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The successful prediction of the specific heat of solids is a milestone in the kinetic theory of
matter, due to Debye (1912). No such success, however, has ever been obtained for the specific heat
of liquids, which has remained a mystery for over a century. A theory of specific heat of liquids is
derived here using a recently proposed analytical form of the vibrational density of states (DOS)
of liquids, which takes into account saddle points in the liquid energy landscape via the so-called
instantaneous normal modes (INMs), corresponding to negative eigenvalues (imaginary frequencies)
of the Hessian matrix. The theory is able to explain the typical monotonic decrease of specific heat
with temperature observed in liquids, in terms of the average INM excitation lifetime decreasing
with T (in accordance with Arrehnius law), and provides an excellent single-parameter fitting to
several sets of experimental data for atomic and molecular liquids. It also correlates the height of
the liquid energy barrier with the slope of the specific heat in function of temperature in accordance
with the available data. These findings demonstrate that the specific heat of liquids is controlled
by the instantaneous normal modes, i.e. by localized, unstable (exponentially decaying) vibrational
excitations, and provide the missing connection between anharmonicity, saddle points in the energy
landscape, and the thermodynamics of liquids.

Historically, one of the overarching goals of the kinetic
theory has always been the rationalization of the spe-
cific heat of matter based on its underlying atomic and
molecular structure. Classical thermodynamics, revis-
ited in light of modern molecular physics, explains the
specific heat of atomic and molecular gases in terms
of the equipartition theorem for the various transla-
tional and rotational degrees of freedom of the con-
stituent atoms/molecules: the result is the well known
Dulong-Petit law, Cv = 3N/2 (constant with T ), for a
monoatomic gas.

For condensed matter, things become more interesting
and more intertwined with modern physics. The case of
solids has been essentially solved by Debye in 1912 [1]. In
his remarkable paper, Debye correctly counted the contri-
bution of plane waves (acoustic phonons) in the isotropic
3d solid to the internal energy, from which he derived the
law C(T ) ∼ T 3 valid for insulators at low temperature
(this does not account for the electronic contribution in
metals which is given by the Sommerfeld theory of elec-
tronic heat capacity and yields a C(T ) ∼ T contribution).
Furthermore, in the same paper, Debye presented the fa-
mous result for the density of states of phonons in solids,
g(ω) ∼ ω2, obtained from the correct way of summing
plane wave contributions in a spherical 3d space, together
with the ultraviolet cutoff at the Debye wavevector ωD,
consistent with atomic-scale granularity of matter. The
correct counting of normal modes in the spherical shell in
k-space, that is, the g(ω) ∼ ω2, was the key step that al-
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lowed Debye to arrive at the correct result for the specific
heat of solids and it strongly relied on the linear disper-
sion relation ω = vk for acoustic phonons. Furthermore,
the Debye theory also recovers, correctly once again, the
high-temperature limit which is again the Dulong-Petit
law mentioned above.

Therefore, we have satisfactory theories of the specific
heat for both gases and solids, in agreement with exper-
imental observations, which can be found in any text-
books of statistical physics or solid-state theory [2] . In
light of these successes for gases and solids, it is thus all
the more surprising that 100 years after Debye, no satis-
factory theory of the specific heat of liquids is available
yet. Experimental data show that the specific heat of
liquids decreases monotonically with temperature upon
going from the glass transition or melting transition tem-
perature to higher temperatures [3–5]. This behaviour is
puzzling because it is clearly in contrast with what is
observed in solids, where the specific heat is an increas-
ing function of T , and then plateaus at the Dulong-Petit
value.

One reason for this state of matters is that the dy-
namics of atoms and molecules in liquids is strongly
anharmonic, which renders the mathematical problem
a strongly nonlinear one and intractable from first-
principles. This strong anharmonicity also makes con-
cepts such as normal modes, that proved decisive in the
Debye theory of specific heat of solids, of less straightfor-
ward applicability in the case of liquids. In other words,
the basic assumption of Debye theory, i.e. the presence
of linearly dispersing propagating (shear) sound waves at
small frequencies, must be abandoned. In this sense, a
correct description of the specific heat of liquids at small
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temperatures is inevitably connected to the identifica-
tion of the low-energy excitations therein, in analogy with
acoustic phonons in solids.

Recent advances in our understanding of the specific
heat of liquids include the interstitialcy argument by
Granato, which heuristically explains the decaying C(T )
of liquids in terms of Arrhenius-type relaxation of “in-
terstitial” defects [3]. Though intuitively appealing and
simple, this model is not supported by the existence of
point-defects in liquids, since there is no underlying reg-
ular lattice in liquids that can provide a topologically
meaningful definition of interstitials. A different expla-
nation of the decaying specific heat of liquids with tem-
perature was suggested by Wallace on the basis of atomic
motions through a vast number of random valleys in the
energy landscape [6].

More recently, Trachenko and co-workers proposed a
theory of specific heat in liquids based on standard acous-
tic phonons [7] and the k-gap theory [8]. The theory ex-
plains the decaying C(T ) in liquids as due to the gradual
depletion of transverse acoustic phonons (and their shift
to higher and higher frequency/momenta) as the temper-
ature is raised. This approach relies on acoustic phonons,
whereas at lower momenta/energies one has to deal with
overdamped modes (ω = −i/τ), whose importance for
liquids has been established and demonstrated in a broad
literature [9]. The role of these modes is nevertheless not
considered in any of the previous approaches.

Modern theories of the liquid state have attempted
to extend the concept of normal modes from solids
to liquids, following pioneering ideas and work by
Zwanzig [10]. This led to the concept of Instantaneous
Normal Modes (INMs), which extends the concept of nor-
mal modes to liquids, to include the above mentioned
overdamped modes. In short, the locally anharmonic dy-
namics of atoms in liquids leads to many saddle points
in the energy landscape. These saddle points are asso-
ciated with localized unstable (exponentially decaying)
modes, with purely imaginary frequency. The imaginary
frequencies correspond to negative eigenvalues of the Hes-
sian matrix of the atomistic system. In simpler terms,
the anharmonicity leads to locally unbalanced forces be-
tween atoms (which are constantly pushed away from
their bonding minima by the thermal fluctuations), which
then lead to exponentially decaying motions in time with
an Arrhenius-dependent time-scale on T , i.e. the INMs:
eiω

∗t ∼ e−Γt, with Γ ∼ e−U/kBT and ω∗ is purely imagi-
nary, ω∗ = −iΓ.

As shown by many numerical studies over the past
decades, the INMs dominate the low-frequency and
intermediate-frequency sectors of the DOS of liquids [9,
11, 12]. At low-frequency, they coexist with one longitu-
dinal acoustic phonon and one transverse diffusive mode
(momentum-shear diffusion), whereas, at higher frequen-
cies, transverse acoustic phonons only recently have been
shown to exist in liquids and to play a role in their ther-
modynamics at larger energies (the so-called k-gap) [13].
Interestingly, these modes define the regime of applica-

bility of hydrodynamics [14], intended as an effective con-
tinuum description of fluids.

In this work, we provide a first-principles theory of
the specific heat of liquids, which, for the first time, ef-
fectively takes into account the intrinsic anharmonicity
of liquid dynamics and the fact that the DOS of liquids
(derived analytically in recent work [15]) is dominated by
INMs. The theory provides an excellent fitting to exper-
imental data of several liquids and correctly recovers the
Dulong-Petit law as its high-temperature limit. The re-
sults presented here provide a long-sought answer to the
century-long question about the specific heat of liquids,
more than hundred years after Debye’s theory for solids.

As it is customary for specific heat calculations, one
starts from the total energy of a collection of excita-
tions. For harmonic solids, these excitations are simple
harmonic oscillators with frequencies strictly real; in the
case of liquids, the frequencies can be imaginary (as for
the INMs). States with imaginary frequencies in quan-
tum mechanics are not at all uncommon [16], and they
arise in nuclear physics – the Gamow states –, and in
particle physics, – the W and Z0 bosons [17, 18]. These
modes are simply called resonances, states with a finite
lifetime coming from a large imaginary part, which con-
tributes and may even dominate the particle mass and
energy [16, 18]. In other contexts, they take the name
of quasinormal modes; they are intimately linked to non-
hermiticity [19] (i.e. dissipation/relaxation) and exper-
imentally observed even in astronomic black holes colli-
sions [20].

Here we describe a population of INMs as a weakly-
interacting Bose gas, with Hamiltonian given by H =∑
q 6=0 εqb

†
qbq [21] where we do not include the ground

state (T = 0) terms (which is irrelevant since we will later
take a derivative with respect to T ). In the above expres-
sion, b†q and bq are the bosonic (Bogolyubov) creation and
annihilation operators equipped with standard commu-
tation relations and with associated momentum q, while
εq is the energy [21]. We then formally rewrite εq ≡ ~ωq
for the energy of a single boson, where ωq ≡ |ωq|, as
appropriate for unstable bosons [9, 16–18], and we fur-
ther consider that b†qb = nq where nq = (e~ωq/T − 1)−1

is the Bose-Einstein (BE) occupation number. Since we
have a gauge freedom in defining the ground-state energy
(because it obviously does not contribute to the specific
heat), we define it as ~ωq/2 in order to maintain a formal
analogy with the case of solids.

Hence the energy of a collection of weakly-interacting
bosons under the above assumptions can be written as

E =
∑
q

~ωq
2

e~ωq/T + 1

e~ωq/T − 1
(1)

where q ≡ |q| is the modulus of the momentum, since
we are considering isotropic liquids. In the above, we are
working in units such that kB = 1.

Using the standard replacement
∑
q →

∫
d3q

(2π)3 , and

further introducing the vibrational density of states,
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g(ω), defined via d3q
(2π)3 = g(ω)dω, we arrive at the fol-

lowing integral (which can be found in textbooks) for
the specific heat [21]:

CV (T ) = 3N

∫ ∞
0

( ω
2T

)2

sinh
( ω

2T

)−2

g(ω) dω (2)

where we have also set ~ = kB = 1.
Upon inserting the normalized Debye DOS, g(ω) =

3ω2/ω2
D in the above integral, one readily recovers the

low-T limit of the specific heat as CV ∼ T 3, and the high-
temperature limit as the Dulong-Petit law, CV ∼ 3N (in
units of kB = 1).
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Figure 1. The (schematic) theoretical predictions of the
model. Left: the dependence of the liquids specific heat on
the amplitude of the INMs relaxation rate Γ. Right: The
dependence on the characteristic potential height U for relax-
ation.

Let us now turn to the case of liquids. The starting
point is an overdamped equation of motion for particle
dynamics,

dv

dt
= −Γv, with Γ ≡ 1/τ , (3)

where τ is the relaxation time and Γ is a damping coeffi-
cient (the relaxation rate), which for strongly anharmonic
excitations represents the (short) lifetime of the exci-
tation. This overdamped dynamics, and its associated
negative eigenvalues, can be quantitatively linked to the
anharmonicity of the underlying energy landscape [22].
Taking advantage of a generalization of the Plemelj iden-
tity to arbitrary integration pathways in the complex
plane, recently it has been possible to derive an analytical
form for the DOS of liquids that takes INMs into account
[15]. The final expression has the following form (modulo
a normalization factor to ensure that

∫
g(ω)dω = 1):

gliq(ω) ∼ ω

ω2 + Γ2
e−ω

2/ω2
D , (4)

where Γ is the characteristic relaxation rate of an INM,
which exhibits a typical Arrhenius dependence on tem-
perature [12]

Γ(T ) = Γ0 e
−U/T . (5)

Furthermore, the factor e−ω
2/ω2

D is just a Gaussian cut-
off which implements the “granularity” of matter at the
atomic/molecular scale in terms of the ultraviolet cutoff
ωD and was already introduced in Ref. [12]. We have

checked that the main results do not depend essentially
on the specific form of the cutoff.

The above Eq. (4) has been shown in recent work [15]
to provide an excellent fitting of numerical data of the
DOS of Lennard-Jones systems obtained from molecular
dynamics simulations in the literature [12, 23].

These formulae, Eqs. (4)-(5), provide a direct connec-
tion between relaxation and vibration in liquids, and play
a decisive role in the following description of the specific
heat.
Upon inserting a normalized form of (4) in (2), it is im-
mediately verified that the limit T → ∞ of the integral
leads CV = 3N , i.e. the Dulong-Petit law.

We now turn to the dimensional form of the specific
heat integral (2)

CV (T ) = kB

∫ ∞
0

(
~ω

2kBT

)2

sinh

(
~ω

2kBT

)−2

g(ω, T )dω

(6)
where g(ω, T ) is given by (4) together with (5).

In (4), acoustic phonons are not explicitly taken into
account, because it has been shown in previous work that
they are not crucial to reproduce numerical data of DOS
of Lennard-Jones liquids [15]. It is also important to note
that, at T < ΘD where ΘD is the Debye temperature,

the BE-related factor sinh
(

~ω
2 kB T

)−2

in the integral for

the specific heat effectively gives a very low weight to all
high-ω (phonon-type) excitations, whereas it gives a large
weight to low-frequency excitations such as the INMs.
More precisely, high frequencies could eventually be im-
portant only at extremely high temperatures and they
cannot possibly be responsible for the low-temperature
(above melting transition) decay typical of liquids. In-
deed, as we will prove, there is no need to take into ac-
count high frequency modes (e.g. emerging shear waves
in the k-gap model [8]) to reproduce the experimental
trends.

Furthermore, quoting from Born and Huang [24], at
T > ΘD, the specific heat is not sensitive to the
specifics of the frequency distributions and the Einstein
model provides a correct estimate in terms of high-
energy atomic/molecular vibrations with ω ∼ ωD or
larger (intramolecular vibrations). Hence, in this high-
temperature regime, phonons, as collective lattice vibra-
tions, do not exist anymore, while the high-frequency
non-collective (gas-like) vibrations contribute a constant
(independent of T ) to the specific heat [24]. These ar-
guments suggest that the influence of the INMs on the
specific heat and on its observed decay with T could pos-
sibly be the dominant one.

Illustrative calculations of the specific heat using the
above theory are shown in Fig.1. It is clear from these
theoretical calculations that the temperature dependence
of the specific heat is mostly controlled by the relaxation
rate of excitation lifetime Γ and its Arrhenius dependence
on T . In particular, despite the dimensionful pre-factor
Γ0 produces only a vertical shift in the C(T ) function
(left panel of Fig.1), the energy barrier U plays a much
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Liquids: Xe Kr Ne Ar N2

ω∗D [K] 64 72.1 74.6 93.1 86
U∗ [K] 226.1 162.5 33.9 116.7 102.12
Γ0 [K] 240 100 80 60 29

Table I. The numerical values used in the fitting procedure.
The symbol ∗ indicates that the values are not obtained from
the fit but they are fixed with the literature data [25–27]. The
only free parameter is Γ0.

more fundamental role. It determines the curvature of
the specific heat; the larger the potential energy U , the
slower the temperature decay of the specific heat (right
panel of Fig.1).

This Arrhenius dependence was fortuitously captured
by Granato’s interstitial defect argument, although its
true physical origin resides in the INMs and in the many
saddle points of the energy landscape. From a physi-
cal point of view, the decay of C(T ) with increasing T is
caused by the decrease of the average lifetime of the INM
excitations, which is equal to Γ−1. Hence, since the heat
is stored by the INMs, as the dominant vibrational ex-
citations in liquids, the fact that their lifetime decreases
with increasing T leads to a lower capability of storing
heat in the vibrational excitations.

This picture is confirmed by the fact that the specific
heat is reduced upon increasing the strength of the INMs
relaxation rate Γ0, i.e. upon decreasing their lifetime.
Moreover, the model directly shows that, by increasing
the characteristic potential height U of the anharmonic
liquid landscape, the specific heat grows. This can be
simply explained by the fact that a higher barrier sup-
presses the probability of the molecular rearrangements
responsible for the INMs dynamics and therefore makes
their lifetimes longer. This is fully consistent with the
emerging picture of heat being stored in the INMs, in
liquids.

We now turn to the fitting procedure and the main
results of our analysis. Combining Eq.(4) and Eq.(5),
our model displays three physical parameters: the De-
bye frequency ωD, the activation energy U and the re-
laxation rate prefactor Γ0. The first two parameters for
simple liquids are well-known and they are fixed to their
literature values [25–27] displayed in Table I. The acti-
vation energy is taken to be equivalent to the height of
the Lennard-Jones energy barrier ε. All in all, our fit-
ting procedure involves a single fitting parameter Γ0. In
Fig. 2, we present a series of comparisons between the
specific heat calculated using (4) inside the specific heat
integral (6) and experimental data of simple liquids of
various nature, but all reasonably well approximated by
the Lennard-Jones potential. The obtained values for the
relaxation rate scale Γ0 are shown in Table I. In all in-
stances, the fitting is excellent and perfectly captures the
decline of the specific heat with increasing temperature,
explained by the present theory in terms of reduced life-
time of INMs. The results show, as already anticipated,
that, the larger the characteristic energy U (which is re-

lated to ε), the larger the specific heat and the slower its
temperature decay. This confirms once more not only the
validity of our theory but also its predictive power able
to connect microscopic features, such as the characteris-
tic potential barrier U , to macroscopic thermodynamic
observables, such as the temperature dependence of the
specific heat.

In order to emphasize the predictive power of our the-
ory, and the excellent agreement with the data, we re-
present the INMs temperature dependent relaxation rate
Γ(T ) using the parameters obtained from the fits in Fig.
3. For all the liquids analyzed, we find a relaxation rate
of the order of 1/ps. According to transition state the-
ory [28], the molecular hopping (attempt) rate is directly
proportional to the INMs relaxation rate, which corre-
sponds to the (negative) curvature of the potential land-
scape. Interestingly, our order of magnitude estimate of
the single fitting parameter Γ0, coincides with the values
reported in the literature, see for example [12].
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Figure 2. The comparison between the model, Eqs.(4)-(6),
and experimental data for four different liquids. The experi-
mental data are taken from [6, 29]. The value of the various
parameters is displayed in Table I.

In summary, the above theory provides a definitive an-
swer to the mystery of liquid specific heat and ideally
completes the agenda of the kinetic theory of matter, set
over 100 years ago by Debye, Einstein, Planck and co-
workers.

As in Debye’s work [1] for solids, the crucial step for
the successful derivation of the specific heat, also in the
case of liquids relies on finding the correct form of the
vibrational density of states (DOS). Debye derived his
famous T 3 law for the specific heat of solids by correctly
counting 3d plane waves in an isotropic solid, leading to
the Debye vibrational density of states, ∼ ω2. Here we
did the same for liquids, where the relevant excitations
are not plane waves/phonons but the instantaneous nor-
mal modes (INMs), i.e. overdamped relaxations from
saddle points in the energy landscape. This leads to a
DOS for liquids ∼ ω at low frequency [15], whose form
is given in Eq.(4). In turn, this DOS leads to a mono-
tonically decreasing C(T ) with increasing T , as a result
of Arrhenius-type relaxation of INMs, and recovers the
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Figure 3. The temperature dependent INM relaxation rate
Γ(T ) obtained by using the single-parameter fitting in Table
I. The solid portion of the curves is the one corresponding to
the temperature range of the experimental data fitted.

Dulong-Petit plateau in the high-T limit.

These results fill the gap in our understanding of ther-
mal and vibrational properties of condensed matter.

Finally, given the success of the theory by Trachenko
and co-workers [7], it is important to draw some compar-
isons. Given our results, it is clear that the key point
in their treatment is not the presence of propagating
shear waves, which appear at large momenta and fre-
quencies (at least at momenta larger then

√
2kg), but

rather the collection of overdamped modes below that

point. In particular, the k-gap dispersion relation [8] dis-
plays purely relaxing modes below k = kg. Not only that,

but even between kg < k <
√

2kg, the acoustic waves are
mostly overdamped, and therefore more similar in nature
to INMs than to propagating shear waves. Moreover, our
results are in agreement with those of Ref. [30] where the
heat capacity decreases by increasing the k-gap momen-
tum. Indeed kg ∼ Γ; a larger k-gap implies a shorter
lifetime for the relaxational modes ω = −iΓ and there-
fore a lower specific heat as explained by our theory.

Following the ideas of [31], it would definitely be in-
teresting to achieve a more fundamental understanding
of this relaxation time scale based on symmetries rather
than microscopic mechanisms, in analogy to the mod-
ern formulation of phonons and Debye theory in terms of
the spontaneous symmetry breaking of spacetime trans-
lations.
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