of the
domain significantly reduces the directionality of the collective movement [31, 34]. In agreement
with these findings, the model calculated higher order parameter Φ for narrower domains; see Fig.
6(g).
Finally, experiments have shown that, the CIL interaction of neural crest cells during migration
increases migratory persistence (i.e., the maximum distance along a cell trajectory divided by the
total length of that trajectory) [31]. Moreover, the self-propelled particle models have indicated
that the particle density transitions particles’ random movement to a coordinated migration [49,
56]. Together, this implies that the coordination of the migration would increase in response to
an increase in the cell density in the domain. This has been shown in our calculations for the
flux-dependent persistence length in Fig. 5(b) and the density-dependent order parameter in Fig.
7(a, b).
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4 Conclusion
We extended our computational model of the analysis of the migration of the neural crest cells
[33] to an open domain. This allowed us to take into account the effect of the flux rate of the
cells into the domain on the migration alignment and cell density, in the absence of prolifera-
tion and chemoattraction. Our results suggest that when there is a sufficiently strong sustained
flux of cells into a confined channel the cells interacting via CIL alone can maintain persistent
directed migration without directional chemotactic signals; see Fig. 2(a-c) and Fig. 3(a), blue
trajectories. This resembles the observations in [37], where the role of lead and trailer neural crest
cell identities examined, that trailer neural crest cells do not require chemotactic signaling factor
(vascular endothelial derived growth) for guidance, but instead receive guidance instructions from
lead cells. The alignment of the directed migration is determined by the cell density the same way
as in a closed system of interacting self-propelled particles [19] or contour-based cells [33]. While
in a closed system with periodic boundary conditions there are multiple choices for the common
direction, in the open channel a single direction consistent with the domain boundaries is selected.
Previous modelling work has shown [34] that directed collective migration of cell clusters is possible
when there is co-attraction between the cells mediated by a diffusing chemical signal. Our model
demonstrates that the key factor for collective coherent movement is the cell density, and therefore
the co-attraction mechanism is not necessary when the cell density is maintained by a continuous
flux of cells entering the channel. In this case, the density is determined by the balance between
the external flux f and the flux in the channel defined by: v0ρΦ(ρ).

Data availability
The computer code is available to download from the website at https://github.com/hr-khataee/NCCs.
The code has been developed using MATLAB version R2017b, The MathWorks, Inc.
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