
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Divergence and consensus in majority rule
P. L. Krapivsky and S. Redner

Phys. Rev. E 103, L060301 — Published 15 June 2021
DOI: 10.1103/PhysRevE.103.L060301

https://dx.doi.org/10.1103/PhysRevE.103.L060301


Divergence and Consensus in Majority Rule

P. L. Krapivsky
Department of Physics, Boston University, Boston, MA 02215, USA
Skolkovo Institute of Science and Technology, 143026 Moscow, Russia

S. Redner
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

We investigate majority rule dynamics in a population with two classes of people, each with two
opinion states ±1, and with tunable interactions between people in different classes. In an update, a
randomly selected group adopts the majority opinion if all group members belong to the same class;
if not, majority rule is applied with rate ε. Consensus is achieved in a time that scales logarithmically
with population size if ε ≥ εc = 1

9
. For ε < εc, the population can get trapped in a polarized state,

with one class preferring the +1 state and the other preferring −1. The time to escape this polarized
state and reach consensus scales exponentially with population size.

A major theme in modeling social dynamics is under-
standing the conditions that cause a population to either
reach consensus or a polarized state, in which a diversity
of opinions persists (see, e.g., [1–4]). The voter model [5–
14] provides a simple description for consensus formation.
In a single update, a randomly selected voter, which can
be in one of two opinion states, adopts the opinion state
of a randomly selected neighbor. Consensus is necessar-
ily reached in a finite population. In contrast, polarized
states arise in models where interactions between individ-
uals of different classes are limited. Prominent examples
include the Axelrod model [15–18], in which individuals
interact only if they share a common social trait; the
bounded confidence model [19–21], in which individuals
interact only if they are sufficiently close in opinion space;
multi-state voter models, with interactions only between
voters in compatible states [22–24]; and social balance
models, with edges that specify friendly or unfriendly re-
lations and dynamics that reduce social stress [25–29].

Here, we extend majority rule dynamics [30–38] to
probe this tension between consensus and polarization in
a mathematically principled way. The original majority
rule model describes opinion evolution in a population
where each individual can be in one of two equivalent
opinion states +1 and −1. Individual opinions change
as follows: (i) Pick a group of size G (with G odd to
ensure that a majority exists) from the population. (ii)
All selected individuals adopt the opinion of the group
majority. These steps are repeated until the population
necessarily reaches consensus, either all +1 or all −1.
If individuals reside on the nodes of a complete graph,
the consensus time scales logarithmically with popula-
tion size [31]. For finite-dimensional lattices, where the
group consists of contiguous individuals, the consensus
time scales algebraically with population size [39, 40].

Our model, which we term the homophilous major-
ity rule (HMR), captures a pervasive aspect of social
interactions—namely, homophily [41–43], in that individ-
uals tend to ignore the opinions of people unlike them-
selves. The simplest situation is a population that con-
sists of two classes of people that we denote as A and

B. The update follows that of majority rule, with a sim-
ple but crucial twist: (i) Pick a group of individuals at
random from the population. (iia) If all group members
are from the same class, they adopt the majority opin-
ion. (iib) If the group consists of individuals from differ-
ent classes, they adopt the majority opinion with rate ε;
otherwise, no opinion change occurs. Thus the “mixing
parameter” ε, which we tacitly assume to be less than 1,
is the rate at which an individual joins the majority in
a heterogeneous group. That is, heterogeneity impedes
consensus, a property that has been the focus of consid-
erable social science research (see, e.g., [44–47]).

When the mixing parameter ε exceeds a critical value
εc = 1

9 , the population quickly reaches consensus, in
which the average consensus time scales logarithmically
with population size. When ε < εc, the population can
get trapped in a polarized state, with one class prefer-
ring the +1 state and the other preferring the −1 state.
The time to escape this polarized state and reach consen-
sus scales exponentially with population size. For large
N , consensus is therefore not achieved in any reasonable
time scale. Moreover, the distribution of consensus times
contains multiple scales, so that different instances of the
population reach consensus at wildly different times.

Rate Equations. First, we treat the special case of mix-
ing parameter ε = 1 by the deterministic rate equation.
We focus on the simplest case of group size G = 3 and
briefly comment about larger-size groups in the conclu-
sions. The density ρ(t) of individuals with opinion +1
evolves according ρ̇ = ρ2(1 − ρ) − ρ(1 − ρ)2. The first
term accounts for the increase in ρ due to groups that
consist of two individuals with opinion +1 and one indi-
vidual with opinion −1. A parallel explanation accounts
for the second term. The rate equation has two stable
fixed points, ρ = 0, 1, corresponding to consensus, and
an unstable fixed point ρ = 1/2. The average consensus
time grows logarithmically with system size [31].

Consider now the HMR model for arbitrary ε ≤ 1. We
analyze the symmetric situation of 2N total individuals,
with N in each class. Denote by nA and nB the number
of A’s and B’s with opinion state +1. In the N → ∞
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FIG. 1: Flow field of the dynamical system defined by Eq. (1) for the cases: (a) ε = 0.25 (greater than εc = 1
5
), (b) ε = 0.15

(between εc = 1
9

and εc), and (c) ε = 0.08 (less than εc). The arrow colors indicate the flow magnitude (blue (darker) slow, red
(lighter) fast) and the symbols indicate the locations of the fixed points: red dots for stable, blue circles for saddles, and the
black circle at ( 1

2
, 1
2
) in (b) and (c) for unstable.

limit, the densities a = nA/N and b = nB/N obey

ȧ = F (a) + εG(a, b) , ḃ = F (b) + εG(b, a) , (1)

where

F (x) = x2(1−x)− x(1−x)2 ,

G(x, y) = (1−x)
[
2xy+y2

]
−x
[
2(1−x)(1−y)+(1−y)2

]
(see the Supplementary Material [48] for details). The
dynamical behavior of the system (1) is quite rich, as
illustrated by the flow field for generic values of ε in each
of the three domains: (i) ε > εc = 1

5 ; (ii) εc < ε < εc with

εc = 1
9 ; (iii) ε < εc (Fig. 1).

When ε > εc, the consensus fixed points at α− ≡ (0, 0)
and α+ ≡ (1, 1) are stable nodes, while the fixed point
β ≡

(
1
2 ,

1
2

)
is a saddle. From any initial condition that

does not lie on the line a+ b = 1, the population quickly
reaches consensus at α− for a + b < 1 and consensus
at α+ for a + b > 1. For initial conditions that lie on
the line a + b = 1, the population is driven to the fixed
point β. However, stochastic finite N fluctuations drive
the system from this line (and even from the fixed point
β if the evolution begins there) and either consensus is
reached with equal probabilities. We show below that
the consensus time scales as lnN in all cases.

In the intermediate regime, εc < ε < εc, the fixed point
β changes from a saddle to an unstable node and two
additional saddle-node fixed points

γ± = 1
2 (1± Γ , 1∓ Γ) , Γ =

√
(1− 5ε)/(1− ε) , (2)

emerge from β. These fixed points recede from β as ε
decreases below εc while remaining on the line a+ b = 1
(Fig. 2). According to the rate equations, if the initial
condition lies on the line a+ b = 1, except for (a, b) = β,
the population is drawn to one of the fixed points γ±.
At γ+, for instance, a fraction 1

2 (1 + Γ) of A’s is in the
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FIG. 2: Fixed-point coordinates as function of ε, with dot-
ted, dashed, and solid indicating unstable, saddle, and stable
nodes, respectively. Magenta (horizontal line): the symmetric
fixed point β =

(
1
2
, 1
2

)
. Red/blue (the parabola that starts at

εc, with the lower branch corresponding to red and the up-
per branch to blue): the two reflection-symmetric fixed points
γ± in the range ε = 0 to εc = 1

5
. For fixed ε in this range,

the two plotted values give the (x, y) and (y, x) coordinates
of γ±. Green/orange (the two parabolas that start at εc,
with the lower branches corresponding to green and the up-
per branches to orange): the four non-symmetric fixed points
δi that emerge from γ± at εc = 1

9
. For fixed ε, the green

(lighter) plotted values give the (y, x) and (x, y) coordinates
of δ1 and δ3, respectively, while the (darker) orange plotted
values give the (x, y) and (y, x) coordinates of δ2 and δ4,

+1 state, while the same majority of B’s is in the −1
state. Thus the total population is polarized but evenly
balanced, with one-half in the +1 opinion state and the
other half in the −1 state. All other initial conditions are
again driven to consensus.

When ε < εc, four additional fixed points δi (i=1,2,3,4)
emerge, two from γ+ and two from γ−. These four fixed
points are saddle nodes, while the fixed points γ± become
stable. There are now two disjoint domains in phase
space that are attractors to one of these mixed-opinion
fixed points γ± (Fig. 3). In this regime, the population-
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FIG. 3: The basin of attraction to the consensus fixed point
(0,0) blue (black) and (1,1) yellow (white) and to the mixed-
opinion fixed points γ± orange (grey) for the case ε = 0.1.

average interaction is sufficiently weak that A’s and B’s
form their own and distinct near-consensus enclaves when
the initial condition is within either of these basins of
attraction for γ+ or γ− (Fig. 1(c)). Again, the population
is polarized but evenly balanced and there is range of
initial conditions for which the population is driven to
this polarized state. Initial conditions that lie outside
these two basins of attraction are again quickly driven to
one of the consensus fixed points.

In principle, we can extend the rate equation approach
to larger group sizes G, but the analytical calculation
quickly becomes intractable. ForG = 5, visual inspection
of the flow diagram indicates that εc ≈ 0.081 and εc ≈
0.032, compared to εc = 1

5 and εc = 1
9 for G = 3. This

decreasing trend suggests that as G increases, ε must be
extremely small to forestall consensus.

Finite-Population Simulations. Even for a perfectly-
mixed population, the rate equation approach does not
fully capture the stochastic dynamics. Because of finite-
N fluctuations, the only true attractors of the dynamics
are the consensus fixed points. If the population state
is in the basin of attraction of one of the fixed points
γ± (the situation pertinent for ε < εc), the dynamics
first draws the population to one of these fixed points.
Eventually, however, a sufficiently large stochastic fluc-
tuation pushes the population out of these basins and
to one of the consensus fixed points. The probability to
leave either of these basins is exponentially small in N ,
which implies that the time to reach consensus grows ex-
ponentially with N . Although consensus is the true final
state, reaching consensus requires a time that is prac-
tically unattainable for a population of any appreciable
size. Thus for ε < εc, consensus is effectively not reached.

An analogous dichotomy occurs in population dynam-
ics models, such as the logistic process, where the rate
equation predicts a steady state, whereas extinction is
the final outcome [49–51]. In these processes, extinc-
tion occurs in a time that scales exponentially with the
quasi steady-state population size predicted by the rate

equation (see, e.g., [52–55]). The HMR model exhibits
a similar rare-event driven approach to a final consen-
sus, but with the additional feature that this approach is
governed by two very different time scales.

In our simulations, we first select three individuals at
random from the entire population. If these individuals
are all from the same class, majority rule is applied. If the
group consists of different classes of individuals, major-
ity rule is applied with probability ε; otherwise, nothing
happens. The time is incremented by 3/N in each up-
date so that every individual reacts once, on average, in a
single time unit. This update is repeated until consensus
is achieved. We investigated several generic initial con-
ditions: (a) A fully polarized state, with A’s are entirely
in the +1 state, and B’s are entirely in the −1 state; (b)
a “balanced” state, in which half of both the A’s and B’s
are in the +1 state; (c) “imbalanced” states, in which a
fraction q of the A’s and a fraction 1 − q of the B’s are
in the +1 state. This initial condition lies along the line
a+ b = 1 in state space. The results for these initial con-
ditions are qualitatively similar and we primarily focus
on the balanced initial condition.
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FIG. 4: The average consensus time 〈t〉 versus N for the
balanced initial condition for: (a) various ε and (b) close to
the transition at ε = εc. In (a), the abscissa is on a logarithmic
scale in the main panel and the ordinate is on a logarithmic
scale in the inset, where data for the case ε = 1

16
is shown.

For ε > εc, the average consensus time 〈t〉 grows log-
arithmically with N . This is an exact result [31] for
the original MR model (ε = 1), and it is also proved
to occur for majority-like stochastic processes that are
described by rate equations that possess only saddles
and sinks—escaping a saddle and reaching a sink takes
O(lnN) time [34, 37]. This logarithmic dependence also
occurs in the regime εc ≤ ε ≤ εc. In this intermediate
regime, when the initial state is on the line a + b = 1,
finite-N fluctuations will drive the population state off
this line (where γ± are attractors), after which consen-
sus is quickly reached.

When ε decreases below εc = 1
9 , the N dependence

of 〈t〉 suddenly changes from logarithmic to exponential
(Fig. 4(b)). Strikingly, this exponential dependence sets
in only after N & 4000 for the case ε = 0.1, a feature
that arises from from the geometry of the basin of at-
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traction (Fig. 3(b)). To reach one of the fixed points γ±
when starting from (a, b) = ( 1

2 ,
1
2 ), the population state

has to navigate within the tongue between the separa-
trices that border the basins of attraction to γ±. This
tongue is narrow when ε is close to εc, so the population
state is typically and quickly drawn to a consensus fixed
point in this range. However, if either fixed point γ±
is reached, the escape time scales exponentially with N .
These two outcomes explain the existence of two dras-
tically different time scales in P (t), the consensus-time
distribution (Fig. 5). We may estimate the probabilities
of the two outcomes from the data for P (t) and find that
the probability to reach one of the fixed points γ± van-
ishes as ε → εc from below; a bound for this probability
is given in the supplemental material. Finally, note that
this bimodal consensus-time distribution (Fig. 5) arises
when the starting state is (a, b) = ( 1

2 ,
1
2 ). If the start-

ing point lies inside the basin of attraction of γ±, the
consensus-time distribution is asymptotically exponen-
tial, P (t) = 〈t〉−1e−t/〈t〉, and is fully characterized by
the average consensus time [55].
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FIG. 5: The consensus-time distribution for the balanced ini-
tial condition when ε = 0.03 for N = 40, 80 and 120.

Deep in the ultra-slow regime, these two disparate
time scales can be readily quantified. For example,
for ε = 0.03, the average consensus time 〈t〉 over 105

realizations is approximately 1304, 57 104, 2 477 250 for
N = 40, 80, 120. The underlying distribution of consen-
sus times consists of two widely separated peaks (Fig. 5).
These peaks are located at roughly t ≈ 23.8 and 3.3×103

for N = 40, t ≈ 29 and 1.6× 105 for N = 80, and t ≈ 33
and 8.9 × 106 for N = 120. The smaller of these two
times grows close to logarithmically with N , while the
larger time grows roughly exponentially with N . Thus
the average consensus time is not a useful measure of
how long it takes a given realization of the population to
reach consensus.

To appreciate the dynamical source of these disparate
time scales for ε < εc, it is useful to trace individual state-
space trajectories. Figure 6 shows two such trajectories
for ε = 0.03 and N = 80. One (magenta) corresponds
to quick consensus, in which the trajectory moves quasi-
systematically from the initial state of (a, b) = ( 1

2 ,
1
2 ) to

consensus at (0,0) in a time of roughly 29.5. The other

trajectory (multiple colors) shows ultra-slow approach to
consensus. The blue portion shows the first 100 steps,
where the population state quickly goes from ( 1

2 ,
1
2 ) to a

metastable state near the fixed point γ+ ≈ (0.968, 0.032).
The green portion shows the trajectory in the time range
between t ≈ 100 and 0.999T , where T = 126 456 is the
consensus time for this trajectory. This part of the tra-
jectory wanders stochastically about the fixed point γ+
until a large fluctuation drives this trajectory outside the
local basin of attraction, after which the consensus fixed
point at (1, 1) is reached (red portion of the trajectory).
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FIG. 6: Two state-space trajectories for ε = 0.03 and N = 80
that both start from ( 1

2
, 1
2
): (magenta) a trajectory that “di-

rectly” goes to consensus at (0, 0); (blue/green/red) a “wan-
dering” trajectory that quickly reaches a metastable state
near the fixed point γ+ before eventually reaching consen-
sus.

When ε = εc, which defines the boundary between log-
arithmic and exponential dependence of the average con-
sensus time, we might expect 〈t〉 to scale algebraically
with N . Instead, simulations indicate logarithmic scal-
ing (Fig. 4(b)). We also might anticipate that the con-
sensus time is a non-self-averaging random quantity in
the intermediate regime εc ≤ ε ≤ εc because of the
presence of the fixed points γ±. However, simulations
suggest that the consensus time is self-averaging for all
ε ≥ εc. Specifically, we found that the fluctuation mea-
sure R ≡

√
〈t2〉/〈t〉 → 1 faster than algebraically in N

when ε > εc, and as N−1/2 when ε = εc. These results
suggest that the consensus time t is a self-averaging ran-
dom quantity that scales as lnN for all ε ≥ εc.

Majority rule in a two-class population favors quick
consensus (logarithmic in population size N) when indi-
viduals heed members of the other class with rate greater
than 11%. Otherwise, a polarized state typically occurs,
in which one class favors the +1 opinion and the other
class favors −1, even though neither class has an inter-
nal opinion preference. This polarized state is practically
eternal in that the escape time to reach consensus scales
exponentially with N . This frozen in polarization seems
characteristic of the current social climate [56–59] and il-
lustrates the crucial role of interactions between different
classes of individuals in fostering either camaraderie or
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animosity. However, as the group size G increases, there
is a wider range of values for the mixing parameter ε for
which polarization appears to be less likely. Our work
also raises several challenges, such as understanding ho-
mophilous majority rule on more realistic or dynamically
evolving networks, heterogeneous groupings of individu-

als, and the role of more than two opinion states.
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