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The expressive power of artificial neural networks crucially depends on the nonlinearity of their
activation functions. Though a wide variety of nonlinear activation functions have been proposed for
use in artificial neural networks, a detailed understanding of their role in determining the expressive
power of a network has not emerged. Here, we study how activation functions affect the storage
capacity of treelike two-layer networks. We relate the boundedness or divergence of the capacity
in the infinite-width limit to the smoothness of the activation function, elucidating the relationship
between previously studied special cases. Our results show that nonlinearity can both increase
capacity and decrease the robustness of classification, and provide simple estimates for the capacity of
networks with several commonly used activation functions. Furthermore, they generate a hypothesis
for the functional benefit of dendritic spikes in branched neurons.

The expressive power of artificial neural networks is
well-known [1–4], but a complete theoretical account of
how their remarkable abilities arise is lacking [5–8]. In
particular, though a diverse array of nonlinear activation
functions have been employed in neural networks [5, 6, 9–
14], our understanding of the relationship between acti-
vation function choice and computational capability is
incomplete [9–11, 15]. Methods from the statistical me-
chanics of disordered systems have enabled the interroga-
tion of this link in several special cases [11–19], but these
previous works have not yielded a general theory.

In this Letter, we characterize how pattern storage
capacity depends on activation function in a tractable
two-layer network model known as the treelike commit-
tee machine (henceforth TCM). In addition to their uses
in machine learning, TCMs have been used to model non-
linear computations in dendrite-bearing neurons [20, 21].
We find that the storage capacity of a TCM remains fi-
nite in the infinite-width limit provided that the activa-
tion function is weakly differentiable, and it and its weak
derivative are square-integrable with respect to Gaussian
measure. For example, the capacity with sign activation
functions diverges, while that with rectified linear unit or
error function activations is finite. We predict that non-
linearity should increase capacity, but may reduce the
robustness of classification. These connections between
expressive power and smoothness begin to shed light on
the influence of activation functions on the capabilities
of neural networks and branched neurons.

The treelike committee machine—The TCM is a two-
layer neural network with N inputs divided among K
hidden units into disjoint groups of N/K and binary
outputs (Figure 1a) [11–14, 19]. For a hidden unit ac-
tivation function g, a set of hidden unit weight vectors
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{wj ∈ RN/K}Kj=1, a readout weight vector v ∈ RK , and
a threshold ϑ ∈ R, its output is given as

y(x) = sign(s(x)) for (1)

s(x; {wj},v, ϑ) =
1√
K

K∑
j=1

vjg

(
wj · xj√
N/K

)
− ϑ, (2)

where xj denotes the vector of inputs to the jth hid-
den unit. In this model, the readout weight vector and
threshold are fixed, and only the hidden unit weights are
learned. The perceptron can thus be viewed as the spe-
cial case of a TCM with identity activation functions and
equal readout weights [16, 17].

Statistical mechanics of pattern storage—To character-
ize this network’s ability to classify a random dataset of
P examples subject to constraints on the hidden unit
weights imposed by a probability measure ρ, we define
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FIG. 1. Pattern storage in treelike committee machines. (a)
Network architecture. (b) Capacity αc as a function of mar-
gin κ for several common activation functions. Solid and
dashed lines indicate estimates of the capacity under replica-
symmetric and one-step replica-symmetry-breaking ansätze,
respectively.
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the Gardner volume [16, 17]

Z =

∫
dρ({wj})

P∏
µ=1

Θ (yµs(xµ; {wj},v, ϑ)− κ) , (3)

which measures the fractional volume in weight space
such that all examples are classified correctly with margin
at least κ. We consider “spherical” committee machines,
in which the hidden unit weight vectors lie on the sphere
of radius (N/K)1/2 [11–14, 16–19]. As in most studies
of the Gardner volume, we consider a dataset in which
the components of the inputs and the target outputs are
independent and identically distributed as xµjk = ±1 and

yµ = ±1 with equal probability [11–14, 16–19].
We will study a sequential infinite-width limit in which

we first take N,P → ∞ with load α ≡ P/N = O(1)
and then take K → ∞ [22]. The infinite-width limit is
of both theoretical and practical interest, as extremely
wide networks are now commonly used in applications
[7, 9, 23, 24]. In this limit, we expect the free entropy
per weight f = N−1 logZ to be self-averaging, and for
there to exist a critical load αc, termed the capacity,
below which the classification task is solvable with prob-
ability one and above which Z vanishes [14, 16–18]. The
special case of this model with sign activation functions
was intensively studied in the late 20th century, showing
that the capacity diverges as K →∞ [12, 13, 19, 25] [26].
In contrast, Baldassi et al. [11] showed in a recent Letter
that the capacity with rectified linear unit (ReLU) acti-
vations remains bounded in the infinite-width limit. Our
primary objective in this work is to identify the class of
activation functions for which the capacity remains finite.

We begin our analysis by specifying our choice of
general constraints on the activation function, readout
weights, and threshold. We will require the K → ∞
limit to be well-defined in the sense that the output pre-
activation s has finite variance. In this limit, the central
limit theorem implies that the hidden unit preactivations
converge in distribution to a collection of independent
Gaussian random variables [27]. Therefore, the activa-
tion function g must lie in the Lebesgue space L2(γ)
of functions that are square-integrable with respect to
the Gaussian measure γ on the reals. Furthermore, as
var(s) ∝ ‖v‖22/K, we must have ‖v‖2 = O(

√
K). As

‖v‖2 sets the effective scale of ϑ and κ but does not affect

the zero-margin capacity, we fix ‖v‖2 =
√
K. To ensure

that s has mean zero, we set ϑ = K−1/2(Eg)
∑K
j=1 vj ,

where Eg =
∫
dγ g is the average hidden unit activation.

This choice maximizes the capacity for the symmetric
datasets of interest [22], and generalizes the conditions
on v and ϑ considered in previous works [11–13, 19].

To compute the limiting quenched free entropy, we ap-
ply the replica trick, which exploits a limit identity for
logarithmic averages and a non-rigorous interchange of
limits to write

f = lim
n↓0

lim
K→∞

lim
N→∞

1

nN
logEx,yZ

n
N,αN,K , (4)

where the validity of analytic continuation of the mo-
ments from positive integer n to n ↓ 0 is assumed
[16, 18, 28]. This calculation is standard, and we defer
the details to the Supplemental Material [22].

In this limit, the quenched free entropy can be ex-
pressed using the method of steepest descent as an ex-
tremization over the Edwards-Anderson order parame-
ters qabj = (K/N)wa

j · wb
j [16, 18, 28], which represent

the average overlap between the preactivations of the jth

hidden unit in two different replicas a and b. Under a
replica- and hidden-unit-symmetric (RS) ansatz qabj = q,
one finds that

fRS = extr
q

{
α

∫
dγ(z) logH

(
κ+

√
q̃(q)z√

σ2 − q̃(q)

)

+
1

2

[
q

1− q
+ log(1− q)

]}
, (5)

where H(z) =
∫∞
z
dγ(x) is the Gaussian tail distribu-

tion function, σ2 = Eg2 − (Eg)2 is the variance of the
activation, and

q̃(q) = cov

[
g(x), g(y) :

[
x
y

]
∼ N

(
0,

[
1 q
q 1

])]
(6)

is an effective order parameter describing the average
overlap between the activations of a given hidden unit in
two different replicas. This expression for fRS is equiv-
alent to that given in [11] for ReLU activations, but we
adopt a different definition for the effective order param-
eter that has a clearer statistical interpretation.

To find the replica-symmetric capacity αRS, one must
take the limit q ↑ 1 in the saddle point equation that
defines the extremum with respect to q, as the Gardner
volume tends to zero in this limit [11–14, 16, 17]. As
q ↑ 1, q̃ ↑ σ2, but the asymptotic properties of q̃ as a
function of ε ≡ 1− q depend on the choice of activation
function. Making the general ansatz that σ2− q̃ ∼ ε` for
some ` > 0, we find that αRS ∼ ε`−1 [22]. Therefore,
the RS capacity diverges if ` < 1 and vanishes if ` >
1, while the boundary case ` = 1 is special in that the
capacity is bounded but non-vanishing. For the special
cases of sign(x) and g(x) = ReLU(x), this behavior was
noted by Baldassi et al. [11]. For sign, one has σ2 −
q̃ ∼

√
ε, and αRS diverges in the infinite-width limit,

while for ReLU, σ2 − q̃ ∼ ε, and αRS remains finite.
However, [11] and other previous studies [12, 13] relied on
direct computation of the effective order parameters for
all values of q, which is not tractable for most activation
functions, and does not yield general insight.

Asymptotics of the effective order parameter—To un-
derstand the asymptotic behavior of q̃(q) as q ↑ 1
for general activation functions g, we apply tools from
the theory of Gaussian measures [29]. As g is in
L2(γ) by assumption, it has a Fourier-Hermite series
g(x) =

∑∞
k=0 gk Hek(x), where {Hek} is the set of or-

thonormal Hermite polynomials [22]. We note that
the L2(γ) norm of g can then be written as ‖g‖2γ =



3∑∞
k=0 g

2
k, and that g0 = Eg. To express q̃(q) in terms

of these coefficients, we recall the Mehler expansion
of the standard bivariate Gaussian density ϕ(x, y; q)
[30, 31]: ϕ(x, y; q) = ϕ(x)ϕ(y)

∑∞
k=0 q

k Hek(x) Hek(y),

where ϕ(x) = exp(−x2/2)/
√

2π is the univariate Gaus-
sian density. Then, we can evaluate the expectation
in (6), yielding q̃(q) + g20 =

∑∞
k=0 g

2
kq
k, which, by

Abel’s theorem, is a bounded, continuous function of
q ∈ (−1, 1] because q̃(1) + g20 = ‖g‖2γ is finite. Writ-

ing q ≡ 1 − ε, we expand (1 − ε)k in a binomial se-
ries and formally interchange the order of summation

to obtain q̃(ε) + g20 =
∑∞
l=0

(−ε)l
l!

∑∞
k=l(k)lg

2
k, where

(k)l = k(k − 1) · · · (k − l + 1) is the falling factorial.
We recognize the sums over k as the norms of the weak
derivatives of g, which have formal Fourier-Hermite series
g(l)(x) =

∑∞
k=l gk

√
(k)l Hek−l(x), which follow from the

recurrence relation He′k(x) =
√
kHek−1(x) [29]. There-

fore, q̃ admits a formal power series expansion in ε as

q̃(ε) + g20 =
∞∑
l=0

(−1)l

l!
‖g(l)‖2γ εl. (7)

For the RS capacity to remain bounded, we merely
require that the first two terms in this series are finite,
not for the series to converge at any higher order for
non-vanishing ε. Therefore, the RS capacity is finite for
once weakly-differentiable activations g such that the L2

norms of the function and its weak derivative with respect
to Gaussian measure, ‖g‖γ and ‖g′‖γ , are finite. This
class of functions is precisely the Sobolev classH1(γ) [29].
We provide additional background material onH1(γ) and
weak differentiability in the Supplemental Material [22].

Storage capacity—For any activation function in the
class H1(γ), we find that

αRS(κ) =
‖g′‖2γ
σ2

αG

(κ
σ

)
, (8)

where

αG(κ) =

[∫ ∞
−κ

dγ(z) (κ+ z)2
]−1

(9)

is Gardner’s formula for the perceptron capacity [16, 22].
In terms of Fourier-Hermite coefficients, we have σ2 =∑∞
k=1 g

2
k and ‖g′‖2γ =

∑∞
k=1 kg

2
k. Thus, we have ‖g′‖2γ ≥

σ2, with equality if and only if all nonlinear terms (those
corresponding to Hermite polynomials of degree two or
greater) vanish. Therefore, introducing nonlinearity al-
ways increases the zero-margin RS capacity. However,
as αG(κ) is a monotonically decreasing function, the ca-
pacity at large margins can be reduced by nonlinearity if
σ < 1. We note that the zero-margin capacity is invari-
ant under rescaling of the activation function and hidden
unit weights as g 7→ c1g, v 7→ c2v for some constants
c1 and c2. For finite margin, rescaling can increase or
decrease the capacity by changing σ. Thus, in the sense
of classification margin, introducing nonlinearity or re-
scaling can reduce the robustness of classification.

Using this result, we can characterize the RS capac-
ity of wide TCMs for several commonly-used activation
functions [22]. For a linear activation function, our result
reduces to Gardner’s perceptron capacity [16], which is
expected given the equivalence between such a TCM and
the perceptron in the K → ∞ limit. As the sign func-
tion is not weakly differentiable, we recover the result
that the capacity diverges [12, 13, 19]. ReLU is weakly
differentiable, and we recover the result of [11] that
αRS = 2π/(π − 1) ' 2.93388. Considering sigmoidal ac-
tivations, we find that αRS = 2 arcsin(2/3)/π ' 2.45140
for the error function, while αRS ' 2.35561 for the hyper-
bolic tangent and the logistic. As an example of a non-
monotonic activation function, we consider a quadratic,
which yields αRS = 4. We plot the RS capacity as a func-
tion of margin for these activation functions in Figure 1b,
illustrating how nonlinearity can reduce the large-margin
capacity while increasing the zero-margin capacity.

However, for nonlinear activation functions, one gener-
ically expects the energy landscape to become locally
non-convex, and for replica symmetry breaking (RSB)
to occur [11–14, 18, 28]. The RS estimate of the capacity
is therefore only an upper bound, and one must account
for RSB effects in order to obtain a more accurate esti-
mate [11–14, 18, 19, 28]. To that end, we have calculated
the capacity under a one-step replica-symmetry-breaking
(1-RSB) ansatz, extending the results of earlier work [11–
13] to arbitrary activation functions. Under the 1-RSB
ansatz, the replicas are divided into groups of size m,
with inter-group overlap q0 and intra-group overlap q1.
Then, the capacity is extracted by taking the limit q1 ↑ 1,
m ↓ 0, with r ≡ m/(1− q1) finite [11–14, 28].

As detailed in the Supplemental Material [22], this cal-
culation yields an expression for α1-RSB as the solution
to a two-dimensional minimization problem over q0 and
r. Importantly, the finite-capacity condition at 1-RSB is
the same as that with RS. For functions in H1(γ), the
resulting minimization problem must usually be solved
numerically, hence we give results for only a few tractable
examples. RSB does not occur for linear activation func-
tions [16–18, 32]. For ReLU, we obtain α1-RSB ' 2.66428
at (q∗0 , r

∗) ' (0.75716, 16.6374), which is consistent with
the result of Baldassi et al. [11] (see [33]). For erf, we
obtain α1-RSB ' 2.37500 at (q∗0 , r

∗) ' (0.75463, 7.75682).
Finally, for the quadratic, we have α1-RSB ' 3.37466 at
(q∗0 , r

∗) ' (0.28452, 6.39299). In Figure 1, we plot the
1-RSB capacity for these activation functions at nonzero
margins. The gap between the RS and 1-RSB results for
the quadratic is larger than that for erf or ReLU, both in
the numerical value of the capacity and in the difference
between q∗0 and q∗1 . Though the capacities at 1-RSB are
reduced relative to the RS result, their ordering for these
activation functions is preserved.

For general activation functions in H1(γ), we can ob-
tain informative upper bounds on α1-RSB by considering
candidate solutions with fixed values of the inter-block
overlap q0. From q0 ↑ 1, we have α1-RSB ≤ αRS. As
shown in the Supplemental Material [22], we can also
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FIG. 2. The accessible region in (αRS, α1-RSB)-space defined
by the q0 = 0 bound. The allowed region is shaded in gray,
and the locations of the four example activation functions for
which we estimate α1-RSB are indicated by colored dots.

obtain an upper bound for α1-RSB at zero margin as a
function of αRS by taking q0 = 0 and optimizing over r
alone. For αRS ≤ 5/2, these two bounds coincide, while
the q0 = 0 bound is tighter for αRS > 5/2. In particu-
lar, for αRS � 1, this yields α1-RSB = O(logαRS). The
q0 = 0 bound allows us to define an accessible region in
(αRS, α1-RSB)-space, as illustrated in Figure 2. Our nu-
merical estimates for the 1-RSB capacities of ReLU, erf,
and the quadratic all lie within this allowed area, and are
relatively close to the q0 = 0 bound [22].

These bounds suggest that RSB strongly affects the
capacity for activation functions with large derivative
norm and thus large αRS. This is illustrated by the ex-
ample of Hermite polynomial activation functions. For
g(x) = Hek(x), we have αRS(κ = 0) = 2k, hence one can
obtain an arbitrarily large, but finite, zero-margin RS ca-
pacity by taking k � 1. However, as shown in the Sup-
plemental Material [22], the 1-RSB capacity grows ex-
tremely slowly—sub-logarithmically—with degree. This
result is sensible given the oscillatory nature of high-
degree Hermite polynomials, which one expects to yield
a highly non-convex energy landscape.

Discussion—We have shown that the storage capacity
of treelike committee machines with activation functions
in H1(γ) remains bounded in the infinite-width limit.
Our results follow from a replica analysis of the Gard-
ner volume, with the capacity given by a simple closed-
form expression under a replica-symmetric ansatz and
a two-dimensional minimization problem with one-step
replica-symmetry-breaking. Depending on the activation
function, a fully accurate determination of the capacity
would likely require higher levels in the Parisi hierarchy
of replica-symmetry-breaking ansätze [28]. Furthermore,
it can be challenging to rigorously prove that the capacity
results obtained using the replica method at any level of
the Parisi hierarchy are correct [18, 28, 32, 34, 35]. With
these caveats in mind, our results begin to elucidate how
nonlinear activation functions affect the ability of neural
networks to robustly solve classification problems.

Though our analysis focused on a regime in which the

input distribution is symmetric, inputs in both biologi-
cal and artificial neural networks are often only sparsely
active [36, 37]. Our analysis of the RS capacity can be ex-
tended to this regime [22], following Gardner [16]’s work
on the perceptron. Provided that the input and target
output distributions are not both infinitely sparse, the
condition for the capacity to remain finite in the infinite-
width limit remains the same. However, if the activation
function can be linearized about zero, the zero-margin
capacity for a symmetric target distribution decreases to
that of the perceptron in the limit of very sparsely ac-
tive inputs. This holds, for instance, for erf or tanh,
but not for ReLU, for which the zero-margin capacity is
independent of sparsity. This example illustrates how in-
troducing simple yet realistic forms of data structure can
affect pattern storage. Investigating how other forms of
data structure affect storage capacity will be an impor-
tant objective for future work [8, 38–40].

In addition to its use as a model system in ma-
chine learning, the TCM has been proposed as an ab-
stract model for computation in dendrite-bearing neu-
rons [20, 21, 41]. In this application, each hidden unit
represents a dendritic unit that integrates some set of
synaptic inputs to generate a signal that is transmit-
ted to the soma, which in turn generates a “spike” if
the total current exceeds a threshold [20, 21]. The most
striking form of nonlinearity observed in measurements
of dendritic signal processing is the generation of den-
dritic spikes [42, 43]. Though it is difficult to argue that
biological nonlinearities can be infinitely sharp, previous
works have modeled dendritic spikes using non-weakly-
differentiable activation functions [20, 21, 41]. Our work
therefore generates a hypothesis for the functional benefit
of dendritic spikes: non-smooth dendritic nonlinearities
allow the capacity to grow without bound as the num-
ber of branches increases and to remain robustly large
even when inputs are very sparse. It will be interesting
to test this hypothesis using computational models that
incorporate greater biophysical realism [21].

The Gardner volume is agnostic to the choice of learn-
ing algorithm used to train the weights of the network.
This feature makes it a general approach to studying stor-
age capacity, but means that it can provide only limited
insight into the practical realizability of the extant solu-
tions [11–14, 44]. As a result, it is challenging to directly
test theories of the Gardner volume. It is nevertheless
possible to experimentally falsify such theories; we have
failed to do so [22]. More broadly, this distinction be-
tween satisfiability and learnability, combined with its
dependence on data and focus on perfect classification,
means that the Gardner volume is one of many metrics
that should be considered in evaluating activation func-
tion choice [9, 10, 36, 44]. In a recent study of least-
squares function approximation by wide fully-connected
networks, Panigrahi et al. [9] have shown that the speed
and robustness of gradient descent learning is related to
activation function smoothness. Their result is sugges-
tively similar to that of this Letter, though it is as yet
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unclear whether a similar link between smoothness and
trainability exists for treelike networks.

In this work, we have studied the activation-function-
dependence of the storage capacity of wide TCMs. This
network architecture is particularly convenient to study
in the infinite-width limit, but it is far removed from the
deep networks used in practical applications [5]. As a
more realistic model, one could consider a fully-connected
committee machine (FCM), in which each hidden unit
is connected to the full set of inputs. Prior work on
such networks with sign activation functions suggests
that some qualitative aspects of the behavior of TCMs
should still hold true [12, 13, 45]. However, FCMs possess

a symmetry with respect to permutation of the hidden
units, which is broken at loads below the RS capacity [12].
This phenomenon and the presence of correlations be-
tween hidden units complicate the study of their infinite-
width limit. Accurate determination of how FCM storage
capacity depends on activation function will therefore re-
quire further work, in which the insights developed in this
study should prove broadly useful.
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