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In nonlinear dynamics, a parameter drift can lead to a sudden and complete cessation of the
oscillations of the state variables - the phenomenon of amplitude death. The underlying bifurcation
is one at which the system settles into a steady state from chaotic or regular oscillations. As the
normal functioning of many physical, biological, and physiological systems hinges on oscillations,
amplitude death is undesired. To predict amplitude death in advance of its occurrence based solely
on oscillatory time series collected while the system still functions normally is a challenge prob-
lem. We exploit machine learning to meet this challenge. In particular, we develop the scheme
of “parameter-aware” reservoir computing, where training is conducted for a small number of bi-
furcation parameter values in the oscillatory regime to enable prediction upon a parameter drift
into the regime of amplitude death. We demonstrate successful prediction of amplitude death for
three prototypical dynamical systems in which the transition to death is preceded by either chaotic
or regular oscillations. Because of the completely data driven nature of the prediction framework,
potential applications to real world systems can be anticipated.

I. INTRODUCTION

In nonlinear dynamical systems, amplitude death is
a phenomenon in which the oscillatory behaviors of the
state variables halt suddenly and completely [1, 2]. A
typical route to amplitude death is the drift of a system
parameter through a critical point at which a bifurca-
tion from oscillations to a steady state occurs. From the
point of view of system functioning, amplitude death is
often associated with a catastrophic type of behaviors.
For example, in biomedicine, normal physiological condi-
tions are associated with oscillations, while the system’s
settling into a steady state is often viewed as the onset of
pathological conditions or is associated with death. Be-
cause of the relevance of the phenomenon of amplitude
death to physical, chemical, biological, and physiological
systems [3–7], it has been studied extensively for three
decades. Earlier it was found that a parameter mismatch
among a network of coupled oscillators can lead to ampli-
tude death [8, 9] and the study was extended to various
network settings [10–13]. It was also found that the phe-
nomenon can arise in dynamical systems with time de-
layed coupling [14–24]. Alternative mechanisms leading
to amplitude death include conjugate coupling [25–28],
dynamical (time-varying) coupling [29–31], mean-field in-
teraction [32–34], and nonlinear coupling [35].

As amplitude death is undesired in real-world systems,
it is of interest and importance to be able to predict its
occurrence while the underlying system is in the regime
of normal functioning. In the real world, the system
equations are most likely unknown, so it is imperative
to formulate the prediction problem as one that is based
solely on data or time series. These considerations have

∗ Ying-Cheng.Lai@asu.edu

motivated the present work. In particular, we ask the
following question: suppose the system is in a “normal”
regime with oscillations and there is a slow parameter
drift due, e.g., to environmental changes, can amplitude
death be predicted in advance of its possible occurrence?
The problem is extremely challenging because of the re-
quirement to predict the catastrophic behavior based
on the presently accessible information which indicates
that the system should and would be completely normal
by all measures. In fact, if one measures the dynami-
cal variables of the system, the resulting time series are
“healthy” in the sense that they all exhibit oscillations,
giving no traceable sign that a catastrophic event such
as amplitude death would occur upon some amount of
parameter drift or a perturbation. To our knowledge, in
the literature the only available method is one based on
sparse optimization such as compressive sensing [36, 37]
where, if the mathematical structure of the system equa-
tions is such that they contain only a small number of
terms belonging to a power or a Fourier series, the coeffi-
cients of these terms can be determined from time series
data through sparse optimization. Here, we assume that
the governing equations of the system do not have such
a simple mathematical structure, rendering inapplicable
any of the existing optimization methods. Our solution
is to exploit machine learning to develop a model-free,
fully data based paradigm to predict amplitude death.

For applications of machine learning in model-free pre-
diction of nonlinear dynamical systems, reservoir com-
puting, a class of recurrent neural networks [38–41], has
stood out as an effective paradigm and has received grow-
ing attention in recent years [42–58]. Briefly, a reser-
voir computing machine is a nonlinear dynamical network
which, when properly trained with time series data from
the target system, becomes effectively a high-dimensional
representation of the original system. Starting from the
same initial condition, temporal synchronization can be
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maintained between the reservoir machine and the target
system [57], enabling prediction. It is important to note
that, in the current literature on model free prediction of
chaotic systems with reservoir computing [42–58], train-
ing and prediction occur at the same set of parameter
values of the target system. However, to predict am-
plitude death caused by a parameter drift, training and
prediction will need to be done at different parameter val-
ues. As an essential requirement, it is necessary for the
machine to keep track of the variations in the bifurcation
parameter, which can be accommodated by designating
a specific input channel to the machine. A viable de-
sign is to connect this input parameter channel to every
node in the reservoir network, which has recently been
investigated for predicting transient chaos [59]. Here, we
exploit this idea to predict amplitude death.

Figure 1(a) shows our modified reservoir computing
structure with an additional input parameter channel,
and Fig. 1(b) explains the basic working of this machine
learning scheme to predict amplitude death. In particu-
lar, let p be the bifurcation parameter of the target sys-
tem. As p varies, a critical point arises: pc, where the sys-
tem exhibits oscillations for p < pc and the system settles
into a steady state (the regime of amplitude death) for
p > pc. Training of the reservoir machine is done based
on time series taken from a small number of parameter
values in the oscillation regime, as indicated by the three
vertical dashed blue lines at p1 < p2 < p3 (p3 < pc) in
Fig. 1(b). For each of the three parameter values, suffi-
cient training is required in the sense that the machine
is able to predict correctly and accurately the oscillatory
behavior at the same parameter value for a reasonable
amount of time. Suppose that, currently, the system
functioning is normal and it operates at the parameter
value p0 < pc, and suppose a parameter drift ∆p > 0 oc-
curs. In the prediction phase, we input the new parame-
ter value p0 + ∆p into the reservoir machine through the
parameter channel. The prediction is deemed successful
if the machine generates oscillations for p0 + ∆p < pc
but exhibits amplitude death for p0 + ∆p > pc. We
demonstrate successful prediction using three prototypi-
cal systems of coupled nonlinear oscillators. The broad
implication is that the so-articulated reservoir machine
can be used to predict the characteristic changes in the
system behavior as a result of a parameter drift.

II. BASICS OF RESERVOIR COMPUTING
WITH AN INPUT PARAMETER CHANNEL

As shown in Fig. 1 (a), a reservoir computing machine
has three components: (1) an input layer that converts
an M -dimensional input signal into an N -dimensional
signal through an N × M input weighted matrix Win,
(2) a reservoir network (recurrent hidden layer) with N
nodes characterized by Wr, an N ×N weighted matrix,
and (3) an output layer that maps the N -dimensional
vector characterizing the dynamical state of the reser-

FIG. 1. Modified reservoir-computing scheme and illustration
of model-free prediction of amplitude death. (a) Structure of
the modified reservoir computing scheme with an additional
parameter channel. The reservoir machine has three layers:
the input, hidden, and output layers. Input data vector ũ(t)
consists of the value of the bifurcation parameter and the as-
sociated measured time series from the dynamical variables
of the target system, r(t) denotes the dynamical state of the
complex network in the hidden layer, and v(t) denotes the
output data vector representing the prediction result. (b)
Training of the reservoir computing machine is done in the
pre-transition regime for a small number of bifurcation pa-
rameter values (as indicated by the three vertical dashed blue
lines), where the system generates oscillatory time series. The
critical transition to amplitude death occurs at pc. The tar-
get system currently operates at p0. Prediction is done for
p = p0 + ∆p, where ∆p > 0 is a parameter drift. Depending
on whether the value of p0 + ∆p is before or after the transi-
tion, a properly trained machine shall be able to predict either
an oscillatory behavior or amplitude death, respectively.

voir network into an L-dimensional signal through the
L × N output matrix Wout. In a typical application
in nonlinear dynamics, the input and output signals
are low-dimensional, while the reservoir state is high-
dimensional, i.e., L ∼M � N . The output matrix Wout

is determined by the training process, while the input
weighted matrix Win and the reservoir matrix Wr are
initially randomly drawn and then fixed.

In the training phase, the M -dimensional vector ũ(t)
consisting of the (M − 1)-dimensional time series data
u(t) and the one-dimensional parameter channel is fed
into the reservoir as Win · ũ(t). The time series data
are mapped into the reservoir such that the (M − 1)
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dimensions are evenly divided among the nodes of the
neural network: data from each dimension are input
to N/(M − 1) nodes. However, the parameter chan-
nel is connected to each and every node in the net-
work. The input data through the parameter channel
is (p− pb)kp, where pb and kp are two hyperparameters.
Under this coupling configuration, the elements of the
input matrix Win are chosen randomly from a uniform
distribution in the interval [−σ, σ]. The reservoir is a
large, sparse and random network with average degree
〈k〉, which is described by the matrix Wr, whose val-
ues are randomly chosen from the uniform distribution
(0, 1). For a given value of the spectral radius, the ele-
ment values ofWr are rescaled such that its largest eigen-
value is ρ. The state of each reservoir node at time t is
r(t) = [r1(t), r2(t), . . . , rN (t)]T , and the initial state is set
to be r(0) = 0. The reservoir dynamics are described by
the following mapping function:

r(t+dt) = (1−α)r(t)+α tanh[Wr ·r(t)+Win ·ũ(t)], (1)

where α ∈ (0, 1] is the leakage rate - a hyperparameter.
To map the reservoir state to the output layer, it is con-
ventional [49] to define a new vector r̃ with the same odd
row elements as those of r but with the even row ele-
ments as the squared values of the corresponding even
row elements of r.

The reservoir computing machine is trained indepen-
dently for multiple values of the bifurcation parameter.
After training with data from one bifurcation parameter
value, we reset the time and the initial states to zero,
and repeat the training with data from another parame-
ter value. After training is done with the available data
from all bifurcation parameter values, we have a vector of
multiple input data and multiple recordings of the reser-
voir state vector r(t) as well. To find the output matrix
through optimization and to express it explicitly, we in-
troduce an input data matrix. In particular, let Nt be
the number of training time steps for each training value
of the bifurcation parameter. Since we train the reser-
voir machine using time series obtained from m values of
the bifurcation parameter, the total number of training
time steps is mNt. The available data points are stacked
in the sequence of these parameter values into a single,
M × mNt matrix. In this paper, we use m = 3. For
each input time series, we evolve the state of the reser-
voir network for Nτ � Nt time steps and disregard these
“transient” states from the calculation of the output ma-
trix, so the dimension of the effective input data matrix,
denoted as Ũ , is M × 3(Nt − Nτ ). Note that, the first

row of Ũ consists of three segments: one for each value
of the bifurcation parameter, and each of the remaining
(M − 1) rows consists of three respective segments of
the time series of the specific dynamical variables of the
target system, which is denoted as U . Since the input bi-
furcation parameter values are fixed, the effective input
data used to calculate the output matrix is U . Like-
wise, with all the effective input data, the normalized
reservoir state matrix, denoted as R̃, has the dimension

N × 3(Nt − Nτ ). The output matrix Wout can be cal-
culated using the regression scheme that minimizes the
following loss function:

L =
∑
t

∥∥∥U (t)−WoutR̃ (t)
∥∥∥+ β‖Wout‖2, (2)

where β is a small positive regulation constant to prevent
over-fitting by imposing penalty on large values of the
fitting parameters.

The regularized regression can be described as

Wout = U · R̃T ·
(
R̃ · R̃T + βI

)−1

, (3)

where I is an N ×N identity matrix.
In the prediction phase, the input data vector u(t) is

replaced by the output vector v(t), so the whole reservoir
computing machine becomes a closed loop, self-evolving
dynamical system that maps v(t) to v(t+ dt) according
to the following rules:

ṽ(t) = [v(t); (p− pb)kp · B] ,

r(t+ dt) = (1− α)r(t) + α tanh [Wr · r(t) +Win · ṽ(t)],

v(t+ dt) =Wout · r̃(t+ dt), (4)

where B is an (Nt − Nτ )-dimensional row vector with
all elements equal to one. We use the Bayesian opti-
mization method [54] to determine the optimal values of
the hyperparameters of the reservoir computing machine,
which are 〈k〉, σ, ρ, α, β, pb, and kp. In particular, for
each value of the bifurcation parameter, we ensure that
training is completed so that the machine is capable of
predicting the state evolution of the target dynamical
system for several Lyapunov times, as characterized by
below-threshold root-mean squared errors (RMSE) dur-
ing the time period. Among the three sets of errors from
the three values of the bifurcation parameter, we choose
the largest RMSE as the criterion for determining the
optimal hyperparameter values. After the values of the
hyperparameters have been fixed, we train the reservoir
machine once again using all the input data to finalize
the output matrix Wout. The machine so trained is now
ready for predicting the system behavior for values of the
bifurcation parameter that are different from the three
values used for training. Especially, we input the bi-
furcation parameter value of interest into the parameter
channel, and use any of the three available data set to
restart or “warm-up” the reservoir network.

Note that, as described, a basic requirement is that the
reservoir computing machine be well trained at each of
the three selected bifurcation parameter values so that it
can possibly be used to predict the system behavior at
other parameter values that the machine has not been
exposed to. The training data thus consists of the time
series from the three parameter values only. When pre-
dicting the system dynamics for other parameter values,
a small segment of any of the three time series is used
as the initial condition to restart or “warm-up” the ma-
chine. Since no time series from other parameter values
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are assumed to be available, the performance of short-
term prediction at these parameter values cannot be as-
sessed.

It is also noteworthy that the training ε parameter val-
ues are chosen based on the empirical criterion that they
are not too far away from the transition point and are rea-
sonably spaced, and the corresponding time series should
be oscillatory. Simulations reveal that the reservoir com-
puting machine is tolerant to relatively small variations
in the training parameter values.

III. RESULTS

We demonstrate the ability of our “parameter-aware”
reservoir-computing scheme to predict amplitude death
in three representative systems: coupled Rössler and
Lorenz, coupled Lorenz and coupled Stuart-Landau oscil-
lators. Prior to bifurcating to amplitude death, the sys-
tem exhibits either periodic or chaotic oscillations. Train-
ing is done in the oscillatory parameter regime preceding
the bifurcation.

A. Coupled Rössler and Lorenz oscillators

The six-dimensional system of coupled Rössler and
Lorenz oscillators is described by [16]

ẋ1 = −x2 − x3,
ẋ2 = x1 + ax2 + ε (y2 − x2) ,

ẋ3 = b+ x3 (x1 − c) ,
ẏ1 = µ (y2 − y1) ,

ẏ2 = −y1y3 − y2 + ry1 + ε (x2 − y2) ,

ẏ3 = y1y2 − dy3,

(5)

where the parameters are a = b = 0.1, c = 18, µ = 10,
r = 28, and d = 8/3, and ε is the coupling strength.
The Rössler or the Lorenz oscillator, when isolated, is
in an oscillatory state. When they are coupled, ampli-
tude death can occur, as exemplified by the bifurcation
diagram in Fig. 2(a). The diagram seems to indicate
that, as ε increases through a critical point εc ≈ 0.426, a
sudden transition from chaotic oscillations to amplitude
death occurs. Figure 2(b) shows a time series of sus-
tained chaotic oscillations for ε below but not too close
to “εc” (ε = 0.34). For ε values above but not too close to
“εc”, the asymptotic state of the system is a stable equi-
librium point corresponding to amplitude death, whose
occurrence is preceded by transient chaos, as shown in
Fig. 2(c) for ε = 0.5.

The fixed points associated with amplitude death in
the reservoir prediction agree well with the ones in the
real system. For the coupled Rössler-Lorenz system, the
fixed points change only slightly with the coupling pa-
rameter. Take ε = 0.50 as an example, the original sys-

tem has two fixed points:

(x1, x2, x3, y1, y2, y3) =

(−4.205,−0.0045, 0.0045, 8.4063, 8.4063, 26.4997)

and

(x1, x2, x3, y1, y2, y3) =

(4.2003,−0.0073, 0.0073,−8.4064,−8.4064, 26.5004).

The corresponding machine-predicted ones are

(x1, x2, x3, y1, y2, y3) =

(−4.2041,−0.0065, 0.0045, 8.4038, 8.4037, 26.4977)

and

(x1, x2, x3, y1, y2, y3) =

(4.1974,−0.0055, 0.0072,−8.4032,−8.4033, 26.5021),

which agree well with the ground truth.
We use a number of initial conditions to generate the

bifurcation diagram in Fig. 2(a). For some values of ε,
the system has bistability in that there are two coexist-
ing attractors associated with oscillation and amplitude
death, respectively. The reason that the transition ex-
emplified in Fig. 2(a) appears rather abrupt is that the
system moves into the basin of the amplitude-death at-
tractor as ε changes. In fact, the transition is a grad-
ual process in the sense of multistability. In particular,
there exists an interval of ε values about “εc”, where
the coupled system possesses two coexisting attractors:
a chaotic attractor and a stable steady-state attractor.
Denote this interval as [εc1, εc2], where εc1 < “εc” < εc2.
For ε < εc1, chaotic oscillations are the only possible
state of the system, i.e., almost every initial condition
will generate a trajectory that lands on the chaotic at-
tractor. Likewise, for ε > εc2, the only attractor in the
system is the stable steady state resulting in amplitude
death. For εc1 < ε < εc2, if we choose a large number of
random initial conditions, a fraction of them will lead to
the chaotic attractor while the remaining to amplitude
death. As the value of ε increases from εc1, the fraction
of initial conditions leading to amplitude death, denoted
as RAD, gradually increases towards a value (denoted as
R∗
AD, where R∗

AD < 1), when ε reaches εc2. As ε in-
creases through εc2, RAD increases abruptly from R∗

AD
to one. At the same time, as ε increases from εc1 to εc2,
the fraction of initial conditions approaching the chaotic
attractor will gradually decrease from one to the value
(1−R∗

AD) and then suddenly to zero at εc2.
The dynamical mechanism responsible for the scenario

of emergence of amplitude death, as described in the
preceding paragraph, has been fairly well understood in
nonlinear dynamics [60], which can be attributed to a
saddle-node bifurcation at εc1 and a crisis [61] at εc2. In
particular, the saddle-node bifurcation creates a stable
steady-state attractor at εc1. At εc1, the basin volume
of the new steady-state attractor (relative to that of the
chaotic attractor) is zero. As ε increases through εc1,
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FIG. 2. Scenario of transition to amplitude death. For
the coupled Rössler-Lorenz system, (a) a bifurcation dia-
gram with the coupling parameter ε from a number of ini-
tial conditions, with simulation time t = 105 and integration
time step dt = 0.01, (b) chaotic oscillations for ε = 0.34,
and (c) transient chaos and amplitude death for ε = 0.50.
(d) Transition to amplitude death revealed by taking an
ensemble of random initial conditions, as characterized by
RAD, the ratio of the fraction of initial conditions that re-
sult in amplitude death. As explained in the text, for an
infinite trajectory, as ε increases from εc1, RAD increases
from zero to a small value and then suddenly to one at
εc2. For numerical trajectories of a finite length, the transi-
tion would appear gradual but it becomes increasingly sharp
as the trajectory length is increased. Here, 1000 randomly
initial conditions are chosen from the phase-space region
{(−10, 10), (−10, 10), (0, 1), (−20, 20), (−20, 20), (0, 50)}.

its basin grows, together with the basin boundary. For
εc1 < ε < εc2, there are thus two coexisting basins. At
εc2, the chaotic attractor collides with the basin bound-
ary and is destroyed - a crisis [61]. For ε > εc2, the only
basin of attraction in the system is the one of the stable
steady-state attractor, so almost every initial condition
leads to amplitude death. The sudden increase of RAD
from R∗

AD to one holds for infinitely long trajectories.
For finite numerical trajectories, the increase would be
gradual. As the length of the trajectories increases, the
transition would appear increasingly sharp, as exempli-
fied in Fig. 2(d).

Will the reservoir computing machine be able to learn

the essential dynamics of the coupled Rössler-Lorenz sys-
tem through training in the regime of chaotic oscillations
and then to predict the occurrence of amplitude death?
To obtain an answer, we train the machine at three val-
ues of the coupling parameter: ε = 0.32, 0.33, and 0.34 -
all in the regime where the system exhibits chaotic oscil-
lations, as indicated by the three vertical dashed lines in
Fig. 2(a). For each chosen ε value, we use time series of
length t = 800 (which corresponds to approximately 700
Lyapunov times) to train the machine. A typical pre-
diction result is demonstrated by the time evolution of
two dynamical variables, as shown in Figs. 3(a) and 3(b)
for ε = 0.34, where the machine is capable of replicat-
ing the evolution of the dynamical variables for about 6
Lyapunov times (t ≈ 7.5), after which the prediction still
remains meaningful in the sense that the machine gen-
erates time series that are statistically indistinguishable
from the real time series.

We can now tune the parameter to values beyond the
range of training and make predictions. Figures 3(c)
and 3(d) show, for ε = 0.36, the predicted time series
of chaotic oscillations, which indicate correctly that the
system is still in the oscillatory regime. Figures 3(e) and
3(f) show, for ε = 0.50, that the machine predicts cor-
rectly a transient chaotic behavior and the subsequent
amplitude death.

The reservoir computing system contains two types of
parameters: hyperparameters and free parameters such
as the weighted elements of the input matrix Win, the
topology and elements of the reservoir network matrix
Wres. Once the hyperparameter values have been de-
termined and fixed, the prediction performance is robust
against variations in the free parameters. Figure 3(g)
shows the predicted RAD versus the coupling parameter
ε for ten random realizations of the reservoir computing
system, for t = 103. The predicted RAD versus ε curves
are clustered together and agree with the ground truth.
For a fixed realization, as the trajectory length increases,
the transition becomes sharper, as illustrated in Fig. 3(h)
for t = 103, t = 3× 103, and t = 104.

For the coupled Rössler-Lorenz system, the transition
from oscillatory dynamics to amplitude death is mediated
by bistability: there exists a parameter interval [εc1, εc2]
in which the system possesses two coexisting attractors:
a chaotic attractor (oscillations) and a stable steady-state
attractor (amplitude death). Numerically, the manifes-
tation is that, in the bistability interval, the curve of
RAD versus ε is independent of the trajectory length.
The estimated values of the end points of the interval
are εc1 ≈ 0.36 and εc2 ≈ 0.40.
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(h)

FIG. 3. Prediction of amplitude death in the coupled Rössler-Lorenz system. The training of the reservoir computing machine
is done for three values of the coupling parameter: ε = 0.32, 0.33, and 0.34 - all in the regime of chaotic oscillations. Prediction
can be made beyond the parameter interval for training through tuning of the input parameter channel to the reservoir network.
(a,b) True and predicted chaotic time series x1(t) and y1(t) from Eq. (5), for validating the correctness and quality of training.
The machine is able to predict the time series exactly for about 6 Lyapunov times beyond which the prediction is still meaningful
in the sense that the predicted and true time series are statistically indistinguishable. (c,d) Predicted sustained chaotic time
series x1(t) and y1(t) for ε = 0.36. (e,f) Predicted transient chaos and amplitude death for ε = 0.5. (g) The predicted ratio
RAD versus ε in the regime of transition to amplitude death from ten random realizations of the free parameters of the machine.
The predicted results agree with those from direct simulations of the original system Eq. (5). (h) Transition profile for three
different values of the trajectory length, demonstrating that the transition becomes sharper with longer trajectory length.
Other parameter values of the reservoir system are N = 1200, 〈k〉 = 20, σ = 0.1, ρ = 0.8833, α = 0.312, β = 1.4303 × 10−5,
pb = 0.5899, kp = 0.1925, M = 7, L = 6, Nt = 80000, Nτ = 50, and dt = 0.01.

B. Coupled Lorenz oscillators with a time delay

We consider the following system of time-delay coupled
chaotic Lorenz oscillators:

ẋ1 = −µ (x1 − x2) ,

ẋ2 = −x1x3 − x2 + rx1 + ε [y2 (t− τ)− x2 (t)] ,

ẋ3 = x1x2 − dx3,
ẏ1 = −µ (y1 − y2) ,

ẏ2 = −y1y3 − y2 + ry1 + ε [x2 (t− τ)− y2 (t)] ,

ẏ3 = y1y2 − dy3,

(6)

where µ = 10, r = 28, and d = 8/3 are the parameter
values of the classical Lorenz oscillator, ε is the coupling
parameter, and τ is the time delay. When uncoupled,
each Lorenz oscillator exhibits sustained chaotic oscil-
lations. When coupled, amplitude death can occur in
a range of ε values. Figure 4(a) shows a typical bifur-
cation diagram of the coupled system: the local maxi-

mum values of the dynamical variable x1(t) versus ε for
τ = 0.15, which indicates that amplitude death can occur
for ε >∼ 0.3. Figures 4(b) and 4(c) show, respectively, the
time series from the sustained chaotic oscillating state
for ε = 0.23 and transient chaos followed by amplitude
death for ε = 0.35. The ratio RAD versus ε obtained
directly from the original system is shown in Fig. 4(d).
Because of the transient dynamics, the probability for a
short trajectory to land on the stable steady-state attrac-
tor is small, leading to a slow increase of RAD with ε. As
the length of the trajectories increases, there is a higher
probability for a trajectory to approach the steady-state
attractor, making RAD to switch from zero to one in a
more abrupt fashion.

We train the reservoir computing machine at three val-
ues of the coupling parameter: ε = 0.21, 0.22, and 0.23
- all in the regime of chaotic oscillations, as indicated by
the three vertical dashed lines in Fig. 4(a). Figure 5(a)
shows a predicted time series x1(t) in comparison with
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FIG. 4. Transition to amplitude death in the system of a
pair of time-delay coupled Lorenz chaotic oscillators. (a)
Bifurcation diagram for simulation time t = 5 ∗ 104 with
dt = 0.01. (b) Time series of sustained chaotic oscillation
for ε = 0.23. (c) Transient chaos and amplitude death for
ε = 0.35. (d) The ratio of the amplitude-death state, RAD,
versus ε, for a number of different trajectory lengths. For
each value of ε, the ratio is calculated from 1000 trajecto-
ries with initial conditions randomly chosen from the phase-
space region −20 ≤ (x1, y1) ≤ 20, −20 ≤ (x2, y2) ≤ 20, and
0 ≤ (x3, y3) ≤ 50. For all the cases, the time delay is fixed at
τ = 0.15.

the true time series for ε = 0.23. The machine is able
to predict the state evolution approximately exactly for
about 5 Lyapunov times (t ≈ 5). While the prediction
deviates from the true state evolution for t > 5, the sta-
tistical characteristics of the predicted and true trajec-
tories are indistinguishable. Similar behaviors are ob-
tained with the other two values of the training param-
eter. These results thus serve to validate the training
process. Figure 5(b) shows a predicted time series for
ε = 0.25, which indicates that the system is still in the
regime of chaotic oscillations. When the value of the in-
put parameter channel to the reservoir system is tuned to
ε = 0.50, the machine correctly predicts that the system
will settle into the amplitude-death state after a chaotic
transient, as shown in Fig. 5(c). Figure 5(d) shows the
predicted ratio RAD versus ε for ten random realizations
of the reservoir computing system for t = 103. The pre-
dicted transition curves are clustered and consistent with
the true curve for this trajectory length. For the coupled
Lorenz-Lorenz system, the transition from oscillatory dy-

namics to amplitude death is “abrupt” without any bista-
bility, where the dependence of RAD on ε approaches a
step function as the length of the trajectories increases,
as shown in Fig. 4(d).

FIG. 5. Predicting amplitude death in the system of a pair of
time-delay coupled chaotic Lorenz oscillators. (a) True and
predicted chaotic time series x1(t) from Eq. (6), for validating
the training. The machine is able to predict the time series
exactly for about 5 Lyapunov times, beyond which the pre-
diction remains meaningful in the statistical sense. (b) Pre-
dicted sustained chaotic time series for ε = 0.25. (c) Predicted
transient chaos and amplitude death for ε = 0.50. (d) The
predicted transition curve (RAD versus ε) from ten random
realizations of the machine. The results agree with those from
direct simulations of the original system Eq. (6). The time
delay is τ = 0.15. The values of other parameters of the reser-
voir computing system are N = 1200, 〈k〉 = 20, σ = 0.1639,
ρ = 0.5057, α = 0.6057, β = 4.7487 × 10−5, pb = 0.0061,
kp = 0.4956, M = 7, L = 6, Nt = 80000, Nτ = 50, and
dt = 0.01.

C. System of coupled Stuart-Landau oscillators

The system is described by:

ż1 =
(

1 + iω1 − |z1|2
)
z1 + ε (z2 − z1) ,

ż2 =
(

1 + iω2 − |z2|2
)
z2 + ε (z1 − z2) ,

(7)

where zi = xi + iyi (i = 1, 2) are complex variables, ω1

and ω2 are parameters. Without coupling, i.e., ε = 0,
both oscillators have an unstable fixed point at z∗1,2 = 0.
A previous study [9] revealed that amplitude death oc-
curs for ε > 1 and ∆ω > 2

√
2ε− 1, where ∆ω ≡
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|ω1 − ω2| represents the mismatch between the two oscil-
lators. Depending on the amount of mismatch, the sys-
tem dynamics can be quite different. Figure 6(a) shows
a bifurcation diagram of the dynamical variable x1. It
can be seen that the system is in an oscillatory state
for ε ∈ (0, 1), and amplitude death occurs for ε > 1.
Figures 6(b) and 6(c) show an oscillatory time series for
ε = 0.99 and amplitude death (with a short transient)
for ε = 1.02, respectively.

FIG. 6. Oscillations and amplitude death in the system of
coupled Stuart-Landau oscillators. (a) A bifurcation diagram
with the coupling parameter ε. The system is oscillatory for
0 < ε < 1 and amplitude death occurs for ε > 1. (b) An
oscillatory time series for ε = 0.99. (c) Amplitude death
preceded by a short transient for ε = 1.02. Other parameter
values are ω1 = 2.0 and ω2 = 7.0.

We train the reservoir computing machine at param-
eter values ε = 0.85, 0.9 and 0.95, as indicated by the
three vertical dashed lines in Fig. 6(a)). Figure 7(a) and
7(b) show an example of the predicted time series x1(t)
and the difference between the predicted and real time
series, respectively. The machine predicts correctly that
the system is in an oscillatory state for ε < 1, as exem-
plified in Fig. 7(c) for ε = 0.99. For ε > 1, the machine
predicts successfully amplitude death, as demonstrated
in Fig. 7(d) for ε = 1.02. Figure 7(e) shows a machine
predicted bifurcation diagram, which agrees with the real
diagram in Fig. 6(a). Figure 7(f) shows a distribution of
the predicted transition point from 1000 random realiza-
tions of the reservoir machine, where all predictions are
close to the true transition point ε∗ = 1.

FIG. 7. Predicting amplitude death in the system of coupled
Stuart-Landau oscillators. (a) Predicted and real time series
for ε = 0.95. (b) The difference between the predicted and
real time series for ε = 0.95. (c) Predicted state of oscilla-
tion for ε = 0.99. (d) Predicted amplitude death preceded
by a transient for ε = 1.02. (e) Predicted bifurcation dia-
gram. (f) The distribution of the predicted transition point
to amplitude death from 1000 random realizations of reservoir
machine and initial conditions. The parameter values of the
machine are N = 600, 〈k〉 = 8, σ = 2.0, ρ = 0.1893, α = 1.0,
β = 10−4, pb = 0.0, kp = 0.5223, M = 5, L = 4, Nt = 16000,
Nτ = 50, and dt = 0.05.

IV. DISCUSSION

In biological and physiological contexts, oscillations are
essential to maintaining the normal functions of the sys-
tem, whereas complete cessation of oscillations is associ-
ated with severe pathological conditions or even death.
In terms of nonlinear dynamics, the occurrence of this
amplitude-death phenomenon is the result of a bifurca-
tion to a stable steady state as induced by parameter
drifting. It is of interest to forecast amplitude death prior
to its actual occurrence when the system is still in a nor-
mal oscillation state. Specifically, the prediction problem
can be formulated as follows. Suppose a control or bifur-
cation parameter has been specified and the system is
currently in the parameter regime in which the dynam-
ical variables exhibit normal and “healthy” oscillations,
where oscillatory time series from a number of parameter
values in this regime have been measured. Suppose the
bifurcation parameter begins to drift towards a regime
that the system has never been in, i.e., no information is
available about the system dynamics in the new param-
eter territory. For a given amount of parameter change,
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how do we predict with confidence that amplitude death
would occur? If the system equations are known, this
prediction problem is trivial, as it can be solved by a
simple computational bifurcation analysis. The problem
becomes challenging, in fact extremely challenging, when
there is no knowledge about the system equations and the
only available information is the oscillatory time series
collected when the system is in the healthy regime.

We have developed a machine-learning approach to
solving the problem of data-based prediction of ampli-
tude death. In particular, exploiting the conventional
reservoir computing machine for predicting the state evo-
lution of chaotic systems with a modification to make
the machine to be “aware” of the values of the bifur-
cation parameter of the target system, we have estab-
lished that amplitude death can be reliably predicted.
The structural modification is the addition of a parame-
ter channel through which the machine gains the ability
that is essential for predicting the future state of the sys-
tem: the ability to distinguish the dynamical states asso-
ciated with different values of bifurcation parameter. We
have demonstrated that a proper leaning scheme enables
one to fully instill this ability into the machine: train-
ing the machine with multiple sets of oscillatory time
series data, each from a different value of the bifurcation
parameter. We have illustrated our general principle of
machine-learning based prediction through three proto-
typical dynamical systems that represent the paradig-
matic systems to study amplitude death. The three sys-
tems studied range from the “dynamically” simple cou-
pled Stuart-Landau system to the relatively more com-
plex coupled Lorenz-Lorenz system with a time delay.

In all the systems, prior to the occurrence of amplitude
death, there are oscillations: either chaotic or regular.
Insofar as the reservoir computing machine has been ad-
equately trained through our learning scheme, any pos-
sible future occurrence of amplitude death can be suc-
cessfully forecasted. In fact, in all three cases, our study
reveals that even when the training parameter values are
not close to the transition point to amplitude death, the
reservoir computing machine is able to predict the critical
transition.

Finally, we note that there is a recent work on ex-
plaining the success of reservoir computing forecaster of
chaotic systems from a mathematical point of view [62],
where linear activation functions for the artificial neurons
in the reservoir network are assumed to make the anal-
ysis based on vector auto-regressive averages possible.
For general nonlinear activation functions as in Eq. (1),
a mathematical understanding of the inner working of
reservoir computing is not available at the present.
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