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The environment of an open quantum system is usually modelled as a large many-body quantum
system. However, when an isolated quantum system itself is a many-body quantum system, the
question of how large and complex it must be in order to generate internal equilibration is an open
key-point in the literature. In this work, by monitoring the degree of equilibration of a single spin
through its purity degradation, we are able to sense the chaotic behaviour of the generic spin chain
to which it is coupled. Quite remarkably, this holds even in the case of extremely short spin chains
composed of three spins, where we can also reproduce the whole integrable to chaos transition.
Finally, we discuss implications on quantum control experiments and show that quantum chaos
reigns over the best degree of control achieved, even in small chains.

Introduction. Quantum technologies may outperform
classical systems for processing information, but this de-
pends on the ability to precisely control a complex many-
body quantum system [1, 2]. Furthermore, since the latter
is in general not isolated but in touch with its surrounding,
it is also critical to know how to deal with the detrimental
effects from the environment. As a consequence, a huge
amount of research has been devoted to understand what
does ’in touch’ and ’surrounding’ exactly mean in this
context [3–6].
A common hypotheses is to consider the environment

as a much larger quantum system than the one of interest.
However, depending on how well isolated the open quan-
tum system is, the time scales introduced by the coupling
to the outside world can be much slower than the ones
dictating internal equilibration [7]. In fact, many of the
experiments that are done today consist of working on a
few well-isolated qubits and executing controlled opera-
tions on some of them [8–18]. In this scenario, one might
wonder whether the set of qubits that are not being con-
trolled, by interacting with the qubits that are, may affect
controllability in the same sense that a large environment
usually does. Therefore, the question of how small and
simple this intrinsic environment could be to generate
internal equilibration and thus affect controllability is
absolutely relevant [19–27], not only from a fundamental
point of view but also from the experimental side.

Unless a correct understanding and efficient characteri-
zation of these complex many-body quantum systems is
first developed, the ultimate goal of controlling its full dy-
namics will always remain unattainable. In this context,
great progress has been made in the study of ubiquitous
properties associated with the non-equilibrium dynamics
of many-body quantum systems, such as equilibration
[28, 29] and thermalization [7, 30–34], where quantum
chaos plays a major role [35–38]. These works are usually
restricted to the limit of high dimensional Hilbert spaces,
where the energy spectrum is large enough to assure a
proper characterization of quantum chaos through spec-
tral measures. It is clear that this is not possible in the
opposite limit, where the many-body quantum system is

not sufficiently large. Are there any vestiges of quantum
chaos at this particular limit? The answer to this question
is one of the main motivations of our work.

In this Letter, we study to what extent we can extract
information about the chaoticity of a large spin chain by
sensing a much smaller one with a simple probe. With this
purpose, we consider a single spin connected to a generic
spin chain and monitor the degree of equilibration of the
reduced spin system at the limit of infinite temperature
through its purity degradation. Under this framework,
we show almost an exact correspondence between the
degree of equilibration suffered by the probe and how
much chaos is present within the dynamics of the chain,
i.e. the more chaos the more equilibration. Quite remark-
ably, this allows us to reconstruct the whole integrable
to chaos transition even in the case of extremely short
spin chains composed of three spins. The fact of finding
robust vestiges of quantum chaos in such small quantum
systems constitutes the main result of our present work.
We believe that the implications of our findings are es-
sentially two. First, since our method does not require a
diagonalization over huge Hilbert spaces nor to determine
a whole set of symmetrized energy eigenstates [39–41], it
constitutes a novel and easy way of sensing the chaotic
behaviour in complicated many-body quantum systems,
which may be of experimental interest due to its simplicity
[42–46]. Second, we argue that this result has relevant
implications in quantum control experiments. As we show
at the end of our work, the optimal fidelities achieved for
a simple control task over the reduced system strongly
depend on the chaotic behaviour of the chain. In other
words, the degree of control is subordinated to the degree
of chaos present, even if the spin chain is small.

For concreteness, in the main text we restrict our study
to a particular spin chain, but the same analysis can be
extended to very different systems [47–54], as we show
in the Supplemental Material [55]. The system under
analysis has no well-defined semiclassical limit and con-
sists on a 1D Ising spin chain with nearest neighbor (NN)
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interaction and open boundary conditions, described by

H =

L∑
k=1

(hxσ̂
x
k + hzσ̂

z
k)−

L−1∑
k=1

Jkσ̂
z
kσ̂

z
k+1, (1)

where L refers to the total number of spin-1/2 sites of the
chain, σ̂jk to the Pauli operator at site k = { 1, 2, ..., L }
with direction j = {x, y, z }, hx and hz to the magnetic
field in the transverse and parallel direction, respectively,
and finally Jk represents the interaction strength within
the site k and k + 1. In general, we will consider equal
couplings, i.e. Jk = 1 ∀ k = {1, 2..., L−1}, situation where
the system has a symmetry with respect to the parity
operator Π̂. Parity is defined through the permutation
operators Π̂ = P̂0,L−1P̂1,L−2 . . . P̂(L−1)/2−1,(L−1)/2+1 for
a chain of odd length L (the even case is analogous).
This implies that the spanned space is divided into odd
and even subspaces with dimension D = Dodd + Deven

(Dodd/even ≈ D/2). However, since in a realistic scenario
couplings may be different due to some experimental error,
we will also analyze the case with different values for Jk
and show the robustness of our result. With respect to the
initial conditions, we will consider an initial pure random
state as |ψ(0)〉 = |ψ1〉 |ψ2〉 ... |ψL〉, where each spin at site
k initially points in a random direction on its Bloch sphere

|ψk〉 = cos

(
θk
2

)
|↑〉+ eiφk sin

(
θk
2

)
|↓〉 , (2)

with θk ∈ [0, π) and φk ∈ [0, 2π). Note that this ensemble
of initial states maximizes the thermodynamic entropy
and is equivalent to a situation of infinite temperature
[56]. This assumption is important since the whole spec-
trum will be equally contributing to the dynamics [55].
From now on, we will take as the reduced system the
first spin of the chain and consider the rest as an effective
environment. For example, a case with L = 3 represents
a single spin acting as an open system and coupled to
an effective environment of only two spins. This may
sound too simple but we remark that a recent experiment
was able to capture chaotic behaviour on a 4-site Ising
spin chain by measuring Out-of-Time Ordered Correla-
tors (OTOC’s) [39, 57] on a nuclear magnetic resonance
quantum simulator [45].
In order to fully characterize the integrable to chaos

transition, the standard procedure requires the limit of
a high dimensional Hilbert space and the separation of
the energy levels according to their symmetries [58–60].
This may demand huge numerical effort or even be quite
laborious to implement experimentally. Within all the
standard chaos indicators in the literature, in this work
we will restrict ourselves to the so-called distribution of
min(rn, 1/rn), where rn refers to the ratio between the
two nearest neighbour spacings of a given level. By taking
en as an ordered set of energy levels, we can define the
nearest neighbour spacings as sn = en+1 − en. With this

notation, we can measure the presence of chaotic behavior
through [61–63]

r̃n =
min(sn, sn−1)

max(sn, sn−1)
= min(rn, 1/rn), (3)

where rn = sn/sn−1. As the mean value of r̃n
(min(rn, 1/rn)) attains a maximum when the statistics is
Wigner-Dyson (IWD h 0.5307) and a minimum when is
Poissonian (IP h 0.386), we can normalize it as

η =
min(rn, 1/rn)− IP
IWD − IP

. (4)

The parameter η quantifies the chaotic behaviour of
the system in the sense that η → 0 refers to an integrable
dynamics while η → 1 to a chaotic one. While η is based
on the spectral properties of the entire system, is useful
only in long chains [55] and requires to analyze separately
even and odd subspaces, we will show that by studying
the equilibration dynamics of a single spin we will be able
to reconstruct the whole structure of the regular to chaos
transition, even in the case of extremely short spin chains
and without resorting to any classification according to
the energy level symmetries.
In panel (a) of Fig. 1 we summarize the main idea of

our work. We are interested on how a single spin acting
as a probe of a small chain behaves in the typical regimes
where the same spin chain but much larger is known to be
either integrable or chaotic. With this purpose, we solve
the Schrödinger equation for the whole small system ρ(t)
and then trace over the environmental degrees of freedom,
focusing on the purity of the reduced density matrix ρ̃(t)
of the first spin of the chain (P(t) = Tr

[
ρ̃2(t)

]
). Since the

purity of the probe is fully determined through its Bloch
vector ~r = (rx, ry, rz), where ri(t) = Tr (σiρ̃(t))∀i ∈
{x, y, z } (i.e. P(t) = 1/2(1 + |~r(t)|2)), its long-time dy-
namics is strictly related to the degree of equilibration
of the whole set of local observables A = { I, σx, σy, σz }.
This subsystem equilibration should be understand as
lim
t→∞

Tr
(
ρ̃(t)Ô

)
= Tr

(
ρ̃∞Ô

)
∀ Ô ∈ A, where ρ̃∞ is the

equilibrium state of the probe [28, 29]. If the spin chain
is large enough, under the assumption of infinite temper-
ature, we have ρ̃∞ = I

2 , which implies Tr (σiρ̃∞) = 0 ∀i ∈
{x, y, z } and thus P∞ = 1/2.
From panel (b) of Fig. 1 we can qualitatively see that

while in the chaotic regime the long-time dynamics washes
out the purity of the system, leading to a state of almost
maximum uncertainty, this is not the case for the inte-
grable regime, where at long times it oscillates periodically
around a mean value much greater than 1/2. It is clear
that fluctuations are much smaller in the chaotic regime,
despite the spin chain analyzed in Fig. 1 is quite short
(L = 6). Also, while fluctuations strongly decay with
system size in this regime, they do not in the integrable
case, as it is shown in panel (c) of Fig. 1. With respect
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Figure 1. Panel (a) Time evolution of the probe in the Bloch
sphere, considering a small chain of L = 6 spins and both
integrable (hz = 0.0, orange squares) and chaotic (hz = 0.5,
violet circles) regimes. The initial state is a pure random state
for each spin. The rest of the parameters are set as hx = 1,
Jk = 1 ∀ k = {1, 2..., L − 1} and T = 100 (in units of J−1).
Panel (b): Purity of the probe for the same set of parameters
as (a). The temporal average is shown as a dashed line. Panel
(c): Time fluctuations of the purity (averaged over 50 different
initial states) as a function of system size in both regimes.
Fluctuations are defined as δ(P ) =

√
〈P (t)2〉 − 〈P (t)〉2, where

the interval t ∈ [50, 100] (in units of J−1) was considered [55].

to the short-time decay, associated with decoherence, it
is similar in both regimes [64]. For this reason, we will
focus on the long-time regime, where some degree of equi-
libration takes place even in extremely short chains, as
we shall see.

Having this qualitative picture in mind, we now intend
to measure the degree of equilibration in a more quanti-
tative way. To do so, we will focus again on the purity
degradation of our reduced spin system ρ̃(t), by defining

an averaged purity as P =
1

N

∑N
i=1

(
1

T

∫ T
0

Tr
[
ρ̃2i (t)

]
dt

)
,

where we first make a temporal average over the purity of
a particular ρ̃i(t), defined by a given random initial state,
and then we repeat this procedure for N different initial
random states, to finally perform a global average over all
realizations. Let us remark that since we are interested
in studying the transition to chaos as a function of a
certain parameter, to compare the averaged quantity P
with the chaos measure introduced in Eq. (4), we define
a normalized averaged purity as

PNorm =
P −min (P)

max (P)−min (P)

(
0 ≤ PNorm ≤ 1

)
,

(5)
where min (P) and max (P) are the minimal and maximal
value obtained when sweeping over the parameter range.

With this definition, we have now all the necessary ingre-
dients to pose the following question: how does the purity
degradation of the reduced system behaves as a function
of the degree of chaos present in the rest of the chain?
To address this issue, in Fig. 2 we plot the spectral chaos
indicator η for a large chain composed of L = 14 spins
(D = 16384) together with the averaged purity PNorm
of the reduced system for different sizes of the total spin
chain, both as a function of the magnetic field hz.
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Figure 2. Main plot: PNorm for the probe considering different
sizes of the environment together with the chaos parameter 1−
η, both as a function of the magnetic field hz. For computing
PNorm, 50 different realizations over random initial states were
considered. For the calculation of 1 − η, a chain composed
of L = 14 spins (D = 16384) was selected and only the odd
subspace was taken into account (Dodd ≈ 8192). Parameters
are set as T = 50, hx = 1 and Jk = 1 ∀ k = {1, 2..., L − 1}
with the exception of the violet crossed curve where Jk ∈
[0.5, 1.5]∀ k = {1, 2..., L − 1}. The plot begins at hz = 0.01.
Inset plot: Same as the main plot but without normalizing
the averaged purity (i.e. P).

Interestingly, the behavior of the averaged purity of
the probe is quite similar regardless of the length of the
environment. In fact, there is a well distinguished area in
all the curves where the purity degradation is maximal.
By comparing with the curve given by 1 − η, we can
see that this region coincides almost perfectly with the
region where chaos reigns, i.e. (1− η)→ 0. Quite remark-
ably, this is true even when the system is extremely short
(D = 8), where we can observe a precise correspondence
with the exception of a small deviation near hz ∼ 0.5.
This deviation can be smoothed by either taking more re-
alizations over different initial states or slightly increasing
the size of the environment by one spin.

Various implications emerge from the analysis of Fig. 2.
In first place, by using one spin as a probe and studying
its purity dynamics, we were able not only to sense the
chaotic behaviour present in the full system, but also to
reconstruct the whole integrable to chaos transition with
a great degree of correspondence in comparison to other
standard indicators of chaos. However, while the usual
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methods require a full diagonalization and classification
of eigenenergies according to their symmetries within
huge dimensional subspaces [55], we have obtained the
same results without requiring the above and even in
much smaller subspaces. Moreover, the average over
different realizations of the purity proved to be robust not
only to the size of the environment, but also to whether
we consider equal couplings or even a random set of Jk
modelling some hypothetical experimental error (see violet
crossed curve in Fig. 2). Our result evidences that when
a small fraction from a large chaotic system is selected,
some trace of the universal nature of the latter survives.

Keeping in mind the results presented so far, let us now
examine the following hypothetical situation: consider an
experimental scenario where a given spin chain is well-
isolated from the external environment and where some
particular spin of this chain can be externally controlled.
For instance, consider a time-dependent Hamiltonian

H =

L∑
k=1

(hxσ̂
x
k + hzσ̂

z
k)−

L−1∑
k=1

Jkσ̂
z
kσ̂

z
k+1 + λ(t)σ̂z1 , (6)

where λ(t) is a control field that can be experimentally
tuned. Thus, you may want to implement some particular
protocol over the spin you are able to control. For example,
consider a population transfer protocol, where the first
spin of the chain has to be addressed from the initial
state |ψ(0)〉 = |0〉 to the final target state |ψtarg〉 = |1〉.
Or maybe you are interested in generating a maximally
entangled state between the first two spins of the chain, i.e.
|ψtarg〉 = 1√

2
(|00〉+ |11〉). To do so, the time-dependent

control field λ(t) must be optimized to maximize the
fidelity F = |〈ψ(T )|ψtarg〉|2 at a final evolution time T .
In light of the results we presented before, you may be
wondering the following question: is the maximum degree
of control achievable subordinated to the degree of chaos
present within the non-controlled environmental spins?

In order to answer this question, we consider the control
function λ(t) as a vector of control variables λ(t) →
{λl} ≡ ~λ, i.e. a field with constant amplitude λl for each
time step. By dividing the evolution time T into nts
equidistant time steps (l = 1, 2, ..., nts), the optimization
was performed exploring several random initial seeds and
resorting to standard optimization tools [65, 66]. In Fig.
3 we plot the optimal fidelities achieved for both the
population transfer and entangling protocols, as a function
of hz and for different lengths for the total spin chain.
Interestingly, we can conclude from Fig. 3 that the

optimal fidelities achieved for these simple but paradig-
matic protocols are very sensitive to the degree of chaos
that is present within the rest of the spin chain. In fact,
from the main plot and from inset (a) we can see that
the optimal fidelities behave quite similarly to the chaos
parameter 1 − η, as a function of the magnetic field hz
(see Fig. 2). Accordingly, in the inset (b) of Fig. 3 we
plot the optimal fidelities obtained in the main plot but

Figure 3. Main plot: Optimal fidelities for a population
transfer protocol as a function of hz. The dashed curve is for
L = 6 spins and the solid for L = 9. Interaction parameters are
set as T = 20, hx = 1 and Jk ∈ [0.5, 1.5] ∀ k = {1, 2..., L− 1}.
The initial state is |0〉 for the first spin and random for the
rest of the system (see Eq. (2)). Only one realization was
considered. Inset (a): Optimal fidelities for an entangling
protocol between the first two spins of the chain. Parameters
are set as L = 6, T = 20, hx = 1 and Jk = 1 ∀ k = {1, 2..., L−
1}. The initial state is random for each spin and only one
realization was considered. Inset (b): Optimal fidelities of the
main plot as a function of the chaos parameter η.

now as a function of the degree of chaos associated to the
specific strength of the magnetic field hz (see again Fig.
2). By doing this, it is clear that the more chaos, the
worse control. This last statement clearly relates to what
we have been discussing before, in the sense that a greater
degree of chaos is also associated with a stronger equili-
bration. Therefore, this means that the non-controlled
system is acting as an effective environment for the spins
that are being actively controlled and we argue that even
in the case where this effective environment is small, its
dynamics should be carefully tuned in order to minimize
equilibration and thus improve the degree of control over
the reduced system that is being addressed.
Concluding remarks. The goal of this work was to

study the interplay between equilibration, quantum chaos
and control in the limit of a small isolated many-body
quantum system. In this context, by monitoring the
long-time dynamics of a spin connected to a generic spin
chain, we found that its purity degradation can be used
as a probe to sense the chaotic behaviour of the chain
under the limit of infinite temperature. By showing that
a greater degree of equilibration is associated with a more
chaotic region, we were able to reconstruct the whole
integrable to chaos transition even in the case where the
full system was merely composed of three spins. This
was done without any consideration of the conserved
symmetries of the system, which is another important
advantage with respect to previous methods considered
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in the literature. The fact of finding robust vestiges
of quantum chaos in such small quantum systems is of
fundamental interest but also has practical implications in
quantum control experiments. By considering simple but
paradigmatic protocols over a spin subject to a control
field that can be experimentally tuned, we have shown
that the best control achievable is a function of the degree
of chaos present within the full system of which it is
a part. Consequently, in realistic experiments where a
control task is sought over a reduced part of a system
that is not necessarily large but that nevertheless presents
signatures of quantum chaos, the interaction parameters
must be carefully adjusted to avoid the chaotic regime
and thus achieve a better performance of the control.
We acknowledge R. A. Jalabert for his insights about

the manuscript. The work was partially supported
by CONICET (PIP 112201 50100493CO), UBACyT
(20020130100406BA), ANPCyT (PICT-2016-1056), and
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