
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Importance of gyrokinetic exact Fokker-Planck collisions in
fusion plasma turbulence

Qingjiang Pan, Darin R. Ernst, and David R. Hatch
Phys. Rev. E 103, L051202 — Published 17 May 2021

DOI: 10.1103/PhysRevE.103.L051202

https://dx.doi.org/10.1103/PhysRevE.103.L051202


Importance of Gyrokinetic Exact Fokker–Planck Collisions
in Fusion Plasma Turbulence

Qingjiang Pan∗ and Darin R. Ernst†
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

David R. Hatch
Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712, USA

(Dated: 31 March 2021)

Gyrokinetic simulations of turbulence are fundamental to understanding and predicting particle
and energy loss in magnetic fusion devices. Previous works have used model collision operators
with approximate field-particle terms of unknown accuracy and/or have neglected collisional finite
Larmor radius effects. This work moves beyond models to demonstrate important corrections us-
ing a gyrokinetic Fokker–Planck collision operator with the exact field-particle terms in realistic
simulations of turbulence in magnetically confined fusion plasmas. The new exact operator shows
significant corrections for temperature-gradient-driven trapped electron mode turbulence and zonal
flow damping, and for microtearing modes in a JET pedestal under ITER-like wall conditions. Anal-
ysis of the corrections using parameter scans motivates a new model which closely reproduces the
exact results while reducing computational demands.

Introduction.—Gyrokinetic simulations of turbulence
are routinely performed to understand and predict the
confinement of magnetic fusion devices. The turbulence
responsible for most particle and energy loss in fusion
devices has eddy sizes at the scales of particle gyroradii.
Gyrokinetic simulations of this micro-scale turbulence
solve the gyrokinetic equation obtained by averaging the
Fokker–Planck kinetic equation over the very high fre-
quency particle gyro-motion, while retaining finite Lar-
mor radius (FLR) effects [1].

Fusion plasma turbulence can be sensitive to particle
collisions. Previous gyrokinetic turbulence simulations
have used only approximate collision operators, where
simplified moment models replace the exact Fokker–
Planck field-particle terms and/or FLR terms are ne-
glected altogether (see Ref. [2] for a brief summary of
collisions used in gyrokinetic simulations). The state of
the art Sugama collision model [3], recently implemented
in the gyrokinetic GKV [4], CGYRO [5], and GENE [6]
codes, extends the like-species Abel model [7, 8] to in-
clude collisions between unlike species with unequal tem-
peratures, while preserving the self-adjointness and H-
theorem. For equal-temperature cases considered in this
Letter, the test-particle part of these models is exact
(i.e., identical to the linearized Fokker–Planck counter-
part), but the back-reaction field-particle part is modeled
with two terms restoring overall momentum and energy
conservation. When compared with the exact linearized
Fokker–Planck operator, (1) the Abel model (without
gyroaverage) yields 50% higher classical collisional ion
thermal transport [8]; (2) the Abel and various collision
models in drift-kinetic limit (i.e., without FLR effects)
are inaccurate for neoclassical transport and bootstrap
current, as summarized in Ref. [9]. This motivates us to
examine the accuracy of present collision models for gy-
rokinetic simulations and predictions of turbulent trans-

port.
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Figure 1. Gyrokinetic simulations of TEM linear growth rates
and nonlinear electron heat fluxes for ηe = 1. (a)-(b) growth
rates and frequencies given by the exact operator (solid),
the Sugama model (dotted), and the proposed GTDF model
(pluses); (c) electron heat fluxes (normalized to gyroBohm) of
the exact operator and the Sugama model; (d) flux compar-
ison of the exact operator with its GTDF model. The exact
and Sugama GTDF data are overlaid on their respective full-
operator data in (a) and (b). The horizontal lines in (c) and
(d) represent the mean values of the indicated intervals.

To this end, we have developed a gyrokinetic (i.e., in-
cluding FLR effects) exact linearized Fokker–Planck col-
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lision operator [2] in the widely used gyrokinetic GENE
code [10], making the new operator freely available to the
community (https://genecode.org). This operator for-
mulation, referred to hereafter as “exact” or “gyrokinetic
exact” operator, automatically conserves particles, paral-
lel momentum, and energy, and satisfies the H-theorem.
Further, the conservation and H-theorem are preserved
by using the conservative Landau form [9], which, unlike
the Rosenbluth form [11], explicitly preserves the sym-
metry between test- and field-particle contributions; nu-
merical errors in the test-particle part are canceled by
opposite errors in the field-particle part, retaining con-
servation independent of numerical resolution. The im-
plementation applies a finite-volume method originally
designed for a nonlinear drift-kinetic Fokker–Planck op-
erator [12], and was adapted to implement the Sugama
model in the GENE code [6]. Using the same numerical
method as a basis for the new gyrokinetic exact opera-
tor enables direct comparison with the Sugama model in
the same code. In addition to the verification presented
in Ref. [2], a direct cross-code benchmark in drift-kinetic
limit shows the exact and Sugama operators in GENE
closely agree with their counterparts implemented in the
NEO code [13] for neoclassical transport. Here, we show
important corrections relative to the Sugama model for
instabilities and turbulence that are relevant to fusion
experiments.

Impact on TEM Instability and Turbulence.—We first
focus on trapped electron modes (TEMs), which are par-
ticularly sensitive to collisions, which detrap particles.
TEMs are important in fusion plasmas with strong elec-
tron heating [14] as expected in burning plasmas which
are self-heated by fusion reactions. Figure 1 presents
TEM linear growth rates and frequencies from the eigen-
value solver and electron heat fluxes from nonlinear sim-
ulations, comparing the exact operator with the Sugama
model. The parameters are from the Cyclone case for
an isothermal electron–deuterium plasma in a concen-
tric circular geometry with safety factor q = 1.4, inverse
aspect ratio ε = r/R = 0.18, and magnetic shear s =
(r/q)dq/dr = 0.796, where r is the local minor radius and
R is the major radius of the center of the cross-section
[15]. The gradients driving the turbulence, described by
normalized inverse gradient scale lengths, are set to be
R/Ln,Te

= −Rd ln (n, Te) / dr = 5 (i.e., ηe ≡ Ln/LTe
=

1), and the ion temperature gradient drive is absent.
The normalized electron–ion collision frequency is set to
be ν̂ei ≡ νeiR/

(√
2cs
)

=
√
mi/meπe

4neR ln Λ/T 2
e = 1

with cs =
√
Te/mi and other quantities in standard no-

tation, typical for the high density core of the Alcator
C-Mod tokamak [16]. Linearly, the Sugama model cap-
tures the trend of the growth rate and frequency, and the
larger reduction of growth rate by the collisional FLR
effects at higher binormal wave number ky [5, 17], but
broadly underestimates the growth rate. The relative dif-
ference of the peak growth rate is about 15%, occurring
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Figure 2. (a) Summary of the mean nonlinear particle flux
(Γ), ion (Qi) and electron (Qe) heat fluxes. The error bar indi-
cates the standard deviation of the means of non-overlapping
widows based on autocorrelation time [18]. (b) Zonal flow
decay time as a function of the radial wave number.

at kyρs = 0.5− 0.6, with ρs = cs/Ωi and Ωi = eB/mic.
Nonlinearly, density-gradient-driven TEM turbulence

onset occurs when the density gradient reaches a nonlin-
ear critical value, which exceeds the linear critical value
[16]. The gradient used in present study is marginally
above the nonlinear critical value where zonal flows reg-
ulate the turbulence and are damped by ion–ion col-
lisions, a typical core operating point in experiments
with strong electron heating [14]. The nonlinear fluxes
shown in Fig. 1(c) are bursty with quasi-periodic oscilla-
tions which trade off between turbulent bursts and zonal
flows/fields. We have varied the spatial domain size and
resolution in additional nonlinear simulations with the
Sugama operator and did not find meaningful changes
in the fluxes. Despite the large fluctuations, the electron
heat flux with the exact operator is systematically higher
than the Sugama model by about 68% on average. The
electron particle and thermal diffusivities using the exact
operator are D/DgB = 0.11 and χe/χgB = 0.41, where
DgB = χgB = csρ

2
s/R. These diffusivities are compara-

ble to those obtained in Alcator C-Mod internal trans-
port barrier (ITB) experiments [16]; using Te = 1 keV,
B = 4.5 T, R = 0.67 m results in χe = 0.14 m2/s and
D = 0.038 m2/s, comparable with the experimentally-
inferred values.

Recall that the test-particle terms of the Sugama op-
erator are exact; while the model field-particle terms dif-
fer from the exact ones, including the drift-kinetic part
and the FLR part. To separate the two parts, calcula-
tions were made using the gyrokinetic test-particle and
drift-kinetic field-particle (GTDF) terms of the exact op-
erator. The results are shown in Fig. 1(a)-(b) and (d).
Interestingly, the GTDF model accurately captures the
TEM eigenvalues, underestimating the peak growth rate
by only about 2% as opposed to 15% for the Sugama
model. Neglecting the field-particle FLR effects in the
GTDF model yields a negligible difference in nonlinear
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electron heat flux. The field-particle FLR effects are
negligible because they are higher order corrections to
the field-particle terms, which are smaller than the test-
particle terms [19]. Because the test-particle FLR cor-
rections increase secularly with wave number, while the
field-particle FLR corrections are associated with Bessel
functions and decrease with wave number, the accuracy
of the GTDF model should improve further with increas-
ing wave number. As shown in Fig. 6 of Ref. [2] and
Fig. 1(a) here, for the Sugama model the impact of the
field-particle FLR effects on the growth rates is also min-
imal. Neglecting the field-particle FLR terms does not
break the global conservation laws, i.e., invariance of the
velocity moments integrated over the entire phase space,
because the FLR contributions to the moments can be
written as a divergence of a collisional flux and are spa-
tially averaged out [2].

Figure 2(a) shows a summary of the particle flux and
heat fluxes of both species. The electron heat transport
is dominant, and the particle and ion heat transport are
about four times smaller. Similar to the electron heat
flux, the Sugama model underestimates the particle flux
and ion heat flux. The GTDF model using the exact
drift-kinetic field-particle terms is accurate for all non-
linear fluxes. Electron heat flux spectra as a function of
ky (not shown here) are also well-described by the GTDF
model. However, the exact operator produces higher and
wider spectra than the Sugama model, resembling the
broadly larger growth rate shown in Fig. 1(a). The spec-
tra peak at kyρs = 0.5 for all three operators, close to
where the growth rates peak.

Given the different TEM growth rates and turbulence
fluctuation levels with the exact and Sugama collisions,
the effects of zonal flow damping by the two operators on
the fluxes cannot be directly compared in the nonlinear
simulations. To isolate the zonal flow damping, we in-
stead calculate the zonal flow decay time for the Hinton–
Rosenbluth problem [20], in which a density perturbation
is initialized at a single radial wave number and subse-
quently shielded by neoclassical polarization and damped
by ion–ion collisions. The decay time is obtained by fit-
ting the time trace of the flux-surface-averaged potential
to a zonal flow decay model [2]. The result for both op-
erators is summarized in Fig. 2(b). Here, the electrons
are adiabatic and the same geometry as in the TEM case
is used. The effective collision frequency for detrapping
ions out of the magnetic well is ν∗ = 0.23, corresponding
to ν̂ei = 1 as in the TEM case. The exact operator yields
weaker zonal flow damping than the Sugama model by
10-20%. A weaker zonal flow damping tends to support
a stronger zonal flow shear, hence weaker turbulence-
induced transport. Thus the zonal flow damping channel
counters the observed flux differences.

In contrast to the significant increases in TEM growth
rate and nonlinear fluxes with the exact collision opera-
tor presented in this Letter, no appreciable differences in
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Figure 3. Dependence of TEM growth rates on collisionality
and ηe at fixed kyρs = 0.5 and R/Ln = 5. (a) growth rates
given by the exact operator; (b) relative difference of growth
rates given by exact and Sugama operators; (c) growth rates
and relative difference at ν̂ei = 1; (d) growth rates and relative
difference at ηe = 1.25. The pluses in (a)-(b) indicate the
parameters used in Fig. 1.

growth rate or fluxes were found in the density-gradient-
driven TEM simulations in Ref. [2] (Fig. 4 therein), which
used the same parameters except that the electron tem-
perature gradient drive was absent there, i.e., ηe = 0.
The TEMs in Fig. 1 here are partly driven unstable
by the temperature gradient through wave-particle reso-
nance with trapped electrons undergoing toroidal preces-
sion drift, in addition to the “fluid-like” interchange mech-
anism associated with bad curvature in the outboard re-
gion that drives purely density-gradient-driven TEMs un-
stable (see Ref. [16] and references therein). The former
mechanism relies on a small class of resonant trapped
electrons and is apparently more sensitive to changes in
the field-particle terms, which are nevertheless relatively
small compared with pitch-angle scattering in the test-
particle terms. However, the electron temperature gradi-
ent enters in proportion to the particle energy, so that its
drive affects higher energies in the perturbed distribution
and thus higher energy moments which are truncated by
model field-particle operators [19]. As shown in Fig. 3,
the relative difference in growth rate is minimal at ηe = 0,
increases with ηe until it peaks at ηe ' 1.25, then drops
with ηe. The absolute difference exhibits a similar trend
(not shown here). When ηe & 1.25, the instability contin-
uously extends to electron-temperature-gradient (ETG)
instability regime at higher ky and the “valley” at the in-
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termediate ky as shown in Fig. 6 of Ref. [2] disappears,
indicating a change of mode character. The difference
shown in Fig. 3 increases with collisionality.

Impact on MTM Instability.—Microtearing modes
(MTMs) are a type of dissipative electromagnetic modes
that are typically destabilized by the electron tempera-
ture gradient through electron collisions; electron stream-
ing along the perturbed magnetic field lines (magnetic
flutter effect) feeds the tearing modes free energy and
can drive experimentally relevant thermal transport in
tokamaks [21–25]. To evaluate impact of the collision
operators on MTMs with realistic parameters, we focus
on the Joint European Torus (JET) pulse 82585 under
ITER-like wall conditions; this shot is part of an exper-
imental campaign studying the effects of deuterium fu-
eling on pedestal structure [26]. Careful analyses of ex-
tensive GENE simulations by Hatch et al. [24] have iden-
tified the dominant unstable mode across most pedestal
to be MTM, using characteristics such as tearing parity
of mode structures, negative (electron direction) mode
frequencies, and the magnetic component of fluctuations
being essential for transport.

Figure 4 compares growth rates of the dominant modes
given by the exact and Sugama operators in the steep gra-
dient region at ρtor = 0.98, where ρtor is the square root
of the normalized toroidal flux. For reference, the param-
eters are q = 3.9, s = 1.1, a/Ln = 18.1, ηe = ηi = 2.9,
ν̂ei = 6.1, βe = 8πneTe/B

2 = 1.2×10−3, andR/a = 2.48,
where R and a are the major and minor radii of the last-
closed flux surface. An important feature of this pedestal
MTM case is that it is most unstable at finite radial wave
number kx, which amounts to a shift in the ballooning
angle in ballooning theory; the eigenmode peaks at the
top and bottom of the tokamak. The exact collision oper-
ator does not alter this character, but yields appreciably
larger growth rates than the Sugama model. The dif-
ference in the peak growth rate at kyρs = 0.1, 0.15, 0.2
is 10.8%, 10.8%, and 14.9%, respectively. Extensive con-
vergence tests by varying resolution in each direction ver-
ified that these differences are physical. For comparison,
the growth rates of the Xu–Rosenbluth gyrokinetic colli-
sion model [27] used by Hatch et al. [24] are also shown
in Fig. 4. Like the Sugama operator, the Xu–Rosenbluth
operator consists of exact test-particle terms and conserv-
ing model field-particle terms; but the Xu–Rosenbluth
field-particle model is not constructed to preserve the
H-theorem. The peak growth rates given by the Xu–
Rosenbluth model are slightly higher than the Sugama
model at kyρs = 0.15 and kyρs = 0.2, but the discrep-
ancy with the exact operator is significant. Notably, the
growth rate discrepancy disappears where the dominant
mode switches to drift-type modes with positive (ion di-
rection) frequencies at the extremes of the kx0 range,
which in contrast reveals that electron collisions sensitive
to the changes in field-particle terms underlie the MTM
corrections. Hatch et al. [24] suggested the temperature
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Figure 4. Dependence in growth rates and frequencies vs. cen-
tral kx at ρtor = 0.98, comparing the exact operator (colored)
with the Sugama and Xu–Rosenbluth (XR) models. (a)-(c)
growth rates at kyρs = 0.1, kyρs = 0.15 and kyρs = 0.2,
respectively; (d) frequencies at the three binormal wave num-
bers shown in (a)-(c).

gradient drive in this case is well above the nonlinear
critical gradient of the MTM; thus a simple quasilinear
estimate suggests the larger growth rates would yield a
10-15% increase in transport [28]. As a result of “profile
stiffness” and the known sensitivity of core to pedestal
that it produces, this correction in the pedestal could
be amplified in core confinement predictions. Further,
turbulent transport can flatten the electron temperature
profile and push the JET pedestal (with a carbon wall)
to operate near a marginally unstable regime [29]. In
such cases the exact and model operators can potentially
predict substantially different pedestal transport. Due
to strong shaping and extension of the unstable mode to
higher ky, nonlinear simulations of MTMs with the ex-
act operator demand much more computational resources
than the nonlinear TEM cases and are left for future
work.

Conclusions.—The parameter-dependent importance
of the gyrokinetic exact Fokker–Planck collisions is re-
ported for TEM and MTM cases that are relevant to
tokamak fusion experiments in the core and pedestal,
respectively. The exact operator and the recent and
widely used Sugama model are implemented with the
same finite-volume method in the same code, allowing
direct assessments of the model accuracy. For TEMs, (1)
the exact operator yields larger growth rates overall rel-
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ative to the Sugama model and the difference increases
with collisionality and temperature gradient drive, reach-
ing a maximum at finite ηe ∼ 1.25 before ETG modes be-
gin to dominate; (2) for an ηe = 1 drive marginally above
the nonlinear threshold, the larger growth rate produces
significant (68%) increases in nonlinear fluxes, despite a
weaker zonal flow damping with the exact operator; and
(3) the differences in growth rates and nonlinear fluxes
can be attributed to the exact drift-kinetic field-particle
terms (without FLR effects); thus the new GTDF model
consisting of gyrokinetic test-particle terms and drift-
kinetic field-particle terms can be used to alleviate the
computational challenge of the full exact operator while
retaining accuracy. For the MTM in a representative
JET pedestal under ITER-like wall conditions, the ex-
act operator yields appreciably larger growth rates than
both the widely used Sugama and Xu–Rosenbluth mod-
els in the steep gradient region. The growth rate dis-
crepancy disappears when drift-type modes become dom-
inant, again suggesting the MTM corrections are due to
the effect of the exact field-particle terms on instabilities
driven by the electron temperature gradient. In all cases
so far the corrections due to the exact field-particle terms
are associated with electron temperature gradient driven
instabilities that are sensitive to collisions.

The present paper materially extends the comparison
between the exact operator and the Sugama model ini-
tially reported in Ref. [2] in several ways. First, although
the different TEM growth rates given by the two oper-
ators previously published in Figs. 5 and 6 of Ref. [2]
suggest the importance of the new operator, these are
linear results and do not directly predict transport fluxes.
In present paper we have shown the first evidence of a
substantial increase of the TEM nonlinear electron heat
flux using the exact operator, relative to the most ac-
curate collision model presently implemented. Notably,
this ∼68% increase shown in Fig. 1(c) is much larger
than the ∼15% increase in the peak growth rate shown
in Fig. 1(a). The maximum difference in the peak growth
rate in Fig. 5(b) of Ref. [2] (fixing ηe = 1) is also ∼15%.
From the standard quasilinear theory, one would incor-
rectly predict a flux increase on the level of ∼15% at
most, which would be appreciable but modest. This
shows the complex amplification effect near the instabil-
ity nonlinear threshold, where the turbulence and zonal
flows/fields trade off quasi-periodically, underscoring the
necessity of the nonlinear simulations shown here. Ul-
timately, the fusion community cares about nonlinear
fluxes, which measure transport and loss. Second, as
remarked earlier, the ∼68% flux increase with an elec-
tron temperature gradient drive contrasts with the mini-
mal flux change observed for the purely density-gradient-
driven TEMs (i.e. ηe = 0) shown in Fig. 4(c) of Ref. [2],
highlighting the impact of the exact field operator for
ηe ∼ 1. This ηe dependence is corroborated by the broad
parameter scans of the TEM growth rates in Fig. 3. Fi-

nally, this paper presents for the first time the material
impact of the new collision operator on MTMs in the col-
lisional JET pedestal. Overall, the sensitivity to the ex-
act field-particle terms is greatest for instabilities driven
by the electron temperature gradient, including TEMs
and MTMs. We speculate that the reason field opera-
tor corrections matter for a finite ηe in both instability
types is that model field operators are in effect a trunca-
tion of the Hermite-Laguerre moment energy expansion
of the distribution [19], while ηe enters the gyrokinetic
equation with an energy weighting, i.e. through the coef-
ficient 1 + ηe(E/Te − 3/2) of the density gradient, where
E is the particle energy. Accordingly, the temperature
gradient drive affects higher energy moments of the dis-
tribution, which are neglected in model field operators.

Future work is needed to evaluate impact of the ex-
act particle collisions on global confinement for specific
fusion experiments/scenarios. The fusion power is pro-
portional to the square of the plasma pressure, and de-
pends sensitively on the plasma density and temperature
radial profiles. Relatively small changes in local den-
sity and temperature gradients in or near the edge can
produce a significant integral impact on plasma profiles
in the core region, where the majority of fusion reac-
tions take place. The exact treatment of collisions could
be important in negative triangularity plasmas where
temperature-gradient-driven TEM turbulence dominates
[30], could impact the isotope effect due to TEM tur-
bulence [31], and could be useful for magnetized space
and astrophysical plasmas such as the solar wind, where
gyrokinetic simulations with the same code suggest col-
lisional dissipation plays an important role in the kinetic
Alfvénic turbulence [32]. Future work is also needed to
improve the computational efficiency of the exact opera-
tor in order to perform more high-quality nonlinear simu-
lations, preferably with a velocity-space spectral method
[33, 34].
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