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ABSTRACT 
 

Schloegl’s second model (aka the quadratic contact process) on a lattice involves 
spontaneous particle annihilation at rate p, and autocatalytic particle creation at empty 

sites with n  2 occupied neighbors. The particle creation rate for exactly n occupied 
neighbors is selected here as n(n-1)/[z(z-1)] for lattice coordination number z. We 
analyze this model on a Bethe lattice. Precise behavior for stochastic models on regular 
periodic infinite lattices is usually surmised from kinetic Monte Carlo simulation on a 
finite lattice with periodic boundary conditions. However, the persistence of boundary 
effects for a Bethe lattice complicates this process, e.g., by inducing spatially 
heterogenous states. This motivates the exploration of various boundary conditions and 
unconventional simulation ensembles on the Bethe lattice to predict behavior for infinite 
size. We focus on z = 3, and predict a discontinuous transition to the vacuum state on 
the infinite lattice when p exceeds a threshold value of around 0.053. 
 
1. INTRODUCTION 
 

There remain fundamental challenges in understanding non-equilibrium phase 
transitions in stochastic lattice-gas models where the rates for processes defining the 
model do not satisfy a detailed-balance condition [1-3]. Perhaps the optimal prototype 
for analysis of discontinuous non-equilibrium phase transitions is Schloegl’s second 
model [4] involving spontaneous particle annihilation at rate p, and autocatalytic particle 
creation at empty sites with two or more occupied neighbors [5,6]. This model is 
equivalent to the quadratic contact process on a lattice where infected sites 
spontaneously recover, and healthy sites can be infected if they have two or more sick 
neighbors [5]. Different prescriptions are possible for the particle creation rates, e.g., a 

“threshold” choice with a single creation rate of r = 1 for all configurations with n  2 
occupied neighbors [7,8], or a “combinatorial” choice of creation rate  
 

rn = (
𝑛
2
)/ (

𝑧
2
) = 

𝑛(𝑛−1)

𝑧(𝑧−1)
 for empty sites with n occupied neighbors   (1) 

 
(out of a total of z neighbors) [9]. Here, z corresponds to the lattice coordination 
number. The latter choice has some advantages allowing simplification of the exact 
master equations [9]. However, qualitative behavior of the model does not seem to 
depend on the specific choice of creation rates.  

Since exact solution of the corresponding master equations is not possible, 
precise assessment of model behavior on conventional (Euclidean) periodic lattices in 
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the limit of infinite size is usually surmised from kinetic Monte Carlo (KMC) simulation on 
finite lattices with periodic boundary conditions (BCs). Such analysis for various 
versions of Schloegl’s second model on a square lattice reveals the presence of a 
discontinuous phase transition to the trivial absorbing vacuum state (with no particles) 
for sufficiently high p [6,8,9]. There are also some subtleties such as the existence of 
generic two-phase coexistence which are described elsewhere and not discussed 
further here [6,8,9].   

Bethe lattices [10], finite versions of which correspond to regular Cayley trees 
[11], have played a significant role in statistical mechanics. Sometimes exact solution of 
interacting particle systems or percolation problems on Bethe lattices is possible being 
facilitated by the lack of closed loops or cycles on the lattice [11-15]. Bethe lattices also 
constitute a special case of more general networks for which there is extensive interest 
in analysis of cooperative phenomena [15]. Thus, it is natural to consider the behavior of 
Schloegl’s second model on Bethe lattices, our focus here. We will consider primarily 
the case of coordination number z = 3. Indeed, there have been previous analyses in 
the mathematical statistics literature for discrete and continuous time threshold versions 
of the model [16,17], as well as an analysis on more complex random graph type 
networks [18]. 

However, a significant complication for use of KMC analysis on finite Bethe 
lattices to extract behavior for infinite lattice is the persistence of boundary effects 
[15,19,20]. We address this issue by exploring various BCs in an attempt to identify the 
optimal choices which minimize finite size effects. We also exploit unconventional 
simulation ensembles which aid assessment of behavior for an infinite system.  

Site labelling for the Bethe lattice used for Schloegl model analysis is described 
in Sec. 2. The hierarchical version of the exact master equations for the Schloegl model 
which describe heterogeneous (as well as homogeneous) states, and truncation 
approximations to these equations, are described in Sec. 3. So-called constant-
coverage (CC) KMC simulations of steady-state behavior in the model are described in 
Sec. 4. Refined versions of these CC simulations, as well as conventional continuous 
time constant-p simulations of time evolution, are presented in Sec. 5. Some insights 
from an analytic treatment are presented in Sec. 6. Conclusions are provided in Sec. 7. 
 
2. BETHE LATTICE SITE LABELLING FOR SCHLOEGL MODEL ANALYSIS 
 

We represent either finite or infinite Bethe lattices as having: a central site R0 
labeled j = 1; R0 is surrounded by a ring or shell R1 of z sites labeled j = 2, 3,…, z+1; R1 
is surrounded by second ring R2 with a total of z(z-1) sites labeled  j = z+2,…,1+z2 such 
that each site in R1 is connected to z-1 sites in R2; etc. More generally, the kth ring, Rk, 
has z(z-1)k-1 sites, where the site labels j satisfy   

 

[z(z-1)k-1 -2]/(z-2) < j  [z(z-1)k -2]/(z-2) for ring Rk.      (2) 
 
With this labeling system, it is straightforward to identify the z neighbors of any site, a 
requirement for developing a KMC simulation algorithm. See the Supplemental 
Materials (SM) [21]. Figure 1 illustrates the above geometry and site labeling for z = 3. 

We consider the combinatorial version of Schloegl’s second model described in 
Sec. 1 on such Bethe lattices. Our ultimate goal is to characterize behavior on an infinite 
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Bethe lattice. However, our simulation analysis is performed on a finite Bethe lattice (or 

Cayley tree) where particles are annihilated and created on the first k* rings Rk for 1  k 

 k* subject to boundary conditions (BCs) imposed on ring Rk*+1. The BCs are described 
in detail in Sec. 4. Note that for large k*, the number of boundary sites, Bk*+1, in ring 
Rk*+1, and the total number of sites Nk* in rings R1 through Rk*, are given by  

 

Bk*+1 = z(z-1)k* and Nk* =  [z(z-1)k* -2]/(z-2)  z(z-2)-1(z-1)k*.    (3) 
 
These quantities are comparable for z = 3, and Bk*+1 actually exceeds Nk* for z > 3. 
 

 
 
Figure 1. Schematic of Bethe lattice for z = 3. Rings (or shells) are labeled k = 1, 2,… Site 
labels are in red. 

 
3. HETEROGENEOUS HIERARCHICAL MASTER EQUATIONS 
 

An exact analytic formulation of behavior of the stochastic model on finite or 
infinite lattices can be based on the appropriate master equations. We present the 
hierarchical version of these equations [22,23] where the evolution equation for the 
probability that a specific site is occupied couples to probabilities for ensembles of 
multiple sites with various configurations. Evolution equations for those multi-site 
ensemble probabilities couple to probabilities for even larger ensembles. Analysis of this 
hierarchy of equations generally requires application of some type of hierarchical 
truncation approximation, where probabilities of larger ensembles or sites are written to 
terms of probabilities for smaller ensembles [1,24,25]. 

In presenting these equations, we also allow for the possibility of spatially 
heterogeneous states [22,23], but only states with “circular symmetry” wherein all sites 
in a given ring are equivalent. Such states will occur on a finite lattice for choices of 
boundary conditions incorporating this symmetry, as applies for all our choices. The 

probability, P•k, for a site in ring k to be occupied (•), i.e., the particle “concentration” in 
ring k, satisfies  
 

d/dt P•k = - p P•k (spontaneous annihilation) + gain terms (autocatalytic creation). (4) 
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The gain terms account for all possible (
𝑧
𝑛
) configurations of the z neighboring sites of 

an empty (o) site in ring k with n populated sites and z-n empty sites, where the number, 

n, of populated sites ranges over 2  n  z. The overall gain term involves a sum over 
the probability of these configurations times the appropriate creation rates, rn. Thus, this 
“primitive” form of the master equations is somewhat unwieldy involving a sum over a 

large number of particle creation terms for 2  n  z occupied sites neighboring the 
empty site. However, due to our special combinatorial choice of rates, rn, these gain 
terms can be simplified or exactly reduced to involve a sum over probabilities of just 
triples of sites where the site in ring k is empty, and one considers all possible pairs of 
occupied neighbors of that site. This exact reduction uses conservation of probability 
relations, and is described in detail for the combinatorial version of Schloegl’s second 
model in Ref. [9]. As an aside, we note that an analogous exact reduction of particle 
creation terms is also possible in the master equations for Durrett’s version of 
Schloegl’s second model, as described in detail in Ref.s [22,23]. Then, accounting for 
the equal probabilities of many of these configurations, (4) adopts the form shown in 
Figure 2a. Separate treatment is naturally needed for site j = 1 in R0, and also for the 
outer boundary sites for a finite lattice.  
 

 
 
Figure 2. Low-order hierarchical master equations for heterogeneous states. (a) Evolution 

equation for the probability of an occupied site, P•k, in ring k1. (b) Evolution equation, Pok-1ok 

for the probability of a neighboring empty pair of sites, one in ring k-1 and the other in ring k. 

Note that the second loss term with the factor (
𝑧 − 2
2

) is absent for z = 3.  Notation: P•k-1–ok (or 

more concisely P•k-1ok) denotes the probability of a neighboring filled site in ring k-1 and an 

empty site in ring k; P•k-1–ok–•k+1 (or P•k-1ok•k+1) denotes the probability a triple of sites with a 

filled site in ring k, an empty site in ring k-1, and an empty site in ring k+1, where sites in 
adjacent rings are neighbors; etc. Thin lines are included in the figure to indicate bonds between 

neighboring sites and thus indicate lattice structure. Note that (
𝑧
2
)-1 = k2 is the rate for particle 

creation at an empty site with exactly two occupied neighbors.  
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The simplest mean-field (MF) or site approximation factorizes multi-site 

probabilities as a product of single-site probabilities. Introducing the notation Ck = P•k 
for the concentration of particles in ring k, then in the MF approximation one has for 
example that 

 

P•k-1ok•k+1   Ck-1(1-Ck)Ck+1.        (5) 
 

Then, the MF version of the equations in Fig.2a become set of a lattice differential 
equations (aka discrete reaction-diffusion equations or dRDE) 
 

d/dt Ck = -p Ck + (1-Ck) Ck+1 [2 Ck-1 + (z-2) Ck+1]/z, for k 1,    (6) 
 
supplemented by  
 
d/dt C0 = -pC0 + (1-C0)(C1)2, for k = 0.        (7) 
 

In a MF analysis of the special case of a spatially homogenous state (i.e., a state 
which is spatially uniform in an ensemble or statistically averaged sense) where Ck = C 
independent of k, (6) and (7) reduce to the familiar MF kinetics for Schloegl’s second 
model where [4,23] 
 
d/dt C = -p C + (1-C)C2 independent of z,       (8) 
 
with corresponding steady states [4,23],  
 

C(site) = ½  ½ (1-4p)1/2 for 0  p  ps(site) = ¼, and Cvac = 0.    (9) 
 

Here C+ and Cvac are stable, and C- is an unstable steady state. C are a populated 
states, and Cvac is the trivial absorbing vacuum state. C+ and C- disappear beyond the 
spinodal point ps, a sn-bifurcation. We caution, however, that MF site approximation 
predictions provide a poor description of exact model behavior [9]. 
 Despite their neglect in the MF treatment, there do exist significant spatial 
correlations in the model. More specifically, autocatalytic particle creation naturally 
induces clustering of particles on the lattice, and consequently also clustering of empty 
sites. Thus, a more effective higher-level hierarchical truncation approximation is 
provided by the pair-approximation [8,22,23] which attempts to incorporate these 

correlations. One starts with the evolution equations for P•k = Ck and for the probability 
of an adjacent empty pair of sites, Pok-1ok = Dk-1,k, say, as shown in Figure 2a and 
Figure 2b, respectively. One then factorizes probabilities of triplets and larger 
ensembles of sites as a product of constituent pair probabilities, also compensating for 
over-counting of sites. Thus, for example, one obtains 
 

P•k-1ok•k+1   P•k-1ok Pok•k+1 / Pok,        (10) 
 
where the right-hand side can be written in terms of Ck, Dk-1,k, and Dk,k+1 utilizing 
conservation of probability relations. Applying this procedure to the equations indicated 
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in Figure 2 generates a closed coupled set of lattice differential equations for the Ck and 
for Dk-1,k. See Appendix A for details.  

As an aside, we note that rather than pair probabilities, Pok-1ok, P•k-1ok, etc., for 
some analyses it is natural to introduce as alternative variables the conditional 

probabilities or concentrations, Kk|k-1 = Pok-1–•k / Pok-1 or Kk|k+1 = P•k–ok+1 / Pok+1 for 
finding an occupied site in ring k given an adjacent empty site in ring k-1 or ring k+1, 
respectively.  

In a pair approximation analysis of the special case of a spatially homogenous 
state or a “spatially uniform” state, not just C = Ck is independent of k, but all pair, triplet, 
etc., probabilities are also independent of location in the system. A consequence of the 
latter is that there is a unique conditional concentration 
 

K = Kk|k-1  = Kk|k+1 =  P•o/Po,        (11) 
 
of finding an occupied site adjacent to a specified empty site (which is independent of 
k). Indeed, K is a natural variable for our analysis, as will be clear from the following. 
The pair-approximation [23] for homogeneous states yields 
 

d/dt C = -p C + (1-C)K2  and d/dt Poo = 2 P•o [p - (z-2)K(1-K)/z].   (12) 
 
Analysis of steady state behavior finds a stable populated steady state with 
 

K(pair) = ½  ½ [1 - 4zp/(z-2)]1/2 and        (13) 
  

C(pair) = (K)2/[p + (K)2] = 1/{1+1/[K/p - z/(z-2)]}   
 

             = 1 - ½ {-1 + 4p/(z-2)  [1 - 4zp/(z-2)]1/2}/[1+4p/(z-2)2],   (14) 
  

for 0  p  ps(pair) = (z-2)/(4z), the spinodal point. Again, C+ and C- correspond to stable 
and unstable populated steady states, respectively, as do K+ and K-. There also exists a 
vacuum steady state Cvac(pair) = Kvac(pair) = 0. For our subsequent analysis, it is also 
instructive to note that the conditional probability or concentration in the pair 
approximation satisfies both 
 
K = (z-2)C/(z-2C) and K = [pC/(1-C)]1/2,       (15) 
 
for the stable and unstable populated states. The above-mentioned clustering of 
particles implies anti-clustering of filled-empty pairs which means that K < C, consistent 
with the first relation in (15). We note that the same pair approximation results apply for 
hypercubic lattice with (even) coordination number z [23]. Also, as expected in this 
spatially homogenous case, the pair approximation recovers MF behavior in the limit as 

z → . 
Higher-order truncation approximations are also possible including the triplet 

approximation which retains probabilities of adjacent triples of sites (as well as 
probabilities of pairs and single sites), the quartet approximation which retains 
probabilities of adjacent quartets of sites, etc. However, while there is generally a 
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substantial improvement in predictive capability going from the site to the pair 
approximation, only relatively minor improvements are seen for higher-order 
approximations. Thus, we do not discuss the latter further in this study. 
 
4. CC-ENSEMBLE SIMULATION ANALYSIS FOR FINITE z = 3 BETHE LATTICES 
 

KMC simulations for our combinatorial version of Schloegl’s second model are 
performed on finite Bethe lattices where particles are created and annihilate on rings R1 
through Rk*, and boundary conditions (BCs) are imposed at ring Rk*+1. Conventional 
(constant-p) simulation of evolution in this continuous-time Markovian model 
implements particle creation and annihilation processes with probabilities proportional to 
their rates. Since there is not a significant spread in rates for the model, we do not use a 
rejection-free algorithm but rather a basic algorithm. In this case, sites are selected at 
random and events implemented with probabilities proportional to the relevant rates for 
a specified particle annihilation rate, p. For analysis of time evolution of the model in 
Sec. 5, we perform such simulations tracking time in terms of the number of Monte 
Carlo steps per site (with a suitable normalization based upon the maximum rate). 
When such simulations are run for sufficient time to reach a stable steady state, and 
where this process is repeated for a number of different p-values, one can extract the 
variation of the steady-state C = C(p) for such states. 

Indeed, most of our analysis focuses on characterization of steady-state 
behavior. However, it is convenient and efficient to utilize instead a constant-coverage 
(CC) simulation ensemble, or some modification thereof. In standard CC ensemble 
simulation [26], a target concentration C = Ct for the entire system is selected, and 
particle annihilation (creation) is attempted if the actual concentration is above (below) 
the target. When particle creation is attempted, it occurs with probabilities reflecting the 
prescribed rates, rn, in our combinatorial version of Schloegl’s second model. From the 
fraction of attempts at annihilation, one extracts the p-value corresponding to the target 
value C = Ct. Thus, running such simulations for a number of different target Ct, one can 
extract p = p(C) for steady state. This functional relationship can be inverted to obtain C 
= C(p). For an infinite system, the constant-p and CC simulation ensemble produce 
identical results analogous to canonical versus grand canonical simulation of equilibrium 
systems. This equivalence of ensembles for non-equilibrium models is discussed and 
confirmed in Ref. [27] for standard Euclidean lattices, but previous analysis for Bethe 
lattices is lacking. For finite systems, some differences arise, as discussed below. 

We consider five choices of BCs as a way to provide additional insight, and to 
better assess behavior in the limit of an infinite lattice. All these choices utilize 
information on particle concentration and spatial correlations obtained on-the-fly from 
the CC simulation itself. An extreme active choice of BCs [BCact], which assigns all sites 
of ring Rk*+1 to be permanently occupied, most strongly “enhances” populated states. 
This BC clearly precludes a transition to the vacuum state. A different mean-field type 
choice of BCs [BCMF] randomly assigns sites in ring Rk*+1 to be occupied with probability 
<C>, where <C> is the mean population of sites in rings R1 through Rk*. The MF choice 
neglects all spatial correlations, which are significant in the model. Thus, we also 
consider a set of refined “correlated” choices of BCs [BCPa, BCPb, BCPc], described 
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below, which attempt to account for spatial correlations estimated at the level of the pair 
(P) approximation in determining the occupancy of sites in ring Rk*+1. 

Noting that the state of sites in ring Rk*+1 is only relevant when attempting to 
create a particle at an empty site in ring Rk*, correlated choices of BCs randomly 

assigns sites in ring Rk*+1 to be populated with probability K = P•o/Po using some 
estimate of this conditional probability. Two of these choices estimate K from either  
 
K = Ka = <C>/(3-2<C>) [BCPa], or K = Kb = [p<C>/(1-<C>)]1/2 [BCPb],   (16) 
 
motivated by the pair approximation relations (15). Plausibly, BCPb is more effective 
than BCPa as it incorporates an estimate of K = Kb which is based upon the exact 
steady-state relation, pC = (1-C)Q, where Q is the conditional probability of a pair of 
occupied sites adjacent to a specified empty site (cf. Figure 2a). Thus, the only 
approximation in determining Kb is the assumption that Q = K2. We anticipate that a 
treatment [BCPc] superior to either BCPa or BCPb comes from determining the conditional 
probability, K = Kc, exactly from simulated configurations. 

Next, we present KMC simulation results for model behavior when z = 3 with 
different BCs, thereby revealing a strong dependence on BCs. As an aside, we note 
that the “best” choice of BC should be the one where behavior in the finite system most 
closely mimics that of an infinite system. In this respect, we anticipate that BCact is the 
worst, and BCPc is the best BC. Figure 3 shows the results from CC simulations for the 
steady-state C versus p on a Bethe lattice with k* = 16 rings (i.e., BC are imposed on 
R17) for the various BCs. Also shown are the site and pair approximation predictions for 
an infinite system corresponding to (9) and (14), respectively. A prominent feature of all 

approximations, except BCact, is an apparent regime of bistability for some 0  p  ps 
with coexisting stable high-concentration populated and vacuum states, in addition to a 
steady state with intermediate concentration. Traditionally, the intermediate 
concentration state would be identified as unstable, noting that the CC ensemble has 
the advantage of automatically probing stable as well as unstable steady states [28,29]. 
Such bistability is in contrast to a discontinuous transition (with associated metastability 
and hysteresis) anticipated for the model on an infinite Bethe lattice. (Such 
discontinuous transitions are also realized for infinite regular Euclidean lattices.)  

The extent of the bistable loops in Figure 3 is substantial, and the intermediate 
concentration steady-state seems robust in CC simulations. These features are 
reminiscent of those seen in analytic mean-field type treatments, and also in CC 
simulations of so-called hybrid stochastic lattice-gas models, where for the monomer-
dimer reaction, the monomer concentration is treated as a global variable due to high 
monomer mobility, but dimers are treated explicitly in the lattice-gas modeling [28-32]. 
The origin of the strong bistability in such hybrid models lies in the feature that the 
critical radius of a droplet of the more stable phase embedded in the less stable phase 
scales like the diffusion length [29,33-35]. Thus, the critical droplet has macroscopic 
size for high mobility, thereby inducing bistability (or more precisely very long-lived 
mestastability). A spatially uniform unstable steady state is stabilized in CC simulations, 
whereas for conventional constant p-simulations on a finite lattice, the system makes 
transitions between the two stable steady states [30-32]. 
 



9 
 

 
 

Figure 3. CC-ensemble KMC simulation results for the global steady-state 
concentration C versus p for Schloegl’s second model on a finite Bethe lattice with z = 3 
and BC at R17. Each data point is obtained as an average over 104 Monte Carlo Steps (MCS). 

Also shown are results for the site and pair approximation for an infinite homogeneous system 
corresponding to equations (9) and (14), respectively. 
 
 

The presence of a global monomer concentration in the hybrid monomer-dimer 
reaction model is reminiscent of our use of a BC for the Schloegl model on the Bethe 
lattice with C or K determined as a global average. This type of BC could facilitate the 
strong bistability observed in our CC simulations for a Bethe lattice. However, more 
detailed analysis reveals distinct behavior between the hybrid monomer-dimer model on 
a Euclidean lattice with a homogeneous unstable steady-state hybrid and the Schloegl 
model on the finite Bethe lattice which has a heterogeneous unstable steady-state.  
Figure 4 shows the variation of ring concentration with ring label k for different target 
concentrations, Ct, in our simulations of Schloegl’s second model with boundary 
condition BCPc. For all Ct < 0.9 corresponding to the unstable state, there is a strong 
decrease in ring concentration approaching the central ring R0 or site k = 0. 
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Figure 4. CC-ensemble KMC simulation results for ring concentrations Ck versus ring index k 
for Schloegl’s second model on a finite Bethe lattice with z = 3 and BCPc imposed at R18. 

 
For the active boundary condition, BCact, there is no bistability, and instead a 

unique stable populated steady state persists for all p. For large p, it is clear that the 
dominant contribution to the particle population (not including the specified populated 
boundary sites) will come from ring Rk* where there is a rough balance between the rate 
of creation of particles, Rcreate = r2(1-Ck*) = (1-Ck*)/3 induced by the two populated sites 
in ring k*+1, noting that the neighboring site in ring k*-1 is typically empty, and the rate 
of spontaneous annihilation, Rannih = pCk*, so that  
 

Ck*  1/(1+3p), for large p.          (17) 
 

Then, using Ck  0 for k < k*, and accounting for the number of sites in various rings, 
implies that the mean concentration for the entire system satisfies  
 

C  32k*-1[32k* - 2]-1Ck*  1/(2+6p) for large k (and p).     (18) 
 
Figure 3 just captures the onset of this decrease in C with increasing p for BCact. 

As noted above, the model does display significant spatial correlations. These 
are quantified in Figure 5 comparing simulation results for the exact K = Kc and for Kb 
versus C with the analytic estimate Ka versus C. Thus, we anticipate that behavior for 
correlated BCs, BCPa-c, gives the best indication of stochastic model behavior for an 
infinite Bethe lattice. One caveat is that we expect bistability will be replaced in the 
stochastic model by a discontinuous transition occurring somewhat below the spinodal 

points for these approximations which are in the range ps  0.063-0.068. This scenario 
is realized in Schloegl’s second model on Euclidean lattices where the location of the 
transition is determined in analytic approximations by a kinetic analogue of a Maxwell 
construction [8,22,29]. 
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Figure 5. KMC simulation results for the conditional concentrations, K = Kc and Kb versus C, 
compared with the analytic prediction, Ka versus C, from the pair approximation. 
 

 
5. SIMULATIONS USING OTHER ENSEMBLES FOR FINITE z = 3 BETHE LATTICES 
 

Further insight into model behavior for an infinite system comes from the 
expectation that the BC will most strongly impact behavior in the outer rings of a finite 
system, but less so for the more central rings. Here, we are exploiting the observation 
that the steady states generated in the CC ensemble can be heterogeneous. This 
observation motivates development and implementation of modified CC simulation 
algorithms where the concentration which is compared with the target value is just 
obtained by sampling a specific ring or subset of central rings in the system (rather than 
sampling the entire system). Figure 6 shows the results of implementing this procedure 
where a specific ring Rk with k = kCC is sampled. Behavior is compared for BCMF and 
BCPc. Similar results are obtained if instead of sampling a single ring with k = kcc, a 
subset of rings Rj with j = 1 to kcc are sampled. See Appendix B. Despite the very 
different behavior for these BCs using the standard CC algorithm, more similar features 
emerge when selecting kCC = 8 - 10 for k* = 16, i.e., when just sampling the central 
rings. Resulting behavior is less impacted by special BC-induced behavior at outer rings 
near the boundary. Using inner rings for small kCC seems to lead to anomalous 
behavior, perhaps in part due to larger fluctuations from sampling few sites, but possibly 
also due to special behavior at the inner most rings. 

Inspection of Figure 6 focusing on behavior for kCC = 6 - 10 furthermore suggests 
that a discontinuous transition for the model on an infinite Bethe lattice would occur 

around pc  0.05-0.06. For BCPc, results for C versus p display a near-vertical line 
expected for a discontinuous transition around this p-range for kCC = 8-10. Even results 
for BCMF are trending toward this behavior. Generally, discontinuous transitions in these 
models occur slightly below the corresponding spinodal point, ps [6,8]. As for regular 
Euclidean lattices, the MF site approximation estimate of the spinodal point of ps(site) = 



12 
 

¼ = 0.25 is far too high. However, the pair approximation estimate of ps(pair) = 1/12  
0.0833 is more reasonable. 
 

 
Figure 6. Results from refined CC simulation where the concentration is just obtained by 
averaging over ring Rk with k = kCC. Behavior for: (a) BCMF; (b) BCPc. Each data point is obtained 
as an average over 104 Monte Carlo Steps (MCS). 
 

Finally, we present some results from conventional constant-p simulation where 
particle annihilation and creation events are implemented with probabilities proportional 
to their rates. These simulations enable assessment of time evolution, and specifically 
the development of heterogeneous steady states. First, we present results in Figure 7 
for BCMF starting with a completely occupied lattice. Figure 7a shows that choosing p = 
0.090 just inside the regime of bistability based on the CC ensemble analysis, ring 
concentrations Ck initially decrease, but then stabilize to values for a heterogeneous 
steady state with inner rings having lower concentrations. Similar behavior occurs for 
lower p also in the regime of bistability, as shown in Appendix C and the SM [21]. 
Figure 7b shows that choosing p= 0.095 presumably just above the regime of 
bistability, ring concentrations Ck ultimately all decrease to zero, so the system evolves 
to the vacuum state. 
  
 

 
 

Figure 7. Evolution of ring concentrations Ck with time, t (in MCS) starting with a completely 
occupied Bethe lattice with k* = 20 for MF BCs. The ring index, k, is shown in the legend.  
(a) p = 0.090; (b) p = 0.095. 
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Next, we present results in Figure 8 for correlated BCPc again starting with a 

completely occupied lattice. Figure 8a shows that choosing p = 0.053 presumably in the 
regime of bistability, ring concentrations Ck again initially decrease and then stabilize, 
where now outer rings have lower concentrations. Figure 8b shows that choosing 
higher p = 0.054 which from the CC ensemble analysis could plausibly be just above the 
region of bistability or the discontinuous transition, one finds an initial stabilization of ring 
concentrations, but then a decrease to zero over longer times as the system evolves to 
the vacuum state. Similar behavior also occurs for higher p as shown in Appendix C 
and the SM [21]. 
 

 
 
Figure 8. Time evolution of ring concentrations Ck starting with a completely occupied Bethe 
lattice with k* = 20 for correlated boundary conditions, BCPc. The ring index, k, is shown in the 
legend. (a) p = 0.053; (b) p = 0.054. 

 
Again, our results for BCPc are expected to best mimic an infinite lattice. Behavior 

for p = 0.054 would be typical for a p-value just above the discontinuous transition in an 
infinite system. Here, the system initially evolves to a metastable populated state, and 
then more slowly to the stable vacuum steady state. (Such behavior could also reflect 
noise-induced transitions from a less stable to a more stable steady state in a finite 
system with bistability, although such transitions tend to occur more suddenly at 
“random” times.) Thus, these simulations suggest a discontinuous transition between p 
= 0.053 and p = 0.054. This result is reasonably consistent with our interpretation of 
refined CC ensemble simulations. In addition, we cannot rule out the presence of a 
small p-window of generic two-phase coexistence which would lead to slightly different 
estimates of pc depending on the simulation protocol [6,9].  

 
6. ANALYTIC MF-TYPE ANALYSIS AND INTERPRETATION 
 

For stochastic lattice-gas models with discontinuous phase transitions, mean-
field and higher-level hierarchical truncation approximations characterizing 
homogeneous steady states generally predict a regime of bistability for varying some 
control parameter, p (the particle annihilation rate in our model). Assessment of the 
location of the discontinuous transition requires consideration of heterogeneous states 
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via lattice differential equations or dRDE as discussed in Sec. 2. For regular Euclidean 
lattices, one explores the propagation of planar interfaces separating coexisting stable 
states as a function of p, stationarity of this interface at p = pc corresponding to the 
discontinuous transition in the stochastic model. (There can be complications due to 
pinning or propagation failure and an orientation-dependence of pc which we do not 
discuss further here [22,36,37].) 

 For the infinite Bethe lattice in the bistable regime p  ps, instead of planar 
interfaces, one can consider the evolution of a droplet of one stable steady state with 
circular symmetry centered on the origin R0 (site j = 1) embedded in a background of 
the other steady state. At the mean-field site approximation level, evolution is described 
by equations (6) and (7). The corresponding more complex equations at the level of the 
pair approximation were also discussed in Sec. 2 and are presented in the Appendix. 
For a populated droplet embedded in the vacuum steady state, it is clear that the droplet 
cannot propagate outward filling empty sites as those sites have at most one filled 
neighbor. This such droplets eventually shrink. However, for a vacuum droplet 
embedded in the populated steady state, in principle such droplets can either shrink or 
grow. We focus on this latter case below. Specifically, one might anticipate that the 
vacuum droplet would expand for large p, shrink for small p, and be stationary for a 
unique value of p = pc < ps, where pc plausibly corresponds to the location of the 
discontinuous transition.  

Note that there is an asymmetry in these equations due to the Bethe lattice 
structure, so that propagation of the vacuum droplet outward is distinct from inward 
propagation. This type of feature was noted in an earlier mean-field study of bistable 
model dynamics on Bethe lattices [38], although in that study the dRDE had 
conventional spatial coupling via a discrete Laplacian in contrast to (6).  
 Numerical analysis using the MF site approximation equations (6) for the case z 
= 3 reveals that an (arbitrarily large) vacuum droplet embedded in the populated state 
will shrink for p < 0.2435034(1) and grow for 0.2435048(6) < p < 0.25 and, thus 

exhibiting a narrow regime of propagation failure of width p  0.0000015 (also seen for 
Schloegl’s second model on Euclidean lattices [22,23]). The droplet propagation velocity 
versus p is shown in Appendix D. This suggests a site-approximation estimate of the 

location of the discontinuous transition as pc  0.2435. However, as indicated above, 
site-approximation estimates for both spinodals and phase transition points are 
expected to be far too high, as on Euclidean lattices [22,23].  
 As an aside, we note that a MF analysis for z > 3 reveals that the vacuum droplet 

shrinks for all p, i.e., for all 0  p  ps. See the SM [21]. One might regard the lack of 
expansion as due to an effective curvature of droplets on the Bethe lattice which is more 
pronounced for larger z, and which persists for arbitrarily large droplet size. Here, we 
note that generally curvature inhibits expansion [33-35,39]. Another perspective comes 
from inspection of (6) which reveals stronger coupling to outer rings for larger z. Thus, 
e.g., for a vacuum droplet with a sharp interface, the concentration of the initially empty 

site adjacent to the interface initially grows faster with bigger z. For z → , inspection of 
(6) shows trivially that the vacuum droplet must shrink. Thus, while large z recovers MF 
kinetics, front propagation in that regime is non-trivial (as for Euclidean lattices [23]).  

Numerical analysis of the pair approximation for z = 3 actually reveals that an 

(arbitrarily large) vacuum droplet shrinks for all 0  p  ps = 1/12, suggesting a 
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discontinuous transition at pc = ps = 1/12  0.0833. Analogous behavior is also found for 
z >3. See the SM [21]. Thus, the pair approximation is not as effective as on Euclidean 
lattices where it correctly indicates a discontinuous transition strictly below the spinodal 
[8,22,23]. 
 
7. CONCLUSIONS 
 

Our analysis reveals the presence of a discontinuous transition for Schloegl’s 

second model on an infinite Bethe lattice with z = 3 occurring at around p  0.053. As 
might be expected, our correlated choice of boundary conditions, BCPa, BCPb, or BCPc, 
for the finite lattice which accounts for strong spatial correlations in the model can best 
mimic behavior for infinite lattice. Also our refined CC ensemble simulations are 
plausibly most effective in extracting infinite lattice behavior from finite lattice 
simulations. While we have not explicitly performed simulation analysis for cases with z 
> 3, we expect a discontinuous transition also for these cases. Generally, behavior for 
bigger z reflects more closely the mean-field prediction of bistability, but the presence of 
noise in the stochastic model ensures the presence of a discontinuous transition. This 
view is consistent with the results in Ref. [17] which considers a discrete-time version of 
Schloegl’s second model. 
 
APPENDIX A: SPATIALLY HETEROGENEOUS FACTORIZATION APPROXIMATIONS 

 
In the mean-field site approximation, the coupled lattice differential equations 

describing the evolution of ring concentrations, P•k = Ck, were presented in Sec. 3 as 
equations (6) and (7). 

In the pair approximation, we obtain a coupled set of equations for P•k = Ck and 

Pok-1ok = Dk-1,k. As noted in Sec.3, one writes P•k-1ok•k+1  P•k-1ok Pok•k+1 / Pok, etc. 
Applying this factorization to the equations in Figure 2 yields  
 

d/dt P•k = - p P•k + z-1[2 P•k-1ok Pok•k+1 + (z-2)(Pok•k+1)2]/Pok, for k  1,  (19) 
 

d/dt Pok-1ok = +p P•k-1ok + p Pok-1•k  
 

- (z-2)z-1(z-1)-1[2P•k-2ok-1 Pok-1•k + (z-3) (Pok-1•k)2] Pok-1ok /(Pok-1)2 (20) 
 

- (z-2)z-1 (Pok•k+1)2 Pok-1ok /(Pok)2, for k  2, 
 
with separate relations for k = 0 and 1. Using conservation of probability relations such 

as P•k-1ok + Pok-1ok = Pok, and Pok-1•k + Pok-1ok = Pok-1, then (19) and (20) become 
 

d/dt Ck = -p Ck + [2(1 - Ck - Dk-1,k)(1 - Ck - Dk,k+1) + (z-2)(1 - Ck - Dk,k+1)2]/ (1-Ck) for k  1, 
            (21) 
d/dt Dk-1,k = +p(1 - Ck - Dk-1,k) + p(1 - Ck-1 - Dk-1,k) 
 

 

- (z-2)z-1(z-1)-1[2(1 -Ck-1 -Dk-2,k-1)(1 - Ck-1 -Dk-1,k) + (z-3)(1 -Ck-1 -Dk-1,k)2 ] Dk-1,k /(1 -Ck-1)2 
 

 

- (z-2)z-1(1 -Ck -Dk,k+1)2 Dk-1,k /(1 -Ck-1)2, for k  2,   (22) 
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with separate relations for k = 0 and 1. 
 
APPENDIX B: REFINED CC SIMULATION ANALYSIS 
 

Figure 9 shows the results for z = 3 from implementing a refined CC simulation 
ensemble procedure where the concentration is rings Rk with k = 1 through kCC are 
sampled and compared with the target concentration. Thus, the choice kCC = k* 
sampling over the entire system just corresponds to the standard CC ensemble. 
Behavior is compared for the BCMF and BCPc boundary conditions. Similar results are 
obtained in Figure 6 just sampling a single ring with k = kcc. Again, similar features 
emerge for the different BCs when selecting kCC = 8 - 10 for k* = 16. Also, again these 
results are suggestive of a discontinuous transition in Schloegl’s second model on an 

infinite Bethe lattice around pc  0.055-0.06. 
 

 
 
Figure 9. Results from refined CC simulation with concentration obtained by averaging over 
rings Rk with k = 1 through kCC. Behavior for BCMF (BCPc) is shown on the left (right). 
 

APPENDIX C. CONSTANT-p SIMULATIONS OF TIME-EVOLUTION 
 

We present additional results from conventional constant-p simulations for time 
evolution starting from an initially fully populated state. Figure 10 shows results for 
BCMF, and Figure 11 shows results for BCPc for a range of p. 
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Figure 10. Evolution of concentrations Ck for various rings, k (labelled in the legend) for BCMF 
boundary conditions for a range of p with a populated heterogeneous steady-state. 

 

 
Figure 11. Evolution of concentrations Ck for various rings, k (labelled in the legend) with BCPc 
for a range of p above the discontinuous transition showing evolution to the vacuum state. 

 

 Some additional comments are appropriate for MF BC. For p  0.05, the steady 

state is almost homogeneous. For 0.06  p  0.09, the steady state becomes strongly 
heterogeneous with outer rings heavily populated and inner rings almost empty. This is 
somewhat reminiscent of coexistence of populated and vacuum states separated by an 
interface, and the feature that it occurs over a range of p is somewhat reminiscent of 

generic two-phase coexistence. For p  0.095, the system evolves to the vacuum state. 
See Fig. 7 and the SM. 
 
APPENDIX D. DROPLET EVOLUTION IN ANALYTIC TRUNCATION APPROXIMATIONS 

 
Using the MF equations (6) and (7) describing interface propagation for states 

with circular symmetry, we analyze the propagation of a very large droplet of one stable 
phase centered on site j = 1 embedded in the other phase. We define the propagation 
velocity, V, of the droplet interface as positive (V > 0) if the droplet grows, and negative 
(V < 0) in the opposite case. Figure 12 shows the results from a MF analysis for z = 3. 
Figure 12(a) shows that the populated droplet always shrinks, a trivial consequence of 
the model prescription. Figure 12(b) shows that the vacuum droplet shrinks except for a 
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small range of p such that roughly 0.24350 < p  0.25. Closer inspection of behavior 

around the apparent equistability point, pc  0.24350, actually reveals a narrow regime 
of propagation failure for 0.2435034(1) < p < 0.2435048(6), as noted in the text. See 
Figure 13. Also, as noted in the text, the pair approximation predicts droplet shrinkage 
in all cases, i.e., there is no equistability point or propagation failure in the case of a 
vacuum droplet. 
 

 
 

Figure 12. MF estimate of the propagation velocity, V, versus p of a large droplet of: (a) the 
populated steady state embedded in the vacuum state; (b) the vacuum state embedded in the 
populated steady state.  
 

 
 

Figure 13. MF estimate of the propagation velocity, V, versus p of a large droplet of the vacuum 
state embedded in the populated steady state near the propagation failure region. This plot 
corresponds to a zoomed-in version of Figure 12(b) around p = 0.243504. 
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