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A fluid composed of two molecular species may undergo phase segregation via spinodal decom-
position. However, if the two molecular species can interconvert, e.g. change their chirality, then
a phenomenon of phase amplification, which has not been studied so far, emerges. As a result,
eventually, one phase will completely eliminate the other one. We model this phenomenon on an
Ising system which relaxes to equilibrium through a hybrid of Kawasaki-diffusion and Glauber-
interconversion dynamics. By introducing a probability of Glauber-interconversion dynamics, we
show that the particle conservation law is broken, thus resulting in phase amplification. We char-
acterize the speed of phase amplification through scaling laws based on the probability of Glauber
dynamics, system size, and distance to the critical temperature of demixing.

Competing Dynamics: The Phenomenon of Phase Am-
plification -When a fluid, composed of two immiscible
molecular species, is quenched at appropriate concentra-
tion from a high temperature to a temperature below the
critical point of demixing, into the unstable (spinodal) re-
gion, the fluid will phase separate into two stable phases
- a process known as spinodal decomposition [1]. During
spinodal decomposition, if the molecular species may eas-
ily interconvert (e.g. chiral molecules [2], chiral crystals
[3], or two isomorphs in a polyamorphic fluid [4]), then
the phenomenon of phase amplification, when one phase
grows at the expense of another one, can be observed.

To model this phenomenon, we use the fact that the
Ising model for an anisotropic ferromagnet and the lat-
tice gas model for a fluid are mathematically equivalent
[5]. Within the same universality class, systems demon-
strate the same critical singularities and the same critical
equation of state, provided that the appropriately de-
fined order parameters, φ, have the same symmetry. The
one-component-vector order parameter (φ, the magneti-
zation) in the Ising model and the scalar order parameter
(φ = 1 − 2ρ, where ρ is the density) in the lattice gas
posses the same symmetry [6, 7]. In this work, we con-
sider the incompressible symmetric binary mixture [8, 9],
a popular version of the lattice gas model, where the con-
served order parameter is φ = 1 − 2x, in which x is the
fraction of cells occupied by one of the components.
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However, while the binary lattice and Ising model are
equivalent in thermodynamics, they are fundamentally
different in dynamics. The order parameter, the frac-
tion of occupied cells, associated with fluid phase separa-
tion is conserved, while magnetization is not conserved.
Thus, the order parameters in the binary lattice and Ising
model belong to different universality classes in dynamics
[10]. This difference is characterized by the dynamic crit-
ical exponent z = 2 (Ising-model dynamics) and z = 4
(binary-lattice dynamics in the mean-field approxima-
tion) [10, 11].

To illustrate this difference, consider a binary lattice
of particles. In the absence of an external ordering field,
but in the presence of fluctuations of density, this sys-
tem will remain in equilibrium provided that the parti-
cles can arrange themselves to minimize the free energy.
To do this, the particles will “swap” locations with one
another until the energy is minimized. As a result, be-
low the critical temperature of demixing, two equilibrium
fluid phases must coexist to conserve the total number of
particles (occupied cells). Juxtapose this with the same
lattice of up and down spins in the Ising model. Since
the positions of the magnetic dipoles are fixed, to ap-
proach equilibrium, the spins will “flip” to minimize the
free energy. Thus, in the Ising ferromagnet, only one of
the alternative magnetizations, positive or negative, will
survive - see Fig. 1a. Since the interface between the
two alternative magnetic phases is energetically costly,
eventually, one magnetic domain will win over the other.

Therefore, a phase separating fluid with interconver-
sion of species can be described through a hybrid model
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FIG. 1. (a) The spontaneous equilibrium order parameter
(φ = φ0) in the lattice-gas / binary-lattice mixture along the
liquid-vapor phase coexistence (red domain). One of the two
alternative magnetizations (φ0 > 0 and φ0 < 0) in the Ising
ferromagnet in zero field is shown in the red domain with blue
arrows. The solid curve is the crossover from mean-field be-
havior (dashed) to the asymptotic scaling power law φ ∝ ∆T̂ β

with β = 0.326 [12, 13], while the crosses are our simulation
data for ` = 100 and averaged over 1,000 realizations. (b) The
growth rate solution to Eq. (1), known as the amplification
factor, for three probabilities: pr = 0 (pure swapping dynam-
ics - L = 0), pr = 1 (pure flipping dynamics - M = 0), and
pr = L/(M + L) = 0.01 (mixed dynamics) after quenching

the system into the unstable region at ∆T̂ = 0.1.

combining diffusion-swapping dynamics, where the to-
tal number of particles of each species is conserved, and
interconversion-flipping dynamics, where the total num-
ber of particles of each species is not conserved. By intro-
ducing a probability of interconversion, the conservation
of the number of particles for a specific type will even-
tually be broken and the striking phenomenon of phase
amplification (or “phase bullying”, as originally coined
by Latinwo, Stillinger, and Debenedetti [2]) can be ob-
served.

In order to clarify the physics of phase amplification,
we consider a simple Ising system that utilizes a hybrid
model combining swapping (conserved order-parameter)
and flipping (nonconserved order-parameter) dynamics
distinguished through a certain probability for the or-
der parameter to exhibit interconversion dynamics. The
characteristic time evolution equation for the growth of
the order parameter, which contains both nonconserved
and conserved features, is given by

∂φ

∂t
= −Lµ+M∇2µ (1)

[1, 14–16] where the exchange chemical potential, µ,
is the deviation of the chemical-potential difference be-
tween the two species from its equilibrium value - µ = 0.
It spatially depends on the order parameter (such that
it characterizes local inhomogeneities within the sys-
tem), the reduced distance to the critical temperature

∆T̂ = (Tc−T )/Tc, and the correlation length of fluctua-
tions, ξ. The first term in Eq. (1) describes the relaxation
of the nonconserved order-parameter dynamics to equi-
librium, and the second term describes the relaxation of

the conserved order-parameter dynamics to equilibrium.
The kinetic Onsager coefficients L and M correspond to
the flipping and swapping dynamics respectively. When
M = 0, the order parameter grows according to pure flip-
ping dynamics, while when L = 0, the order parameter
grows according to Cahn-Hilliard theory of spinodal de-
composition [1, 14] (pure swapping dynamics). We define
the probability that the system will exhibit interconver-
sion of species as pr = L/(M+L). The solution to Eq. (1)
which characterizes the rate of spinodal decomposition,
ω(q), is known as the “amplification factor” [1, 16], and
it is illustrated in Fig. 1b for three different probabilities.
If pr = 1, then, as the system relaxes to equilibrium,
eventually one phase will completely eliminate the other
one via phase amplification. If pr = 0, the system will
reach phase coexistence at equilibrium (no phase ampli-
fication), and if 0 < pr < 1, we show in this work that
the rate of phase amplification depends on pr, the system
size `, and the distance to the critical temperature ∆T̂ .

The domain growth [17] and symmetry breaking in chi-
ral molecules [2] and in chiral crystals [3] have already
been studied. However, phase amplification, the phe-
nomenon of the growth of a nonconserved order parame-
ter, at different interconversion probabilities has not yet
been addressed. In this Letter, we report on the results
of Monte Carlo (MC) simulations of a simple Ising model
that utilizes a hybrid combination of Kawasaki-swapping
[18] and Glauber-flipping [19] dynamics to account for
the conserved and nonconserved dynamics of the order
parameter respectively. Previous computational studies
of this combination have been studied by Glotzer et al.
[20, 21], but their model has been shown not to be ap-
plicable to equilibrium systems [22–24]. In this work,
we present an equilibrium formulation of the model pro-
posed by Glotzer et al. [16], and we show that un-
der equilibrium conditions, the competition of swapping
(Kawasaki) and flipping (Glauber) dynamics produces
the phenomenon of phase amplification. We characterize
the rate of phase amplification through the probability of
Glauber dynamics, system size, and distance to the crit-
ical temperature. We also provide scaling arguments for
the topological behavior of the resultant structures that
occur during phase amplification.

Model Description - We perform mixed Kawasaki-
Glauber dynamics on an Ising-spin system in zero field
arranged on an ` × ` × ` cubic lattice using the conven-
tional Ising model Hamiltonian [9, 25]

H = − ε
2

`3∑
i=1

∑
j∈Ω(i)

sisj (2)

where si, sj = ±1 are spins, Ω(i) is the set of 6 nearest
neighbors of spin i, and ε is the interaction energy. The
critical temperature of this system is Tc = 4.5115(1)ε/kB
[26], where kB is Boltzmann’s constant. We start simu-
lations with a random spin configuration in which `3/2
spins are positive and `3/2 spins are negative. In addi-
tion, we assume that at each MC step the probability of
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FIG. 2. Phase amplification - the growth of the order pa-
rameter for different probabilities of Glauber dynamics at a
system size ` = 100. (a) Full-time behavior, T = 4.4 and
100 realizations, pr = 1; (b-d) initial time behavior, T = 4.0
and 1,000 realizations: (b) pr = 1.0, (c) pr = 0.1, and (d)
pr = 1.0×10−7. The solid horizontal line, φ = 0, corresponds
to Kawasaki dynamics, pr = 0.

a random spin flip (a Glauber step) is pr, while the prob-
ability of swapping a randomly selected pair of nearest
neighbor spins (a Kawasaki step) is 1− pr. Each step is
accepted with a standard Metropolis criterion [27]. We
introduce a size-independent MC time as t = n/`3, where
n is the total number of MC steps. The frequency of spin
flipping is absorbed into the time step, δt, so the Onsager
coefficients, L and M (and consequently pr), do not de-
pend on temperature.

Results - In zero field, the order parameter for the
Ising system generates phase domains when T < Tc.
These domains will either grow or collapse according to
the time evolution equation, Eq. (1) - see Fig. 1b, such
that the competition between the two types of dynamics
determines the initial growth of these domains. For a hy-
brid model of Glauber and Kawasaki dynamics, this com-
petition eventually results in one phase completely elimi-
nating the other - see Fig. 2a. However, the rate of phase
amplification depends on the probability for the system
to follow Glauber (nonconserved) order-parameter dy-
namics, see Fig. 2(b-d) where the phenomenon of phase
amplification is shown for different interconversion prob-
abilities from pure Glauber, pr = 1, to extremely low
probability pr = 1.0 × 10−7. For this extremely low
probability, most realizations just fluctuate around the
average value of the order parameter, 〈|φ|〉 = 0. In prin-
ciple, any nonconserved order-parameter dynamics, even
with an extremely small probability, may eventually lead

FIG. 3. The evolution of the order parameter during phase
amplification. (a) The RMS of the distribution of the growth
rates for different probabilities captured at the same time,
t = 300. The solid curve is the crossover between σ ∝ √pr and
σ ∝ pr, approximated as σ = a

√
pr(1 + bpr)/(1 +

√
pr). (b-d)

The growth of the order parameter for different (b) probabil-

ities at ∆T̂ = 0.11 and ` = 100, (c) system sizes at pr = 1.0

and ∆T̂ = 0.11, and (d) distances to the critical point at
pr = 1.0 and ` = 100; the colored values in (b,d) correspond

to the colored curves of different pr and ∆T̂ respectively. The
inset of (d) shows the power law for the initial growth of the

reduced order parameter, φ/φ0 ∝ t3/4.

to phase amplification, but this is only true for an ex-
tremely large computational (or observational) time. For
a certain low probability, these conditions would not be
achievable in any computational or experimental studies.

One can notice from Fig. 2a, that even for systems
with pure Glauber dynamics, there is a small fraction of
realizations that survive for a long time, but eventually,
one phase completely eliminates the other. We attribute
this effect to the accidental formation of zero-curvature
interfaces during the domain growth. We observed that
at least two types of zero curvature interfaces are pos-
sible: a planar interface and a Schwarz-P interface [28].
Of these two types, only the planar surface corresponds
to stable equilibrium against phase amplification. In this
case, a bump with positive curvature produced by a fluc-
tuation shrinks, while a cavity with negative curvature
will flatten. In periodic boundary conditions, this inter-
face forms a strip with two parallel surfaces. Fluctua-
tions will only produce random changes to the width of

this strip, w = `∆φ̂/2 (where ∆φ̂ = 1 − φ/φ0 is the
reduced deviation from the equilibrium order parame-
ter), corresponding to the longer lasting realizations in
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FIG. 4. Scaling properties of the growth of the reduced order
parameter, φ̂ = 〈|φ|〉/φ0. (a) The order parameter growth
with time rescaled by system size. The size dependence of
the rescaling parameter, τ(`), is shown in the inset; in the
log-log scale with a slope of 1. The colors are the same as in
Fig. 3c. (b) The order parameter growth with time rescaled
by probability; the rescaling parameter τ0(pr), inversely pro-
portional to the probability, is shown in the inset. The colors
are the same as in Fig. 3b.

Fig. 2a. Eventually, when w becomes comparable to ξ,
the domain will be punctured and a hole, with average
positive curvature due to the growing domain, will be
formed causing the strip to quickly disappear. In periodic
boundary conditions, or locally, the growing domains can
form other surfaces with zero curvature, for example, a
Schwarz-P surface [28]. This is especially likely when pr
is small and the system has time to evolve largely ac-
cording to Kawasaki dynamics. Once such an interface is
formed, the amplification process is “frozen”, and the or-
der parameter follows random walk behavior. However,
such interfaces are unstable against fluctuations and will
collapse when the growing phase forms an interface with
negative curvature to break the phase domain of the re-
ceding phase.

One of the most evident characteristic of phase ampli-
fication is the increase in the width of the distribution
of the growth rates as the Glauber-dynamics probability
increases. Assuming that the distribution of the aver-
age rates (slopes) in Fig. 2(b-d) is Gaussian, we show
in Fig. 3a that the standard deviation of this distribu-
tion (calculated at the same time, t = 300) changes
from σ ∝ √pr to σ ∝ pr as the system transitions from
Kawasaki to Glauber dynamic behavior. Next, we study
the absolute value of the order parameter, averaged over
1000 independent realizations of the evolution, as a func-
tion of the three key parameters: Glauber probability pr,
system size ` [29], and distance to the critical point ∆T̂ .
As shown in Fig. 3(b-d), phase amplification is faster for
larger pr, smaller `, and further distance to the critical
point (larger ∆T̂ ).

By reducing the order parameter by its equilibrium

value (φ̂ = 〈|φ|〉/φ0) and rescaling the time as t/τ(`)
the system-size and temperature dependent φ(t) are col-
lapsed as shown in Fig. 4a; the characteristic time τ(`) is
proportional to `2 as shown in the inset for pr = 1. After

FIG. 5. Topological characteristics of the time dependence of
phase amplification for ` = 100. (a) For spherical domains,
the reduced deviation from the equilibrium order parameter,
∆φ̂ = 1−φ/φ0 scales as t3/2. This is shown for temperatures,

∆T̂ , as: 0.11 (cyan), 0.025 (purple), 0.014 (orange), and 0.009
(brown). The inset shows the effect for a cylindrical domain

at ∆T̂ = 0.11. (b) A zero curvature Schwarz-P interface is
initially formed by simulating a system with Kawasaki dy-
namics (pr = 0) for a long time. At t − t0 = 0, the system
obtains Glauber dynamics (pr = 1) and the collapse of one of
the phases is shown. Amplification transitions from random-
walk behavior,

√
t, at short times (see inset) to exponential

behavior before saturation, shown by the straight line.

introducing another characteristic scaling time τ(pr), for
relatively large probability (pr ≥ 0.01), we are able to col-
lapse the order parameter growth in a set of curves which
cross at the same inflection point as shown on Fig. 4b. As
a result, for relatively large pr, we may neglect the effects
of Kawasaki dynamics on the system and develop scaling
arguments to describe the growth of the order parameter
under pure Glauber dynamics.

Scaling Analysis of Phase Amplification for Large pr
- To develop scaling arguments for the growth of the or-
der parameter, we have observed that phase amplifica-
tion occurs when one phase domain forms an interface
with negative curvature against another, such that do-
mains with positive curvature will quickly disappear. In
Fig. 5a, we illustrate this process by generating a sys-
tem in the initial configuration of spherical or cylindrical
domains and evolve the system under pure Glauber dy-
namics. Our simulations show that phase amplification
of these topologies occurs with rates: φ ∝ t3/2 and φ ∝ t
for the sphere and cylinder respectively. This observa-
tion is a result of the Kelvin theory [25, 30] that the
radius of curvature between domains grows with time as
1/q ∼

√
t. Indeed, it is possible to show that the domain

encapsulated by the convex surface with positive curva-
ture shrinks, and eventually disappears at time t = tf , so
that the net order parameter of the system approaches

its equilibrium value φ0 as ∆φ̂ ∝ (tf − t)(d∗+1)/2, where
d∗ = d−1 is the dimension of the interface, i.e. d∗ = 2 for
a spherical domain and d∗ = 1 for a cylindrical domain.

Based on our observations of the growth of individual
domains, we may quantify the global dynamics of phase
amplification by considering the shrinking and growing
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of multiple domains. Consider the number of growing
phase domains as (`q)d, where ` is the linear size of the
system, q is the characteristic curvature (wave number)
of the domain’s interface, and d is the dimensionality
of the space in which the domain may grow. If we ne-
glect the interaction between different domains, the root-
mean-square (RMS) fluctuation of the number of shrink-
ing or growing domains with positive or negative curva-
ture per unit volume is

√
(`q)d/`d. To obtain the growth

rate of the average order parameter, this factor must be
multiplied by the growth rate (υ/t) of the phase domain
volume (υ ∝ q−d). From our observations of Fig. 5a, the
size of the domains will grow as a square root of time,
t ∝ q−2, then υ/t ∝ 1/qd−2. Thus, the growth rate
of the averaged absolute value of the order parameter
is ∂〈|φ|〉/∂t ∝ `−d/2q−d/2+2, and as a function of time
this is equivalent to ∂〈|φ|〉/∂t ∝ `−d/2td/4−1. Integrating
gives

〈|φ(t, `, T )|〉 = Aφ0(T )

(
t

τ

)d/4

(3)

where the characteristic time τ = τ0`
2, with τ0 being in-

versely proportional to pr (see the inset of Fig. 4b), and
φ0(T ) is the equilibrium value of the order parameter.
The amplitude, A, is practically independent of temper-
ature. It can be shown from the Kelvin equation that
A ∝ σξ/φ2

0 [25], where σ is the interfacial tension. This
combination is a constant in mean-field theory in which
σ ∝ φ3

0 and ξ ∝ φ−1
0 , while in the Ornstein-Zernike ap-

proximation of scaling theory σ ∝ ξ−2 and φ2
0 ∝ ξ−1

[31, 32]. Thus, for all practical purposes, A can be in-
corporated as a constant factor in τ . Eq. (3), as demon-
strated in Fig. 4a, is strongly supported by the simulation
data. It is shown that the growth of the average order
parameter, in d = 3 space, closely follows the scaling law
〈|φ|〉 ∝ t3/4 for t � τ - see the inset of Fig. 3d - while,
for t � τ , it is constant. Therefore, Eq. (3) can be pre-
sented in the scaling form 〈|φ|〉/φ0(T ) = f(X), where
X = t/τ(`) and f(X) is a scaling function such that
f(X)→ Xd/4 for X � 1 and f(X) = 1 for X � 1.

Observations of Phase Amplification for Small pr -
While systems simulated with relatively large Glauber
probabilities (pr ≥ 0.01) all collapse to the same mas-
ter curve, as shown in Fig. 4b, systems with relatively
small probabilities (pr < 0.01) have a larger average am-
plification rate (slope) at the inflection point. Therefore,
for large pr the time evolution of the phase domain is
controlled by fast, local interconversion due to Glauber
dynamics, rather than the slow, global diffusion due to
Kawasaki dynamics, which only dominates at very small
Glauber-interconversion probabilities (pr < 0.01). We
attribute the dramatic change in the amplification rate,
shown by the deviation from the master curve in Fig. 4b,
to the increased chance of systems entering a metastable
zero-curvature phase-domain state for smaller pr. We

clarify the effect of a system entering this metastable
state in Fig. 5b, by allowing the system to reach an
equilibrium Schwarz-P interface under Kawasaki dynam-
ics (pr = 0). The collapse of the Schwarz-P interface
occurs after switching the system to Glauber dynamics
(pr = 1) at t = t0. When a zero curvature interface is first
formed due to Kawasaki dynamics, then (no matter how
small the Glauber probability, pr) Glauber dynamics will
proceed until, eventually, one of the phases will disap-
pear. In this case, we use a renormalized time tG = tpr,
which essentially counts only the Glauber steps. The sig-
moidal shape of this curve shows a crossover from ran-
dom, square root behavior (shown in the inset of Fig. 5b)
corresponding to the initial random walk of the interface
near unstable equilibrium to the quick exponential am-
plification when a part of the interface develops non-zero
curvature. This phenomenon explains the increase in the
rate of the growth of the order parameter for the small
probability of Glauber dynamics in Fig. 4b through the
transformation of t to tG = t/τ0 ∝ pr.

Conclusion - In this work, we conceptualize the phe-
nomenon of phase amplification, the growth of one phase
at the expense of another one, and quantitatively char-
acterize the speed of phase amplification through scaling
laws based on the Kelvin equation. We simulate this phe-
nomenon using a hybrid model, which combines Glauber-
interconversion and Kawasaki-diffusion dynamics, in an
Ising system. The developed approach is applicable to a
broad spectrum of Ising-like systems with mixed dynam-
ics. Such systems include ferromagnets, ferroelectrics,
liquid crystals, and materials with order-disorder transi-
tions and chemical reactions. For example, the developed
approach explains the results of the first computational
study of phase amplification in chiral crystals [3], and can
also be used to describe chiral amplification in a mixture
of interconverting enantiomers [2] and real fluids (lack-
ing the symmetry of the lattice gas [33]) - if they exhibit
interconversion. In the future, we are interested in inves-
tigating phase amplification in polyamorphic liquids [4]
and in systems with coupled order parameters [34].
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