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We investigate how the properties of inhomogeneous patterns of activity, appearing in many natural and social
phenomena, depend on the temporal resolution used to define individual bursts of activity. To this end, we con-
sider time series of microscopic events produced by a self-exciting Hawkes process, and leverage a percolation
framework to study the formation of macroscopic bursts of activity as a function of the resolution parameter.
We find that the very same process may result in different distributions of avalanche size and duration, which
are understood in terms of the competition between the 1D percolation and the branching process universality
class. Pure regimes for the individual classes are observed at specific values of the resolution parameter cor-
responding to the critical points of the percolation diagram. A regime of crossover characterized by a mixture
of the two universal behaviors is observed in a wide region of the diagram. The hybrid scaling appears to be a
likely outcome for an analysis of the time series based on a reasonably chosen, but not precisely adjusted, value
of the resolution parameter.

Inhomogeneous patterns of activity, characterized by bursts
of events separated by periods of quiescence, are ubiquitous
in nature [1]. The firing of neurons [2, 3], earthquakes [4], en-
ergy release in astrophysical systems [5] and spreading of in-
formation in social systems [6–8] exhibit bursty activity, with
intensity and duration of bursts obeying power-law distribu-
tions [2, 3, 7].

If activity consists of point-like events in time, size and
duration of bursts are obtained from the inter-event time se-
quence. The analysis of many systems [4, 6, 7, 9, 10] reveals
that the inter-event time between consecutive events has a fat-
tailed distribution [4, 6, 7]. This distribution appears more re-
liable for the characterization of correlation in bursty systems
than other traditional measures, e.g., the autocorrelation func-
tion [7, 11, 12]. However, the relation between autocorrelation
and burst size distribution is opaque. Further complications
arise as the separation between different bursts is not clear-
cut. In discrete time series, avalanches of correlated activity
are monitored by coarsening the time series at a fixed tempo-
ral scale, and correlations are measured by assigning events to
the same burst if their inter-event time is smaller than a given
threshold [7]. The threshold is set equal to some arbitrar-
ily chosen value and/or imposed by the temporal resolution
at which empirical data are acquired, despite its potential of
affecting the properties of the resulting distributions [13–19].

The purpose of the present letter is to understand the re-
lation between temporal resolution and burst statistics. We
introduce a principled technique to determine the value of the
time resolution that should be used to define avalanches from
time series. We validate the method on time series generated
according to an Hawkes process [20], a model of autocorre-
lated behavior used for the description of earthquakes [21, 22],
neuronal networks [23], and socio-economic systems [24, 25].
The use of the Hawkes process affords us a complete control
over the mechanism that generates correlations and the possi-
bility to attack the problem analytically.

We start by defining a cluster of activity consistently with

the informal notion of a burst composed of close-by events.
Data are represented by K total events {t1, . . . , tK}, where ti
is the time of appearance of the i-th event. We fix a res-
olution parameter ∆ ≥ 0 to identify clusters of activity. A
cluster starting at time tb is given by the S consecutive events
{tb, tb+1, . . . , tb+S−1} such that tb − tb−1 > ∆, tb+S − tb+S−1 > ∆,
and tb+i − tb+i−1 ≤ ∆ for all i = 1, . . . , S . We assume t0 = −∞

and tK+1 = +∞, implying that the first and the last events
open and close a cluster, respectively. We define the size S
as the number of events within the cluster, and its duration as
T = tb+S−1 − tb, i.e., the time lag between the first and last
event in the cluster.

If ∆ is larger than the largest inter-event time, then we have
a single cluster of size K and duration tK − t1. On the other
hand, if ∆ is smaller than the smallest inter-event time, each
event is a cluster of size 1 and duration 0. As in 1D percolation
problems [26], we expect for an intermediate value ∆ = ∆∗ a
transition from the non-percolating to the percolating phase.
What can we learn from the percolation diagram of the time
series? Does fixing ∆ = ∆∗ allow us to observe properties of
the process otherwise not apparent?

We address the above questions in a controlled setting
where we generate time series via an Hawkes process [20, 27]
with conditional rate

λ(t|t1, . . . , tk) = µ + n
k∑

i=1

φ(t − ti) . (1)

The rate depends on the k earlier events happened at times
t1 ≤ t2 ≤ . . . ≤ tk ≤ t. The first term in Eq. (1) produces
spontaneous events at rate µ ≥ 0. The second term consists
of the sum of individual contributions from each earlier event,
with the i-th event happened at time ti ≤ t increasing the rate
by φ(t − ti). φ(x) is the excitation or kernel function of the
self-exciting process, and it is assumed to be non-negative and
monotonically non-increasing. Typical choices for the ker-
nel are exponential or power-law decaying functions. We will
consider both cases. In Eq. (1), we assume

∫ ∞
0 φ(x) dx = 1,
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Figure 1. Percolation phase diagrams of self-exciting temporal processes. We plot the percolation strength P∞ as a function of the resolution
parameter ∆ for various configurations of the rate of Eq. (1), with exponential kernel function and various system sizes K. Average values are
obtained by considering R = 103 realizations of the process. (a) We set n = 0 and µ = 1. The inset shows the same data as of the main with
abscissa rescaled as ∆/∆∗. (b) We set n = 1 and µ = 10−4. The insets display the same data as of the main, but with rescaled abscissa, ∆/∆∗1
in the lower inset, and ∆/∆∗2in the upper inset. (c) We set n = 1 and µ = 102. The inset shows the same data as of the main, but with abscissa
rescaled as ∆/∆∗.

so that the memory term is weighted by the single parameter
n ≥ 0. Unless otherwise stated, we always set n = 1, cor-
responding to the critical dynamical regime of the temporal
point process described by Eq. (1) [21].

The percolation framework allows us to characterize the
generic Hawkes process of Eq. (1) using finite-size scaling
analysis [26] (see [28], sec. C). The total number K of events
in the time series is the system size. For a given value of K,
we generate multiple time series and compute the percolation
strength P∞, i.e., the fraction of events belonging to the largest
cluster, and the associated susceptibility (see [28], sec. C). By
studying the behavior of these macroscopic observables as K
grows, we estimate the values of the thresholds and the critical
exponents.

Let us start with the case n = 0 (Figure 1a), describing
a homogeneous Poisson process with rate µ. The generic
inter-event time xi = ti − ti−1 is a random variate distributed
as P(xi) = µ e−µ xi . Two consecutive events are part of the
same cluster with probability P(xi ≤ ∆) = 1 − e−µ∆, which is
independent of the index i and represents an effective bond
occupation probability in an homogeneous 1D percolation
model [26, 34]. For finite K values, P∞ sharply grows from
0 to 1 around the pseudo-critical point ∆∗(K) = log(K)/µ
(see [28], sec. D). Finite-size scaling analysis indicates that
the transition is discontinuous, as expected for 1D ordinary
percolation [26]. We note that the distributions of cluster size
P(S ) and duration P(T ) are exactly described by the 1D per-
colation theory [26] (see [28], sec. D). They are the product
of a power-law function and a fast-decaying scaling function
accounting for the system finite size [34]. In this specific case,
the scaling functions contain a multiplicative term that ex-
actly cancels the power-law term of the distribution. There-
fore, the distributions have exponential behavior at ∆ = ∆∗. A
clear signature of criticality is manifest in the relation between
size and duration, 〈S 〉 ∼ T , in agreement with the relation

〈S 〉 ∼ T (α−1)/(τ−1) (see [28], sec. D).
We now consider the Hawkes process of Eq. (1) with expo-

nential kernel φ(x) = e−x [27, 35]. Results of our finite-size
scaling analysis are reported in Figures 1b and 1c, for µ � 1
and µ � 1, respectively.

For µ � 1, the phenomenology is rich, with two distinct
transitions at ∆∗1 < ∆∗2, respectively. Around the critical point
∆∗1, the system is characterized by a behavior compatible with
the universality class of 1D percolation, i.e, the same as of
the homogeneous Poisson process. Both P(S ) and P(T ) dis-
play power-law decays at ∆∗1, with exponent values τ = α = 2
(Figures 2a and 2c). Average size and duration of clusters
are linearly correlated (SM, sec. E, [28]). The pseudo-critical
threshold equals ∆∗1(K) ' log(K)/〈λ〉 = log(K)/

(
µ +

√
2Kµ

)
,

thus leading to a vanishing critical point in the thermodynamic
limit (see [28], sec. E). 〈λ〉 is the expectation value, over an
infinite number of realizations of the process, of the rate af-
ter K events have happened; the estimate of the critical point
∆∗1(K) is thus obtained using the same exact equation as for
a homogeneous Poisson process with effective rate 〈λ〉. The
other transition at ∆∗2(K) = log(K)/µ, which tends to infinite
as K grows, corresponds to the merger of the whole time se-
ries into one cluster; its features are compatible with those
of the universality class of the mean-field branching process,
i.e., τ = 3/2 and α = 2. The region of the phase diagram
[∆∗1(K),∆∗2(K)], which is expanding as K increases, is char-
acterized by critical behavior. While the percolation strength
plateaus at P∞ ' 1 − 1/e ' 0.63, the susceptibility is larger
than zero. Furthermore, the distribution P(S ) displays a neat
crossover between the regime τ = 2 for small S and the
regime τ = 3/2 at large S (Figure 2a).

For µ � 1, the phase diagram displays a single transition
(Figure 1c), with features identical to those described for the
case µ � 1 around ∆∗1: no crossover is present, and the critical
exponents of the distributions P(S ) and P(T ) are τ = α = 2
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(Figures 2b and 2d). The same exact behavior can be obtained
by simply considering a non-homogeneous Poisson process
with rate linearly growing in time, i.e., λ(t) ∼ t (see [28], sec.
K).

The two different behaviors observed for µ � 1 and µ � 1
are interpreted in an unified framework as follows. For µ � 1,
the process is characterized by a sequence of self-exciting
bursts due to the memory term of the rate of Eq. (1). Memory
decays exponentially fast, with a typical time scale equal to
1. Each burst is started by a spontaneous event. Since sponta-
neous events are characterized by the time scale 1/µ � 1, con-
secutive bursts are well separated one from the other. Increas-
ing ∆, the system exhibits first a transition ”within bursts” at
∆ = ∆∗1, corresponding to the merger of events within the same
burst, and then a transition ”across bursts” at ∆ = ∆∗2, corre-
sponding to the merger of consecutive bursts of activity. For
µ � 1, all events belong to a unique burst of self-excitation.
The time scale of spontaneous activity is equal or smaller than
the one due to self-excitation. Thus, although the memory
decays exponentially fast, a new spontaneous event re-excites
the process quickly enough to allow the burst to proceed its ac-
tivity uninterrupted. The burst is truncated in the simulations
due to the fixed size K of the time series. As ∆ increases, all
events of the single burst are merged into a single cluster. The
transition is therefore of the same type as the one observed
within bursts at ∆ = ∆∗1 in the case µ � 1.
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Figure 2. Critical properties of self-exciting temporal processes. We
consider processes generated from the rate of Eq. (1) with exponen-
tial kernel and n = 1. System size K = 108. Histograms obtained
by considering C = 107 clusters per configuration. (a) Cluster size
distribution for µ = 10−4. (b) Cluster size distribution for µ = 102.
(c) Cluster duration distribution for the same data as in panel a. (d)
Cluster duration distribution for the same data as in panel b.

We can separately study the transitions within and across
bursts. To this end, we simplify the actual process of Eq. (1)
by setting µ = 0 and assuming that the first event of the

burst already happened. We then invoke the known mapping
of the self-exciting process of Eq. (1) to a standard Galton-
Walton branching process (BP) [27]. According to it, the first
event of the time series represents the root of a branching
tree (Figure 3). Each event generates a number of follow-
up events (offsprings) obeying a Poisson distribution with ex-
pected value equal to n, the parameter appearing in Eq. (1).
Time is assigned as follows. The first event happens at an ar-
bitrary time t1, say for simplicity t1 = 0. Then each of the fol-
lowing events has associated a time equal to the time of its par-
ent plus a random variate x extracted from the kernel function
φ(x) of Eq. (1). The mapping to the BP offers an alternative
(on average statistically equivalent) way of generating time se-
ries for the self-exciting process of Eq. (1). We first generate a
BP tree, and then associate a time to each event of the tree ac-
cording to the rule described above. The time t associated to a
generic event of the g-th generation is distributed according to
a function P(t|g). For the exponential kernel function, P(t|g)
is the sum of g exponentially distributed variables, i.e., the Er-
lang distribution with rate equal to 1, P(t|g) = tg−1 e−t/(g−1)!.
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Figure 3. Latent tree structure of self-exciting temporal processes.
(a) Each event in the time series on the left is associated to a parent
node. On the right, the branching tree corresponding to the time
series. Each node is assigned to a generation, and each bond has
associated an inter-event time. If Ng is the number of nodes in the
g-th generation, the depicted tree has {N1 = 1,N2 = 2,N3 = 2,N4 =

3, . . .}. (b) The mapping of panel a allows us to associate to the tree
{N1, . . . ,NG} (blue curve) an inhomogeneous Poisson process with
instantaneous rate λ̃(t|N1, . . . ,NG) (orange). Such a process generates
time series statistically equivalent to those generated by an Hawkes
process with latent tree structure {N1, . . . ,NG}. The inverse resolution
parameter ∆−1 (dashed black line) is an effective threshold for the
Poisson process λ̃(t|N1, . . . ,NG). As a result, size and duration of
clusters are related by Eq. (2). The shaded areas denote the two terms
appearing on the rhs of Eq. (2).

The mapping of the self-exciting process to a BP allows us
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to fully understand the numerical findings of Figures 1 and 2.
For n = 1 the BP is critical. The distribution of the tree size is
P(Z) ∼ Z−3/2 and the distribution of the tree depth is P(D) ∼
D−2. Individual bursts of activity, as seen for sufficiently high
∆ values and µ � 1, obey this statistics. Specifically, the size
of each burst S is exactly the size Z of the tree. The average
duration of the bursts 〈T 〉 ∼ D, as expected for the sum of iid
exponentially distributed random variates. For ∆ ∈ [∆∗1,∆

∗
2],

P∞ of Figure 1b follows the same statistics as the maximum
value of a sample of variables extracted from the distribution
P(Z) ∼ Z−3/2 divided by their sum, and the average value of
the ratio plateaus at 1− 1/e for sufficiently large sample sizes,
fully explaining the results of Figure 1 (see [28], sec. H).

The behavior at ∆ = ∆∗1 and the crossover towards the
standard BP regime for larger ∆ are due to a threshold phe-
nomenon. This directly follows from the abrupt nature of
the percolation transition of the Poisson process (Figure 1a).
Given the latent branching tree {N1,N2, . . . ,Ng, . . . ,NG},
where Ng indicates the number of events of the g-th generation
of the tree, the time series of the Hawkes process is statisti-
cally equivalent to the one of the inhomogeneous Poisson pro-
cess with instantaneous rate λ̃(t|N1, . . . ,NG) =

∑
g P(t|g) Ng.

Hence, for a given ∆, as long as λ̃(t|N1, . . . ,NG) > 1/∆, all
events are part of the same cluster of activity; when instead
λ̃(t|N1, . . . ,NG) < 1/∆, then events around time t belong to
separate clusters of activity. As a consequence, the total num-
ber of events S T that form a cluster of activity of duration T
is the integral of the curve λ̃(t|N1, . . . ,NG) in the time interval
when the rate is above ∆−1 (Figure 3b). We repeat a similar
calculation as in Ref. [19]. The integral can be split in two
contributions, one corresponding to the area of the order of
T 2 appearing above the threshold line, as expected for a criti-
cal BP [19, 36], and the other corresponding to the area ∆−1 T
appearing below threshold,

S T ∼ T 2 + ∆−1 T . (2)

While the distribution of cluster durations is always the same
[i.e., P(T ) ∼ T−2 of the underlying BP], if ∆−1 > T then S T ∼

T implying the within-burst statistics P(S ) ∼ S −2. Instead, if
∆−1 < T then S T ∼ T 2 and the conservation of probability
leads to the BP statistics P(S ) ∼ S −3/2. When the two terms
on the rhs of Eq. (2) have comparable magnitude, a crossover
between the two scalings occurs. The crossover point varies
with the temporal resolution as S c ∝ ∆−2 (see [28], sec. G). A
full understanding of P(S ) is achieved by noting that power-
law scaling requires a minimum sample size to be observed,
sufficient for the largest cluster to have duration comparable
to 1/∆∗1. If the sample is not large enough the distribution will
appear as exponential (see [28], sec. G).

We finally consider the power-law kernel function φ(x) =

(γ−1)(1+x)−γ. The branching structure underlying the process
is not affected by the kernel so the results above should con-
tinue to hold [21]. For γ > 2, φ(x) has finite mean value and,
as a consequence, results are identical to those obtained for the
exponential kernel (see [28], sec. G). Specifically, P∞ shows a

discontinuous transition when µ � 1, while two sharp transi-
tions are observed for µ � 1. The distribution of cluster sizes
exhibits a crossover from τ = 2 at ∆∗1 to τ = 3/2 for ∆ � ∆∗1
when µ � 1, and the exponent τ = 2 with no crossover when
µ � 1. If γ ≤ 2, φ(x) has diverging mean value, the typical
inter-event time is large preventing the present framework to
be applicable.

In summary, we investigated how self-excitation mecha-
nisms are reflected in the bursty dynamics, exploring their
relationship with avalanche distributions, which offer an ef-
fective probe into the presence of autocorrelation in time se-
ries [1]. We focused on the Hawkes process, a general mecha-
nism to produce self-excitation, autocorrelation, and fat-tailed
distributions in the avalanche size and duration. Critical be-
havior in the distributions is observed at specific values of the
resolution parameter ∆, and is characterized by exponents in-
dependent of the form of the self-excitation mechanism. The
universal critical behavior is governed by both the branch-
ing structure underlying the Hawkes process and the features
of 1D percolation. Nontrivial details of the size distribu-
tion depend on the relative force of the spontaneous and self-
excitation mechanisms. The two classes of behavior coexist
for a wide range of ∆ values, thus making the observation of a
mixture of two classes the most likely outcome of an analysis
where the resolution parameter is not fine-tuned. All findings
extend to the slightly subcritical configuration of the Hawkes
process (see [28], Sec. I), thus showing that our method is sci-
entifically sound also for the analysis of avalanches in some
natural systems possibly operating close to, but not exactly
in, a critical regime [37]. Our work offers an interpretative
framework for the relationship between avalanche properties
and the mechanisms producing autocorrelation in bursty dy-
namics. More work in this area is nevertheless needed. The
Hawkes process is unable to reproduce the variety of critical
behaviors reported for real data sets in Ref. [1], and other self-
excitation mechanisms need to be considered.
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