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ABSTRACT 
In a supercooled liquid, the crossover temperature Tc separates a high-temperature region of 
diffusive dynamics from a low-temperature region of activated dynamics.  A molecular-dynamics 
simulation of all-atom, flexible o-terphenyl [J. Phys. Chem. B 117, 12898 (2013)] is analyzed with 
new statistical methods to reveal the molecular features associated with this crossover.  The 
simulations extend to an α-relaxation time of	14	μs (272.5 K), two-orders of magnitude slower 
than at Tc (290 K).  At Tc and below, a distinct state emerges that immediately precedes an 
orientational jump.  Compared to the initial, tightly caged state, this jump-precursor state has a 
looser cage, with solid-angular excursions of 0.054–0.0125×4π sr.  At Tc (290 K), rate 
heterogeneity is already the dominant cause of stretched relaxation.  Exchange within the 
distribution of rates is faster than α-relaxation at Tc, but becomes equal to it at the lowest 
temperature simulated (272.5 K).  The results trend toward a recent experimental observation near 
the glass transition (243 K) [Phys. Rev. E 98, 040603(R) (2018)], which saw exchange 
substantially slower than α-relaxation.  Overall, the dynamic crossover comprises multiple 
phenomena: the development of heterogeneity, an increasing jump size, an emerging jump-
precursor state, and a lengthening exchange time.  The crossover is neither sharp, nor a simple 
superposition of the high- and low-temperature regimes; it is a broad region that contains unique 
and complex phenomena. 
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It is widely believed that a dynamical crossover occurs in the middle of the supercooled-liquid 
region [1] at a temperature Tc where the α-relaxation time is near Tα ~10−7 s [2].  This crossover 
is broadly described as a switch from diffusive dynamics dominated by saddle-points on the 
potential-energy landscape to activated dynamics dominated by barrier crossings [3-5].  Two 
popular theories, mode-coupling theory (MCT) [6,7] and random first-order transition (RFOT) 
theory [8-10], provide negative predictions of this crossover.  Each theory succeeds away from 
Tc—MCT above and RFOT below—but both fail at a singularity near Tc.  In experiments, the 
crossover is often identified by a switch from Arrhenius to super-Arrhenius relaxation times 
[11,12].  Alternatively, high-temperature data are extrapolated to identify the MCT singularity [2].  
In both theory and experiment, detail about molecular behavior in the crossover region is missing.   

Simulations could provide this detail, but due to the long times involved, they remain 
challenging on the low-temperature side of Tc, even for atomic systems [13,14].  In this Letter, 
molecular-dynamics simulations of o-terphenyl (OTP) [15] that reach temperatures well below Tc 
[16] are examined with new statistical methods [17-19] that provide increased molecular detail.    
By looking at a molecular system, rotational dynamics can be studied.  They are directly relate to 
many important experiments, such as dielectric relaxation [20-22], depolarized light scattering 
[23], NMR [24,25], ESR [26], optical-probe [27] and single-molecule spectroscopies [28-30]. 

One universal feature of supercooled liquids is rate dispersion: nonexponential or “stretched” 
relaxation.  Below Tc, rate dispersion is caused by spatial domains with different rates, that is, by 
rate heterogeneity [31].  Rate heterogeneity is predicted by the low-temperature, RFOT theory 
[32].  Rate dispersion above Tc is also predicted by the high-temperature MCT [6,7], but without 
spatial domains or rate heterogeneity.  Due to its use of Gaussian factorization, MCT is a 
homogeneous theory (although heterogeneous effects can be added [33]).  Thus, there must be a 
change in the mechanism causing rate dispersion from homogeneous to heterogeneous as the 
temperature drops.  Does this change coincide with Tc? 

Such a dramatic change in mechanism seems to conflict with time–temperature superposition, 
which hold that the magnitude of the rate dispersion is invariant with temperature.  In different 
studies and with different experiments, time–temperature superposition across Tc either holds very 
well [12,34], has a small discontinuity [23], or has a large discontinuity [35].  Simulation of OTP 
rotation shows a large increase in rate dispersion upon dropping below Tc [16].  This Letter 
addresses the causes of that increase. 

If rate dispersion is caused by domains, then the lifetime of those domains Tex becomes 
important.  Recent single-molecule studies in OTP show that the lifetime of rate domains 
substantially exceeds the α-relaxation time (Tex = 22 Tα) very near the glass-transition temperature 
Tg (243 K) [30].  Time–temperature superposition hold from Tg up to Tc [20].  Does this imply 
that the domain lifetime remains long over this range?   
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Another universal feature of low-temperature liquids is relaxation by large jumps [36].  In 
contrast, high-temperature liquids relax by small-step diffusion.  We will see that this change is 
intertwined with changes in the domain lifetime.  Moreover, the change is not monotonic: a jump-
precursor state appears as the step size increases.   

All these issues are addressed using a simulation of an all-atom, flexible model of 800 OTP 
molecules (see Ref. [16] and the Supplemental Material (SM) [37]).  The model reproduces a 
variety of standard thermodynamic and dynamic properties of the real system [16].  We focus on 
two temperatures: at Tc = 290 K (the mode-coupling temperature [38]), where Tα = 1.11×10−7 s, 
and below Tc (272.5 K), where α-relaxation is slower by two orders-of-magnitude, Tα = 
1.46×10−5 s.  The α-relaxation time Tα is taken to be the geometric-mean time (SM [37]) of C1(τ) 
[Eq. (1) below], which is similar to the half-life of dielectric α-relaxation.  Anton, a special-purpose 
machine for molecular dynamics [39], extended the simulations to 225 Tα (25 μs) at Tc and to 
190 Tα (2.77 ms) at the lower temperature.   

We treat the OTP molecule as an isotropic rotor and define its orientation through the angles 
of its symmetry axis, θ  and φ  (SM [37]).  The rotational dynamics are measured by correlation 
functions of the spherical harmonics of these angles , 

 .  (1) 

The am are the inverses of the equal-time values of each average.  The decay of the ℓth 
eigenfunction of rotational motion is Gℓ(τ).  In Eq. (1), the spherical-harmonic correlation function 
at two times, t1 and t0, is re-expressed as the average eigendecay over a single time interval, τ  = 
t1 – t0.  Later in the paper, these ideas are extended to a multidimensional (multiple time-interval) 
correlation function, 

. (2) 

The amʹ,m are chosen to select the eigendecays shown in the second equality (to be published).   
In the left column of Fig. 1, the correlation functions Cℓ(τ) for ℓ = 1−20 are shown below Tc 

(top) and at Tc (bottom).  The functions are all one at τ  = 0, but this point is not visible on the log-
time scale.  The first plotted point is smaller due to rapid liberation of the molecules within their 
local cages and early, β-relaxation of that cage.  We only discuss the later α-relaxation.   

None of these functions is single exponential.  Non-exponential decays are conventionally 
characterized with empirical functions [40,41].  We use a method that is independent of specific 
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functional forms ([17] and SM [37]).  The deviation from exponential is measured by the excess 
rate dispersion dexc, which is the variance of the apparent distribution of rates on a log scale. 

 

FIG.	1.	 	 (color	online)	 (a&d)	1D	correlation	 functions	Cℓ(τ)	 for	ℓ	=	1	 to	20.	 	 (b&e)	The	
Green’s	function	G(X, τ)	(solid)	and	fits	to	the	three-state	model	(points).  Slices	are	shown	
at	delays	τ 	where	C1(τ)	equals	the	values	shown	in	the	legend.		The	same	times	are	marked	
by	vertical	bars	in	(a)	and	(d).		(c&f)	Magnified	view	of	the	Green’s	function	after	removing	
a	constant	(c)	or	a	straight-line	(f)	component.		Top	row:	below	Tc	(272.5	K).		Bottom	row:	
at	Tc	(290	K).			

The behavior of rate dispersion changes dramatically with ℓ.  For ℓ = 1, which approximates 
dielectric relaxation, dexc = 0.7 at Tc, and dexc = 2.0 below Tc.  Rate dispersion increases rapidly 
near Tc, as reported before [16,20].  However, with ℓ = 20, dexc = 5.1 at Tc, and dexc = 5.8 below 
Tc.  Rate dispersion is stronger and more continuous across Tc at higher ℓ .  Because measurements 
at larger ℓ  probe motion at smaller angles, the nature of the rotational motion must change during 
the crossover. 

A more detailed picture of this change comes from converting the set of Cℓ(τ) to the rotational 
Green’s function.  Using rotational symmetry, the original problem in θ and φ can be reduced to a 
single variable, X(t) = cos θ(t) with averaging over φ.  The equilibrium distribution for this 
variable is Peq(X) = ½ and the domain is −1 < X  < 1.  In general, the Green’s function takes the 
form G(X1, t1 | X0, t0), the probability that a molecule that starts at X0 at time t0 will evolve to X1 
at time t1.  Due to rotational symmetry and stationary dynamics, it is only necessary to monitor 



  5 

 

one slice of the full function, G(X , τ) = G(X , τ  | 1, 0).  The general conversion of sets of 
correlation functions to a Green’s function is derived in Ref. [19]; the specialization to rotation is 
made in the SM [37]. 

The Green’s function for each temperature is shown as a set of solid curves in the middle 
column of Fig. 1.  This function always starts as a delta function at X  = 1 and decays to a constant 
value of 0.5.  The curves have a constant area (population); missing area is due to the off-scale 
peak at X  = 1.  Small oscillations are artifacts from using a finite number of ℓ values.   

Below Tc [Fig. 1(b)], a population that has moved a large angle (−1 ≤ X  ≲ 0.75) is distinct 
from one that has not (0.75 ≲ X  ≤ 1).  Molecules move between these populations in a 
discontinuous  jump.  The population that has made one or more jumps since τ  = 0 will be 
labeledD .  It appears as a constant in the Green’s function: the D  population has the distribution 
PD(X) = ½ = Peq(X).  The jump carries a molecule to a random position within the equilibrium 
distribution.  

This constant was subtracted from the Green’s function, and the remainder was renormalized 
to unit area [Fig. 1(c)].  An isosbestic point appears near X  = 0.98, suggesting that the small-angle 
dynamics can also be described as a transition between two distinct populations: A , whose 
molecules have moved only slightly (0.98 ≲	X  ≤ 1); and B , whose molecules move more freely, 
but are still confined to a small range of angles (0.75 ≲ X  ≤ 1).  

The angles accessible in each population, PA(X) and PB(X), were modeled as Fisher 
distributions on a sphere [42], 

 . (3) 

We then fit the Green’s functions in Fig. 1(b) with a three-population model, 

 . (4) 

The fits are shown as points in Fig. 1(b).  Good fits were found for σB = 0.107, which corresponds 
to an angular range of θB = 0–27° or a solid angle of ΩB = 4π/19, and σA = 0.015, which 
corresponds to θA = 0–10° and ΩA = 4π/130.  The occupancies of the three states: A(τ), B(τ), and 
D(τ); are shown as solid curves in Fig. 2(a).  The B  population is seen to be a short-lived 
intermediate between the A  and D  populations.  A nonexponential kinetic model for transitions 
between these populations (SM [37]) was fit to their occupancies [Fig. 2(a)].  The observed B  
population is only matched if all of the A  molecules make a transition to the B  population: there 
are no direct A-to-D  transitions.   

We interpret the A , B  and D  populations as follows.  There are two configurations for the 
molecule’s cage: a restrictive cage R  and a loose cage L .  Molecules spend most of their time in 
an R  cage, but there is an equilibrium with a small population of L  cages.  A molecule that starts 
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in state R  at t0 and remains so at a later time t1 is part of the A  population.  If the molecule changes 
to an L  cage before t1, but does not make an orientational jump, it is in the B  population.  Although 
the A-to-B  transition appears to involve a small jump in orientation, it is really a change to a softer 
cage with the same mean orientation.  Molecules that have made one or more orientational jumps 
since t0, regardless of their cage, constitute the D  population.  From the fitting, orientational jumps 
only occur out of an L  cage; it is a necessary precursor to a jump.   

 

FIG.	2.	 	 (color	online)	(a)	Occupancies	of	 the	three	populations	(solid	curves:	A 	black,	B 	
orange,	D 	green)	derived	from	fits	to	the	Green’s	functions	[Fig.	1(b&e)]	along	with	fits	to	
the	three-population	model	(A 	dots,	B 	triangles,	D 	squares):	at	Tc	(290	K,	left)	and	below	
Tc	 (272.5	K,	 right).	 	 (b)	 The	 3D	 correlation	 function	C101(τ3,	τ2,	τ1)	 below	Tc	 (272.5	K)	
shown	as	2D	decay	spectra	Ĉ101(T3,	τ2,	T1)	at	various	values	of τ2.		(c)	Comparison	of	the	
domain	 lifetime	 (fhet(τ2),	 red	 solid), α-relaxation (C1(τ),	 blue	 dash–dotted),	 and	 the	
precursor-state	 formation	 (A-state	 decay,	 black	 dashed)	 at	 Tc	 (290	K,	 left),	 below	 Tc	
(272.5	K,	middle)	and	near	Tg	(244.5	K,	right,	from	Ref.	[30]).	

The loose cage may appear to be related to β-relaxation or the excess wing seen in dielectric 
experiments [43].  However, each of our curves can be fit with a stretched exponential, whereas 
the defining characteristic of the excess wing is a deviation from simple fits.  In addition, the ratios 
of R  to L  lifetimes are small (4.0 at 272.5 K, 2.9 at 290 K), whereas the excess wing extends many 
orders-of-magnitude shorter than α-relaxation.   

At Tc (290 K), there is a similar, though not identical, pattern.  In Fig. 1(e), molecules again 
jump from a small-angle population (0.75 ≲ X  ≤ 1) to a large-angle population (−1 < X  < 0.75).  
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At this temperature, the jumps are not quite large enough to fully randomize the orientation.  The 
D  population can be described by an empirical function, PD(X) = mX + ½.  Repeated jumps do 
randomize the orientation and decrease the slope m  to zero.  Subtracting PD(X) from the Green’s 
function and renormalizing gives Fig. 1(f).  Again, an isosbestic point occurs between the A  and 
B  populations, although it is not as well-defined as at the lower temperature.  Using Eq. (3) with 
σA = 0.025 (θ  = 13°, Ω =4π/80) and σB = 0.15 (θ  =32°, Ω =4π/13) in Eq. (4) gives the fits in Fig. 
1(e).  The resulting occupancies and their fits to the kinetic model (SM [37]) are shown in Fig. 
2(a).  Again, the direct A-to-D  transition must be set to zero to match the observed occupancy of 
B .  All molecules go through the precursor state before making an orientational jump.   

The jump-precursor state appears to be unique to the crossover region.  Above Tc (≥ 310 K, 
Tα ≤ 4.6×10−9 s), the Green’s function can no longer be fit by a three-population model (to be 
published).  The jump-precursor state no longer stands out as a distinct stage of relaxation.  Below 
Tc, the peak occupancy of B  drops [Fig. 2(a)].  If this trend continues, the precursor state will 
become irrelevant in the deeply supercooled region. 

The nature of rate dispersion over this temperature range must also be considered.  Below Tc, 
there is rate dispersion in both in the A-to-B  (dexc = 3.9) and the B-to-D  (dexc = 0.8) transitions.  
At Tc, rate dispersion is small in the B-to-D  transition, but it is present in the faster A-to-B  
transition (dexc = 1.5).  The 3D correlation function C101(τ3, τ2, τ1) [Eq. (2)] can determine whether 
these dispersions are caused by rate heterogeneity [18,44].  The decay of the ℓ  = 1 eigenfunction 
of a single molecule is measured twice: once over τ1 and again over τ3.  For the moment, take τ2 
= 0 and imagine that the rate dispersions during τ1 and τ3 [Eq. (2)] are each decomposed into a 
spectrum of rates.  In principle, the results could be plotted as a 2D rate-correlation spectrum.  If a 
molecule decays with a single rate and that rate is the same during both τ1 and τ3, it will only 
contribute to a diagonal point of the spectrum.  If different molecules have different rates, the 
ensemble will have points spread along the diagonal.  In contrast, if the sample is homogeneous, 
every molecule relaxes with the same spectrum of rates.  The same set of rates will occur during 
τ1 and τ3, there will be correlations at each combination of rates, including off-diagonal points.  
Thus, comparing the sizes of diagonal and off-diagonal elements measures the relative importance 
of homogeneous and heterogenous causes of rate dispersion.  

In practice, extracting a rate spectrum from a time decay is a ill-posed problem: there are many 
different, but equally valid, rate spectra for any given decay.  A more stable spectrum, which we 
call the decay spectrum Ĉ101(T3, τ2, T1), can be constructed from the appropriate derivative of the 
decay [17].  (For convenience, it use time constants Ti, rather than rates.)  The decay and rate 
spectra are related by a convolution.  The decay spectrum has low resolution, but obtaining a high-
resolution rate spectrum requires an unstable deconvolution.   Despite the lower resolution, a decay 
spectrum can be interpreted the same way: the spread along the diagonal indicates the total extent 
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of rate dispersion; the spread along the antidiagonal indicates the importance of homogeneous rate 
dispersion. 

Figure 2(b) shows an example at 272.5 K.  (For 290 K, see SM [37].)  At τ2 = 0, the width 
along the antidiagonal is narrow relative to the width along the diagonal, implying that 
heterogeneity is important.  This result is quantified by integrating along the diagonal, measuring 
the variance of the resulting projection, and subtracting the variance expected in the case of a 
purely heterogeneous system (SM [37] and Ref. [17]).  The final value dhom measures the 
dispersion due to homogeneous causes.  In the case of slow-exchange heterogeneity in a two-state 
system, dhet = dexc − dhom is the variance of the distribution of heterogeneous rates on a log scale, 
and fhet = dhet / dexc is a quantitative measure of the fraction of the rate dispersion caused by 
heterogeneity.  In the multistate system occurring here, we use fhet as an empirical measure of the 
importance of rate heterogeneity.  Still focusing on τ2 = 0, fhet = 0.89 below Tc (273.5 K) and fhet 
= 0.83 at Tc (290 K).  We conclude that the sharp increase in total rate dispersion over this region 
is not the transition from homogeneous, MCT-based rate dispersion to heterogeneous, domain-
based rate dispersion.  That transition must take place at a higher temperature.   

More can be learned from nonzero values of τ2.  Rotational motion during τ2 has no affect on 
C101(τ3, τ2, τ1), because the ℓ = 0 eigenfunction G0(τ2) is insensitive to orientation.  However, a 
rate domain can still evolve during τ2.  If rate exchange occurs, its rate during τ3 becomes 
uncorrelated from its rate during τ1, and off-diagonal intensity in the spectrum will rise.  This 
effect can be seen in Fig. 2(b).   

Rate exchange causes the spectrum to appear more homogeneous and causes fhet(τ2) to decay.  
This function is a quantitative measure of rate exchange in a slow-exchange, two-state system [17].  
It is used here empirically for the same purpose.  Results are shown in Fig. 2(c) in red (solid).  For 
comparison, the α-relaxation (taken to be C1(τ)) is shown in black (dashed), and the formation of 
the jump-precursor state (R  cage decay) is shown in blue (dash–dotted).   

Figure 2(c) also shows rate exchange measured by single-molecule experiments on OTP very 
near the glass transition, where α-relaxation is another six orders-of-magnitude slower [30].  In a 
single-molecule experiment, dynamics are measured from an equilibrium time series, just as they 
are in this simulation.  Because very similar methods were used in both studies, the results can be 
directly compared.  (However in the experiments, the rotation of a probe molecule was measured, 
rather than rotation of an OTP molecule, and the measurement was for ℓ = 2, not ℓ = 1.  Also note 
that results from two temperatures, which show time–temperature superposition, were averaged to 
give the single-molecule result.)   

Rate exchange measures the lifetime of the domains in the liquid.  Figure 2(c) shows that the 
domain lifetime is faster than α-relaxation at Tc and becomes slower than α-relaxation as the 
temperature is lowered.  These changes could be associated with a change from string-like, 1D 
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domains and to compact, 3D domains, as suggested by previous simulations [45-47], experiments 
[48] and theory [49,50].  Starting at 272.5 K, domains maintain their identity even after molecules 
within it have fully rotated.  Below this temperature, the domain lifetime continues to increase.  
This result is consistent with the idea of a separate mobility field emerging at low temperature 
[51,52].  Conventional experiments show time–temperature superposition over this range (284–
248 K) [20] and do not hint at the evolution occurring in the relaxation mechanism.  

Between 290 K and 272.5 K, α-relaxation is slower than rate exchange.  Heterogeneity will 
not cause rate dispersion in a process that is much slower than rate exchange.  Thus, it is the 
lengthening of the domain lifetime past Tα that is responsible for the rise in rate dispersion seen in 
α-relaxation near Tc.  Although the domain lifetime is shorter than the jump time and its effect on 
C1(τ) is reduced in this temperature range, the domains still control the rate of entering the jump-
precursor state.  Their effect on this fast, small angle process remains strong at higher values of ℓ .  
Further decreases in the domain lifetime will eventually make the domains unobservable at even 
higher temperatures.   

Overall, the results show that the dynamic crossover consists of intertwined changes in 
multiple phenomena over a significant temperature range.  As the temperature drops, the switch 
from homogeneous to heterogeneous rate dispersion and the formation of domains is complete 
before Tc.  The size of rotational jumps also increases across the entire crossover region, becoming 
complete only when Tα is 100 times slower than at Tc.  The increasing jump size is accompanied 
by the appearance of a jump-precursor state.  Rate-domain lifetimes also increase over the 
crossover region, reaching Tex = Tα at the same temperature where the switch to large jumps is 
complete.  Domain lifetimes continues to lengthen as the temperature drops toward Tg.   

These phenomena cannot be disentangled by measuring mean-relaxation times or rate 
dispersions alone.  More advanced, Green’s-function and multidimensional methods are needed.  
It is also clear that the evolution of these phenomena is not complete before relaxation times exceed 
the reach of simulations.  Fortunately, the quantities measured here can also be pursued in 
experiments such as NMR [24,25,53], ESR [26], single-molecule [29,30], and time-resolved 
[44,54] spectroscopies.  The conclusions of this Letter can be verified and extended to other 
temperature regions by such experiments. 
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