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We introduce a complex generalization of Wigner time delay τ for sub-unitary scattering systems.10

Theoretical expressions for complex time delay as a function of excitation energy, uniform and non-11

uniform loss, and coupling, are given. We find very good agreement between theory and experimental12

data taken on microwave graphs containing an electronically variable lumped-loss element. We find13

that time delay and the determinant of the scattering matrix share a common feature in that the14

resonant behavior in Re[τ ] and Im[τ ] serves as a reliable indicator of the condition for Coherent15

Perfect Absorption (CPA). This work opens a new window on time delay in lossy systems and16

provides a means to identify the poles and zeros of the scattering matrix from experimental data.17

The results also enable a new approach to achieving CPA at an arbitrary energy/frequency in18

complex scattering systems.19

Introduction. In this paper we consider the general20

problem of scattering from a complex system by means21

of excitations coupled through one or more scattering22

channels. The scattering matrix S describes the transfor-23

mation of a set of input excitations |ψin〉 on M channels24

into the set of outputs |ψout〉 as |ψout〉 = S |ψin〉.25

A measure of how long the excitation resides in the in-26

teraction region is provided by the time delay, related27

to the energy derivative of the scattering phase(s) of28

the system. This quantity and its variation with energy29

and other parameters can provide useful insights into the30

properties of the scattering region and has attracted re-31

search attention since the seminal works by Wigner [1]32

and Smith [2]. A review on theoretical aspects of time33

delays with emphasis to solid state applications can be34

found in [3]. Various aspects of time delay have recently35

been shown to be of direct experimental relevance for36

manipulating wave fronts in complex media [4–6]. Time37

delays are also long known to be directly related to the38

density of states of the open scattering system, see dis-39

cussions in [3] and more recently in [7, 8].40

For the case of flux-conserving scattering in systems41

with no losses, the S-matrix is unitary and its eigenval-42

ues are phases eiθa , a = 1, 2, ...,M . These phases are43

functions of the excitation energy E and one can then44

define several different measures of time delay, see e.g.45

[3, 9], such as partial time delays associated with each46

channel τa = dθa/dE, the proper time delays which are47

the eigenvalues of the Wigner-Smith matrix Q̂ = i~dS
†

dE S,48

and the Wigner delay time which is the average of all the49

partial time delays (τW = 1
M

∑M
a=1 τa = 1

M Tr[Q̂]).50
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A rich class of systems in which properties of vari-51

ous time delays enjoyed thorough theoretical attention52

is scattering of short-wavelength waves from classically53

chaotic systems, e.g. billiards with ray-chaotic dynam-54

ics or particles on graphs, e.g. such as considered in [10].55

Various examples of chaotic wave scattering (quantum or56

classical) have been observed in nuclei, atoms, molecules,57

ballistic two-dimensional electron gas billiards, and most58

extensively in microwave experiments [11–16]. In such59

systems time delays have been measured starting from60

the pioneering work [17], followed over the last three61

decades by measurement of the statistical properties of62

time delay through random media [18, 19] and microwave63

billiards [20]. Wigner time delay for an isolated reso-64

nance described by an S-matrix pole at complex energy65

E0 − iΓ has a value of Q = 2~/Γ on resonance, hence66

studies of the imaginary part of the S-matrix poles probe67

one aspect of time delay [21–26]. In the meantime, the68

Wigner-Smith operator (WSO) was utilized to identify69

minimally-dispersive principal modes in coupled multi-70

mode systems [27, 28]. A similar idea was used to create71

particle-like scattering states as eigenstates of the WSO72

[4, 29, 30]. A generalization of the WSO allowed maxi-73

mal focus on, or maximal avoidance of, a specific target74

inside a multiple scattering medium [6, 31].75

Time delays in wave-chaotic scattering are expected76

to be extremely sensitive to variations of excitation en-77

ergy and scattering system parameters, and will dis-78

play universal fluctuations when considering an ensemble79

of scattering systems with the same general symmetry.80

Universality of fluctuations allows them to be efficiently81

described using the theory of random matrices [9, 32–82

40]. Alternative theoretical treatments of time delay in83

chaotic scattering systems successfully adopted a semi-84

classical approach, see [7] and references therein.85

Despite the fact that standard theory of wave-chaotic86

scattering deals with perfectly flux-preserving systems,87
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in any actual realisation such systems are inevitably im-88

perfect, hence absorbing, and theory needs to take this89

aspect into account [41]. Interestingly, studying scatter-90

ing characteristics in a system with weak uniform (i.e.91

spatially homogeneous) losses may even provide a pos-92

sibility to extract time delays characterizing idealized93

system without losses. This idea has been experimen-94

tally realized already in [17] which treated the effect of95

sub-unitary scattering by means of the unitary deficit of96

the S-matrix. In this case consider the Q-matrix defined97

through the relation S†S = 1 − (γ∆/2π)QUD, where γ98

is the dimensionless ‘absorption rate’ and ∆ is the mean99

spacing between modes of the closed system. In the limit100

of vanishing absorption rate γ → 0 such QUD can be101

shown to coincide with the Wigner-Smith time delay ma-102

trix for a lossless system, but formally one can extend this103

as a definition of Q for any γ > 0. Note that this version104

of time delay is always real and positive. Various statis-105

tical aspects of time delays in such and related settings106

were addressed theoretically in [42–45].107

Experimental data is often taken on sub-unitary scat-108

tering systems and a straightforward use of the Wigner109

time delay definition yields a complex quantity. In ad-110

dition, both the real and imaginary parts acquire both111

negative and positive values, and they show a systematic112

evolution with energy/frequency and other parameters113

of the scattering system. This clearly calls for a detailed114

theoretical understanding of this complex generalization115

of the Wigner time delay. It is necessary to stress that116

many possible definitions of time delays which are equiv-117

alent or directly related to each other in the case of a118

lossless flux-conserving systems can significantly differ in119

the presence of flux losses, either uniform or spatially lo-120

calized. In the present paper we focus on a definition121

that can be directly linked to the fundamental charac-122

teristics of the scattering matrix - its poles and zeros123

in the complex energy plane, making it useful for fully124

characterizing an arbitrary scattering system. Note that125

S-matrix poles have been objects of long-standing the-126

oretical [46–54] and experimental [21–23, 25] interest in127

chaotic wave scattering, whereas S-matrix zeroes started128

to attract research attention only recently [26, 55–63].129

Complex Wigner Time Delay. In our exposition we use
the framework of the so-called “Heidelberg Approach” to
wave-chaotic scattering reviewed from different perspec-
tives in [64, 65] and [66]. Let H be the N × N Hamil-

tonian which is used to model the closed system with
ray-chaotic dynamics, W denoting the N ×M matrix of
coupling elements between the N modes of H and the
M scattering channels, and by A the N × L matrix of
coupling elements between the modes of H and the L lo-
calized absorbers, modelled as L absorbing channels. [67]
The total unitary S-matrix, of size (M + L) × (M + L)
describing both the scattering and absorption on equal
footing, has the following block form, see e.g. [56]:

S(E) =

(
1M − 2πiW †D−1(E)W −2πiW †D−1(E)A
−2πiA†D−1(E)W 1L − 2πiA†D−1(E)A

)
,

(1)

where we defined D(E) = E − H + i(ΓW + ΓA) with130

ΓW = πWW † and ΓA = πAA†.131

The upper left diagonal M ×M block of S(E) is the
experimentally-accessible sub-unitary scattering matrix
and is denoted as S(E). The presence of uniform-in-
space absorption with strength γ can be taken into ac-
count by evaluating the S-matrix entries at complex en-
ergy: S(E + iγ) := Sγ(E). The determinant of such a
subunitary scattering matrix Sγ(E) is then given by:

detSγ(E) := detS(E + iγ) (2)

=
det[E −H + i(γ + ΓA − ΓW )]

det[E −H + i(γ + ΓA + ΓW )]
(3)

=

N∏
n=1

E + iγ − zn
E + iγ − En

, (4)

In the above expression we have used that the S-132

matrix zeros zn are complex eigenvalues of the non-self-133

adjoint/non-Hermitian matrix H + i(ΓW −ΓA), whereas134

the poles En = En − iΓn with Γn > 0 are complex eigen-135

values of yet another non-Hermitian matrix H − i(ΓW +136

ΓA), frequently called in the literature “the effective non-137

Hermitian Hamiltonian” [9, 46, 54, 65, 66, 68]. Note that138

when localized absorption is absent, i.e. ΓA = 0, the ze-139

ros zn and poles En are complex conjugates of each other,140

as a consequence of S-matrix unitarity for real E and no141

uniform absorption γ = 0. Extending to locally absorb-142

ing systems the standard definition of the Wigner delay143

time as the energy derivative of the total phase shift we144

now deal with a complex quantity:145

τ(E;A, γ) :=
−i
M

∂

∂E
log detSγ(E) (5)

= Re τ(E;A, γ) + iIm τ(E;A, γ), (6)

Re τ(E;A, γ) =
1

M

N∑
n=1

[
Imzn − γ

(E − Rezn)2 + (Imzn − γ)2
+

Γn + γ

(E − En)2 + (Γn + γ)2

]
, (7)

Im τ(E;A, γ) = − 1

M

N∑
n=1

[
E − Rezn

(E − Rezn)2 + (Imzn − γ)2
− E − En

(E − En)2 + (Γn + γ)2

]
(8)
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Equation (7) for the real part is formed by two146

Lorentzians for each mode of the closed system, poten-147

tially with different signs. This is a striking difference148

from the case of the flux-preserving system in which the149

conventional Wigner time delay is expressed as a single150

Lorentzian for each resonance mode [69]. Namely, the151

first Lorentzian is associated with the nth zero while the152

second is associated with the corresponding pole of the153

scattering matrix. The widths of the two Lorentzians154

are controlled by system scattering properties, and when155

Imzn → γ ± 0 the first Lorentzian in Eq. 7 acquires the156

divergent, delta-functional peak shape, of either positive157

or negative sign, centered at E = Rezn. Note that the158

first term in Eq. 8 changes its sign at the same energy159

value. These properties are indicative of the “perfect res-160

onance” condition, with divergence in the real part of the161

Wigner time delay signalling the wave/particle being per-162

petually trapped in the scattering environment. In dif-163

ferent words, the energy of the incident wave/particle is164

perfectly absorbed by the system due to the finite losses.165

The pair of equations (7, 8) forms the main basis for166

our consideration. In particular, we demonstrate in the167

Supp. Mat. Section I [70] that in the regime of well-168

resolved resonances Eqs. (7) and (8) can be used for169

extracting the positions of both poles and zeros in the170

complex plane from experimental measurements, pro-171

vided the rate of uniform absorption γ is independently172

known. We would like to stress that in general the two173

Lorentzians in (7) are centered at different energies be-174

cause generically the pole position En does not coincide175

with the real part of the complex zero Rezn.176

From a different angle it is worth noting that there is177

a close relation between the objects of our study and the178

phenomenon of the so called Coherent Perfect Absorption179

(CPA) which attracted considerable attention in recent180

years, both theoretically and experimentally [60, 62, 71–181

73]. Namely, the above-discussed match between the uni-182

form absorption strength and the imaginary part of scat-183

tering matrix zero γ = Imzn simultaneously ensures the184

determinant of the scattering matrix to vanish, see Eq.185

(4). This is only possible when |ψout〉 = 0 despite the186

fact that |ψin〉 6= 0, which is a manifestation of CPA, see187

e.g. [55, 56].188

Experiment. We focus on experiments involving mi-189

crowave graphs [13, 62, 74, 75] for a number of rea-190

sons. First, they provide for complex scattering scenar-191

ios with well-isolated modes amenable to detailed anal-192

ysis. We thus avoid the complications of interacting193

poles and related interference effects [76]. Graphs also194

allow for convenient parametric control such as variable195

lumped lossy elements, variable global loss, and breaking196

of time-reversal invariance. We utilize an irregular tetra-197

hedral microwave graph formed by coaxial cables and198

Tee-junctions, having M = 2 single-mode ports, and bro-199

ken time-reversal invariance. A voltage-controlled vari-200

able attenuator is attached to one internal node of the201

graph (see Fig. 1(a)), providing for a variable lumped202

loss (L = 1, the control variable ΓA). The nodes involv-203

ing connections of the graph to the network analyzer, and204

the graph to the lumped loss, are made up of a pair of205

Tee-junctions. The coaxial cables and tee-junctions have206

a roughly uniform and constant attenuation produced by207

dielectric loss and conductor loss, which is parameterized208

by the uniform loss parameter γ. The 2-port graph has209

a total electrical length of Le = 3.89 m, a mean mode210

spacing of ∆ = c/2Le = 38.5 MHz, and a Heisenberg211

time τH = 2π/∆ = 163 ns. The graph has equal cou-212

pling on both ports, characterized by a nominal value of213

Ta = 0.9450 at a frequency of 2.6556 GHz. [77]214

Comparison of Theory and Experiments. Figure 1215

shows the evolution of complex time delay for a single216

isolated mode of the M = 2 port tetrahedral microwave217

graph as ΓA is varied. The complex time delay is eval-218

uated as in Eq. 5 based on the experimental S(f) data,219

where f is the microwave frequency, a surrogate for en-220

ergy E. Note that the (calibrated) measured S-parameter221

data is directly used for calculation of the complex time222

delay without any data pre-processing. The resulting real223

and imaginary parts of the time delay vary systemati-224

cally with frequency, adopting both positive and negative225

values, depending on frequency and lumped loss in the226

graph. The full evolution animated over varying lumped227

loss is available in the Supplemental Material [70]. These228

variations are well-described by the theory given above.229

Figure 1(d) and (e) clearly demonstrates that two230

Lorentzians are required to correctly describe the fre-231

quency dependence of the real part of the time delay. The232

two Lorentzians have different widths in general, given by233

the values of Imzn − γ and Γn + γ, and in this case the234

Lorentzians also have opposite sign. The frequency de-235

pendence of the imaginary part of the time delay also236

requires two terms, with the same parameters as for the237

real part, to be correctly described. The data in Fig. 1(b)238

also reveals that Re[τ ] goes to very large positive values239

and suddenly changes sign to large negative values at a240

critical amount of local loss. For another attenuation set-241

ting of the same mode it was found that the maximum242

delay time was 337 times the Heisenberg time, showing243

that the signal resides in the scattering system for a sub-244

stantial time.245

The measured complex time delay as a function of fre-246

quency can be fit to Eqs. (7) and (8) to extract the247

corresponding pole and zero location for the S-matrix.248

The method to perform this fit is described in the Supp.249

Mat. Section I [70] The fitting parameters are Rezn and250

Imzn − γ for the zero, and En and Γn + γ for the pole.251

Note that the Re[τ(f)] and Im[τ(f)] data are fit simul-252

taneously, and constant offsets CR and CI are added to253

each fit.254

Figure 2 summarizes the parameters required to fit the255

experimental complex time delay vs. frequency (shown in256

Fig. 1) as the localized loss due to the variable attenua-257

tor in the graph is increased. The significant feature here258

is the zero-crossing of Imzn − γ at frequency f = fCPA,259

which corresponds to the point at which Re[τ(f)] changes260

sign. As shown in Fig. 2(a) this coincides with the point261
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FIG. 1. (a) shows a schematic of the graph experimental setup. The lumped loss ΓA is varied by changing the applied voltage
to the variable attenuator. (b) and (c) show experimental data of both real and imaginary parts of Wigner time delay Re[τ ] and
Im[τ ] (normalized by the Heisenberg time τH) as a function of frequency under different attenuation settings for a single isolated
mode. For each attenuation setting, the data is plotted from 2.645 GHz to 2.665 GHz. For clarity, plots with higher attenuation
setting are shifted 0.01 GHz from the previous one. Inset shows the entire range of Re[τ ] for attenuation setting of 2.35 dB.
(d) and (e) demonstrate the two-Lorentzian nature of the real and imaginary parts of the Wigner time delay as a function of
frequency. The fitting parameters in these two plots are: Rezn = 2.6556 GHz, En = 2.6544 GHz, Imzn − γ = −7.1065× 10−4

GHz, and Γn +γ = 0.0110 GHz. The constants used in the Re[τ ] and Im[τ ] fits are CR = 0.26 and CI = −0.0018 in units of τH.
Detailed discussion about the fitting constants and degree of isolation of the modes can be found in the Supp. Mat. section IV
[70].

at which |det(S(f))| achieves its minimum value at the262

CPA frequency fCPA. This demonstrates that one or263

more eigenvalues of the S-matrix go through a complex264

zero value precisely as the condition Imzn − γ = 0 and265

f −Rezn = 0 is satisfied. Associated with this condition266

|Re[τ(fCPA)]| diverges, with corresponding large positive267

and negative values of Im[τ(f)] occurring just below and268

just above f = fCPA. Similar behavior of Re[τ(f)] was269

recently observed in a complex scattering system con-270

taining re-configurable metasurfaces, as the pixels were271

toggled [73].272

Next we wish to estimate the value of uniform attenua-273

tion γ for the microwave graph. Using the unitary deficit274

of the S-matrix in a setup in which the attenuator is re-275

moved [17], we evaluate the uniform loss strength γ to276

be 3.73× 10−3 GHz (see Supp. Mat. section III [70]).277

Figure 2(b) summarizes the locations of the S-matrix278

pole En and zero zn of the single isolated mode of the279

microwave graph in the complex frequency plane as the280

localized loss is varied. When the S-matrix zero crosses281

the Imzn = γ value, one has the traditional signature of282

CPA. Note from Fig. 2 that the real parts of the zero283

and pole do not coincide and in fact move away from284

each other as localized loss is increased.285
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FIG. 2. (a) Fitted parameters Imzn − γ and Γn + γ for the
complex Wigner time delay from graph experimental data.
Also shown is the evolution of | det(S)| at the specific fre-
quency of interest, fCPA, which reaches its minimum at the
zero-crossing point. Inset shows the evolution of Rezn and
En = ReEn with attenuation. (b) Evolution of complex zero
and pole of a single mode of the graph in the complex fre-
quency plane as a function of ΓA. The black crosses are the
initial state of the zero and pole at the minimum attenuation
setting. Insets show the details of the complex zero and pole
migrations.

Discussion. It should be noted that the occurrence of286

a negative real part of the time delay is an inevitable con-287

sequence of sub-unitary scattering, and is also expected288

for particles interacting with attractive potentials [78].289

The imaginary part of time delay was in the past dis-290

cussed in relation to changes in scattering unitary deficit291

with frequency [30]. Another approach to defining com-292

plex time delay has been recently suggested to be based293

on essentially calculating the time delay of the signal294

which comes out of the system without being absorbed295

[73]. It should be noted that this ad hoc definition of296

time delay is not simply related to the poles and zeros of297

the S-matrix. Moreover, a closer inspection shows that298

such a definition of complex time delay tacitly assumes299

that the real parts of the pole and zero are identical. Ac-300

cording to our theory such an assumption is incompatible301

with a proper treatment of localized loss.302

We emphasize that the correct knowledge of the loca-303

tions of the poles and zeros is essential for reconstruct-304

ing the scattering matrix over the entire complex energy305

plane through Weierstrass factorization [79]. Through306

graph simulations presented in Sup. Mat. Section VII307

[70] we demonstrate that the complex time delay theory308

presented here also works for time-reversal invariant sys-309

tems, and for systems with variable uniform absorption310

strength γ. Our results therefore establish a systematic311

procedure to find the S-matrix zeros and poles of isolated312

modes of a complex scattering system with an arbitrary313

number of coupling channels, symmetry class, and arbi-314

trary degrees of both global and localized loss.315

Recent work has demonstrated CPA in disordered and316

complex scattering systems [60, 62]. It has been discov-317

ered that one can systematically perturb such systems to318

induce CPA at an arbitrary frequency [73, 80], and this319

enables a remarkably sensitive detector paradigm [73].320

These ideas can also be applied to optical scattering sys-321

tems where measurement of the transmission matrix is322

possible [81]. Here we have uncovered a general formal-323

ism in which to understand how CPA can be created in324

an arbitrary scattering system. In particular this work325

shows that both the global loss (γ), localized loss centers,326

or changes to the spectrum can be independently tuned327

to achieve the CPA condition.328

Future work includes treating the case of overlapping329

modes, and the development of theoretical predictions for330

the statistical properties of both the real and imaginary331

parts of the complex time delay in chaotic and multiple332

scattering sub-unitary systems.333

Conclusions. We have introduced a complex general-334

ization of Wigner time delay which holds for arbitrary335

uniform/global and localized loss, and directly relates to336

poles and zeros of the scattering matrix in the complex337

energy/frequency plane. Based on that we developed the-338

oretical expressions for complex time delay as a function339

of energy, and found very good agreement with exper-340

imental data on a sub-unitary complex scattering sys-341

tem. Time delay and det(S) share a common feature342

that CPA and the divergence of Re[τ ] and Im[τ ] coin-343

cide. This work opens a new window on time delay in344

lossy systems, enabling extraction of complex zeros and345

poles of the S-matrix from data.346
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U. Kuhl, and S. Rotter, Focusing inside disordered me-457

dia with the generalized Wigner–Smith operator, Physi-458

cal Review Letters 119, 033903 (2017).459

[32] N. Lehmann, D. Savin, V. Sokolov, and H.-J. Sommers,460

Time delay correlations in chaotic scattering: random461

matrix approach, Physica D: Nonlinear Phenomena 86,462

572 (1995).463

[33] V. A. Gopar, P. A. Mello, and M. Büttiker, Mesoscopic464
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Büttiker, Role of quantum coherence in series resistors,596

Phys. Rev. B 33, 3020 (1986) and further developed in P.597

W. Brouwer and C. W. J. Beenakker, Voltage-probe and598

imaginary-potential models for dephasing in a chaotic599

quantum dot, Phys. Rev. B 55, 4695 (1997).600

https://doi.org/10.1088/0959-7174/9/2/303
https://doi.org/10.1103/PhysRevE.63.035202
https://doi.org/10.1007/s00220-013-1813-z
https://doi.org/10.1007/s00220-013-1813-z
https://doi.org/10.1007/s00220-013-1813-z
https://doi.org/10.1103/PhysRevLett.110.250602
https://doi.org/10.1103/PhysRevLett.110.250602
https://doi.org/10.1103/PhysRevLett.110.250602
https://doi.org/10.1063/1.4922746
https://doi.org/10.1103/PhysRevE.91.060102
https://doi.org/10.1088/0305-4470/38/49/017
https://doi.org/10.1088/0305-4470/38/49/017
https://doi.org/10.1088/0305-4470/38/49/017
https://doi.org/10.1016/S1386-9477(00)00245-9
https://doi.org/10.1016/S1386-9477(00)00245-9
https://doi.org/10.1016/S1386-9477(00)00245-9
https://doi.org/10.1134/1.1622041
https://doi.org/10.1134/1.1622041
https://doi.org/10.1134/1.1622041
https://doi.org/10.1103/PhysRevE.68.036211
https://doi.org/10.1103/PhysRevE.68.036211
https://doi.org/10.1103/PhysRevE.68.036211
https://doi.org/10.1088/1751-8121/ab58de
https://doi.org/10.1088/1751-8121/ab58de
https://doi.org/10.1088/1751-8121/ab58de
https://doi.org/10.1016/0375-9474(89)90558-7
https://doi.org/10.1016/0375-9474(89)90558-7
https://doi.org/10.1016/0375-9474(89)90558-7
https://doi.org/10.1007/BF01470925
https://doi.org/10.1007/BF01470925
https://doi.org/10.1007/BF01470925
https://doi.org/10.1134/1.567120
https://doi.org/10.1134/1.567120
https://doi.org/10.1134/1.567120
https://doi.org/10.1103/PhysRevLett.83.65
https://doi.org/10.1103/PhysRevLett.83.65
https://doi.org/10.1103/PhysRevLett.83.65
https://doi.org/10.1088/0305-4470/32/5/003
https://doi.org/10.1088/0305-4470/32/5/003
https://doi.org/10.1088/0305-4470/32/5/003
https://doi.org/10.1103/PhysRevE.66.045202
https://doi.org/10.1103/PhysRevE.66.045202
https://doi.org/10.1103/PhysRevE.66.045202
https://doi.org/10.1103/PhysRevE.80.046203
https://doi.org/10.1103/PhysRevE.80.046203
https://doi.org/10.1103/PhysRevE.80.046203
https://doi.org/10.1103/PhysRevLett.106.042501
https://doi.org/10.1103/PhysRevLett.106.042501
https://doi.org/10.1103/PhysRevLett.106.042501
https://doi.org/10.1109/URSI-EMTS.2016.7571486
https://doi.org/10.1109/URSI-EMTS.2016.7571486
https://doi.org/10.1109/URSI-EMTS.2016.7571486
https://doi.org/10.1103/PhysRevLett.118.044101
https://doi.org/10.1103/PhysRevLett.118.044101
https://doi.org/10.1103/PhysRevLett.118.044101
https://doi.org/10.1088/1751-8121/aa793a
https://doi.org/10.1088/1751-8121/aa793a
https://doi.org/10.1088/1751-8121/aa793a
https://doi.org/10.1364/OPTICA.4.001457
https://doi.org/10.12693/APhysPolA.136.785
https://doi.org/10.12693/APhysPolA.136.785
https://doi.org/10.12693/APhysPolA.136.785
https://doi.org/10.1364/AOP.11.000892
https://doi.org/10.1364/AOP.11.000892
https://doi.org/10.1364/AOP.11.000892
https://doi.org/10.1038/s41586-019-0971-3
https://doi.org/10.1103/PhysRevE.102.012202
https://doi.org/10.1038/s41467-020-19645-5
https://doi.org/10.1002/adfm.202005310
https://doi.org/10.1002/adfm.202005310
https://doi.org/10.1002/adfm.202005310
https://doi.org/10.1103/RevModPhys.82.2845
https://doi.org/10.1093/oxfordhb/9780198744191.013.34
https://doi.org/10.1093/oxfordhb/9780198744191.013.34
https://doi.org/10.1093/oxfordhb/9780198744191.013.34
https://doi.org/10.1093/oso/9780198797319.003.0010
https://doi.org/10.1093/oso/9780198797319.003.0010
https://doi.org/10.1093/oso/9780198797319.003.0010
https://doi.org/10.1093/oso/9780198797319.003.0010
https://doi.org/10.1093/oso/9780198797319.003.0010
https://doi.org/10.1103/PhysRevB.33.3020
https://doi.org/10.1103/PhysRevB.55.4695


8

[68] I. Rotter, A non-Hermitian Hamilton operator and the601

physics of open quantum systems, Journal of Physics A:602

Mathematical and Theoretical 42, 153001 (2009).603

[69] V. Lyuboshitz, On collision duration in the presence of604

strong overlapping resonance levels, Physics Letters B605

72, 41 (1977).606

[70] See Supplemental Material at [URL will be inserted by607

publisher] for the details of extracting poles and zeros608

from data, the sign convention used for the scattering609

matrix frequency evolution, evaluation of the system uni-610

form loss strength γ, discussions about effects of neigh-611

boring resonances on fitting to the complex time delay,612

further details about CPA and complex time delay, con-613

nections to earlier work on negative real time delay and614

imaginary time delay, simulations of time-reversal invari-615

ant graphs and evaluation of complex time delay with616

varying uniform loss, and for animations of time delay617

evolution with variation of lumped loss (experiment Fig.618

1 (b) and (c)) or uniform loss (simulation Fig. S4 (b) and619

(c)).620

[71] Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, Coher-621

ent Perfect Absorbers: Time-Reversed Lasers, Physical622

Review Letters 105, 053901 (2010).623

[72] D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and624
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