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Hydrodynamic stagnation converts flow energy into internal energy. Here we develop a technique
to directly analyze this hydrodynamic dissipation process, which also yields a lengthscale associated
with the conversion of flow energy to internal energy. We motivate the usefulness of this analysis
for finding and comparing the hydrodynamic-stagnation dynamics of implosions theoretically, and

in a test application to Z-pinch implosion data.

I. INTRODUCTION

An essential element of the implosion of a fluid or
plasma is the process of stagnation, whereby the hydro-
dynamic energy of the implosion is converted into ther-
mal energy. When an implosion is modeled or simulated
in one dimension (the radial direction), this stagnation
process proceeds ideally; at each instant in time, the mo-
mentum of the flows converging to the stagnation point is
exactly balanced by an oppositely directed flow mirrored
over the stagnation point (or stagnation line in the cylin-
drical case). More so, taking the stagnation point (or
line) as the origin, we have perfect rotational symmetry
for the imploding flow, V(r,0,¢,t) = V(r,t) or for the
cylindrical case V (r, 0, z,t) = V(r,t), with no z variation
as well.

When it proceeds ideally, the process of implosion and
stagnation is highly effective at creating hot, high-density
matter, such as in the formation of stars [1-4], or during
laboratory experiments to generate fusion energy, or an
intense burst of X-rays or neutrons [5-8]. In practice, the
implosion and stagnation rarely proceed in an ideal (1D)
manner, due to a variety of possible causes, for example,
asymmetry of the implosion drive or of the initial con-
ditions, or instabilities such as Richtmeyer-Meshkov or
Rayleigh-Taylor [9-21]. When the implosion process is
not ideal, the perfect balance of hydrodynamic momen-
tum at stagnation is no longer guaranteed, and residual
(non-radial) momentum may be left in flows during and
after the stagnation process. This momentum may still
dissipate into thermal energy, but the effect of non-ideal
stagnation is generally a reduction in the peak density
and temperature. While such a reduction is often an un-
desirable effect, imbalanced or unstable flow stagnation is
sometimes purposefully employed to generate turbulence
for study (e.g. 22-24).

In plasma compression experiments, the consequences
of this reduction in achieved peak density and temper-
ature, such as less-than-ideal (fusion) neutron or X-ray
production, are often used as an implied measure of the
non-ideality of the implosion. That is, comparing ex-
perimental results to 1D simulation results, and noting
the difference, allows for an indirect inference of the de-
gree to which the implosion proceeded ideally. Because

of the importance of achieving an ideal implosion, a vari-
ety of diagnostics have been used to elucidate implosion
symmetry (e.g. 15, 25-28), which, however, inform only
indirectly on the hydrodynamics (flows) of stagnation.

Here, we propose a new, complementary, technique for
assessing flow stagnation which directly infers properties
of the hydrodynamic flow at stagnation and its conver-
sion to thermal energy. It can be applied both to assess
the ideality of implosions, and also to turbulent flows,
for example to infer a turbulent forcing lengthscale. Ad-
ditionally, this technique uses a general starting point,
which may enable it to be usable and comparable across
differing stagnations. It requires only spatially integrated
hydrodynamic information, which is often the kind of
data obtainable in measurements.

Hydrodynamic stagnation is the process of dissipation
of the implosion flow energy into internal and thermal
energy of the compressing material. A key point of the
present work is that we can compute a characteristic
lengthscale for this conversion process, and this char-
acteristic scale behaves very differently for ideal versus
highly non-ideal stagnations. If we consider a region
of flow with total mass m, a characteristic velocity v,
and a characteristic length scale [, then, on dimensional
grounds, the dissipation of the flow kinetic energy in this
region can be written

- Bx = nmv® /1, (1)

where the overdot is a time derivative and 7 is a propor-
tionality factor that we explain shortly. For the charac-
teristic velocity, take v? = 2FEf /m, that is, an average
velocity which yields the total kinetic energy of the flow.
As the flow evolves all the quantities may be functions of
time, FEx(t), m(t), v(t),l(t).

The present work has two pieces. First, in Sec. II, we
theoretically motivate the utility of the hydrodynamic-
dissipation relation, Eq. (1), for distinguishing ideal and
non-ideal stagnation. Second, in Sec. III, we develop a
method to test this idea on data, and apply it to a com-
parison of experimental data with synthetic data from
a 2D simulation. Notably, this 2D simulation was care-
fully matched to the experimental conditions, and gives
quite similar radiation yield (the figure of merit for the
experiment), but this new analysis shows distinguishable



hydrodynamic behavior at stagnation.

II. HYDRODYNAMIC DISSIPATION
RELATION IN IDEAL AND NON-IDEAL
STAGNATION

For the case of flow stagnation (v — 0), we first exam-
ine the relation Eq. (1) in two opposite extremes. On the
one hand, we consider a flow region that is purely turbu-
lent, with no radial convergence at all; such a flow could
develop as a result of a severely asymmetric or unstable
stagnation (see e.g. Refs. 22-24 where such stagnations
are used generate turbulence for study). On the other
hand, we consider both spherical and cylindrical ideal,
self-similar, radial stagnations; a variety of analytic stag-
nation solutions of this type exist, here we consider an
isentropic (with adiabatic v = 5/3) spherical case [8] and
an isothermal cylindrical case [29]. Following the consid-
eration of these cases, we consider a simple model for a
flow containing a combination of ideal (self-similar) radial
flow and turbulent flow.

We focus on the behavior of [(¢), which shows dra-
matic differences between ideal and turbulent stagnation
(while v — 0 in both cases). In the ideal cases examined,
[(t) — 0 as maximum compression is reached. In the
turbulent case, [(¢) has a tendency to grow in time (or
remain a constant). This hydrodynamic scale, which can
be nondimensionalized as a fraction of the plasma size,
fi(t) = U(t)/lpiasma(t), may then represent a metric to
determine the hydrodynamic ideality of implosions and
to compare different implosions (say, cylindrical Z-pinch
versus spherical implosion).

To understand I(t) (and Fg, v(t)) in an ideal stag-
nation, we first consider a spherical, self-similar, isen-
tropic stagnation as described by, for example, Atzeni
and Meyer-ter-Vehn [8]. With h(t) = (1 + (t/tg)?)"/?
and £(r,t) = r/(Roh), the profiles of radial flow and den-
sity are w(r,t) = rh/h and p(r,t) = poh 3[1 — €2]3/2,
The stagnation radius (radius at maximum compression,
t = 0) is Ry, and the radial domain extends from 0 to
R(t), and R(t) = Roh.

Calculating the mass, m(t) = [p(r,t)dV (con-
stant here), and the total kinetic energy, Ex(t) =
[p(r,t)u(r,t)?dV/2, permits us to find v(t) =
(2Ek (t)/m)'/2.  Calculating Ex, and requiring it to
equal the dimensional analysis expression, Eq. 1, we find
fl = lSD,isentropic(t)/2R(t) = 3/327’](t/t0)2, where we
have written [ as a fraction of the diameter 2R(t), f;.
Both [ and f; go to 0 as maximum compression is ap-
proached (¢t — 0— in this case).

A similar result occurs for [(¢) in the cylindrical,
isothermal, stagnation solution utilized in Yu et al. [29].
Here, h(t) is the solution to the differential equation,
h=—v2In h/to, for times during the compression phase
(t < 0). Here tg = \/po/poRo, with po the final (peak)
pressure. We again have h(t = 0) = 1. With this h(t),
u(r,t) and £(r,t) are unchanged from the spherical case,

while the density profile is p(r,t) = poh~2exp[—£2/2).
The domain in r now extends to  — co. Carrying out
the same procedure for finding [(¢) as in the spherical
case, we find

fl = lQD,isothermal (t)/2R(t) = \/577 In ha (2)

which also goes to 0 as maximum compression is ap-
proached (t — 0— or h — 1+).

Turning now to I(¢) in a turbulent flow, we discuss two
studied limits. First, the simplest case is steady forced
turbulence, where flow dissipation is balanced by the in-
put flow energy, and Fx is a constant. Then v(t) and
I(t) are also constants, assuming forcing at a fixed spa-
tial scale. Furthermore, I(t) = I corresponds to this
constant spatial forcing scale [30].

Second, we consider freely decaying turbulence (with
no flow energy input). At high Reynolds numbers, v(t)
and [(t) exhibit power law behavior in time. For super-
sonic turbulent flows (the flows in the Z-pinch experi-
ments considered later are supersonic or nearly so), the
velocity decays as v(t) = vo(1 + t/ty)~*/2, while the
length scale increases in time as I(t) = lo(1 + t/tg)*/?,
where tg ~ lp/vg and a & 1, albeit with some uncer-
tainty in « [30, 31]. Here t > 0. When the turbulence is
subsonic, these power law forms of v(¢) and [(t) generally
still hold at high Reynolds numbers, with the velocity de-
creasing and the length scale increasing, but with possi-
bly somewhat different powers (see e.g. 32-34). One may
also consider decaying turbulence with saturated length-
scale (such as may occur in decaying wall-bounded tur-
bulence). In this case the v(t) decay is still a power law,
but with higher « & 2 [34, 35].

Simulation results in the supersonic decay case are well
fit with a single value of 7 [30], motivating the assump-
tion here that this proportionality factor is a constant;
to the extent it varies in time in the general case, this
time dependence will be rolled into I(¢). In this case, we
have n = 27n, = 0.42 [30], and we use this value of 7.
Strictly speaking, in the turbulent case, the velocity en-
tering Eq. (1) is the root mean square turbulent velocity,
Urms, and the relation v? = 2Ef /m only holds approx-
imately when v = v;,,,s because there can be modest
correlations between velocity and mass fluctuations [30].

If we use the substitution I = fj2R and define y =
nmv3 /2R, Eq. (1) can be written y = f; x (—Fg). The
top panel of Fig. 1 shows the behavior of y versus
x = —Fk for both the cylindrical ideal solution (k; = 0)
and a turbulent decay case (k; = 10). In the cylindri-
cal stagnation case, the plot covers times just preceding
peak dissipation through to stagnation; the horizontal
approach of the k; = 0 curve to the origin coincides with
fi > 0in Eq. 2 as ¢ — 0 (and v — 0). In the turbu-
lent case, peak dissipation occurs starting from the initial
state. The lower panel of Fig. 1 shows f; versus —Fx
for these same cases; we can see f; — 0 as stagnation is
approached in the ideal cylindrical stagnation, while f;
remains a significant fraction of the plasma diameter in
the turbulent case.



We now discuss further the physical meaning of the
lengthscale [ associated, through Eq. (1), with the dis-
sipation of hydrodynamic motion. As discussed above,
for turbulence, this lengthscale corresponds in the sim-
plest case (homogeneous, isotropic, steady forcing) with
the forcing scale (spatial wavelength). Then, for turbu-
lence forced in a narrow range of scales (wavelengths,
or Fourier wavenumbers), [ is associated with the peak
of the energy spectrum in wavelength space, that is,
roughly, the dominant wavelength of spatial variation of
the flow.

In general, this characteristic wavelength of flow varia-
tion need not be associated with a corresponding spatial
variation in the density. For example, in the incompress-
ible flow limit, the density is uniform for any flow field.
In the more general case, the turbulent density distri-
bution depends on the Mach number, among other fac-
tors (see, e.g. Ref. 36). Considering the self-similar
stagnation cases discussed above we see that, here too,
the lengthscale [ need not correspond with scales of den-
sity variation. At stagnation, for example, the profiles
of density (and temperature in the adiabatic spherical
case) vary over the stagnation radius, Ry, while I — 0.
This fact helps illustrate the complementary nature of
the current approach to looking at stagnation dynamics
when compared with approaches focused on the symme-
try of density or temperature (or some combination of
the two).

Consider some mass, m, with flow energy Ex (thereby
defining v). With these quantities fixed, a shrinking
lengthscale [ implies, through Eq. (1), a growing dis-
sipation rate of the hydrodynamic motion. FEvidently
the “ideal” self-similar implosions considered above, with
fi = 0 (I = 0) as stagnation is approached, have very
high dissipation rates in this metric during the period
leading up to stagnation. We have already contrasted
this lengthscale behavior with turbulent flow dissipation,
which does not show this strong increase in relative dissi-
pation (f;). As a further contrasting case, also with zero
mean flow, consider a flow in solid body rotation. Since
(in an idealized case) this configuration has no dissipation
of the hydrodynamic energy, we have | — co. Consider-
ing the spherical self-similar implosion solution discussed
above at times well before stagnation, as t — —oo, we
similarly find f; — oo, corresponding again to vanishing
dissipation of the finite initial kinetic energy.

Here we work in terms of [ (and ! normalized to
the plasma size, f;), but we could instead work with
a dissipation timescale 7 = /v ~ —Ex/Eg/. This
slightly alternate view is still an analysis based on the
hydrodynamic-dissipation relation, Eq. (1). In this case,
the self-similar stagnation solutions have 7 — 0 as stag-
nation is approached, that is, an increasingly short dis-
sipation timescale. For the steadily forced or decaying
supersonic turbulence cases discussed above, 7 will be,
respectively, constant or growing in time.
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FIG. 1. (a): Inferred kinetic energy dissipation rate (y =
nmv®/2R) at the flow scale (2R) versus kinetic energy dis-
sipation rate (z = —EK), for a region containing different
initial proportions of kinetic energy in self-similar cylindrical
stagnation flow and non-stagnating (turbulent) flow. When
ki = 0 (blue, thicker solid line) the region contains only the
self-similar stagnation flow. When k; = 10 (purple, thinner
solid line) the non-stagnating (turbulent) flow has ten times
the energy of self-similar flow and dominates the dynamics;
intermediate cases are also shown. Time (implicit) progresses
clockwise along each curve, in the k; = 10 case it progresses
from right to left. For each case, both dissipation values are
normalized to the peak —FEx. (b): The fractional hydro-
dynamic (dissipation) lengthscale f; versus the kinetic energy
dissipation rate, for the cases from (a); time implicit as above.
Plotted model parameters h; = 2.5, A\ = 0.35, n = 0.42, see
Sec. ITA.

A. Basic model for mixed stagnation

Figure 1 also shows cases that are intermediate be-
tween the pure cylindrical self-similar stagnation solution
and a turbulence-dominated case. All cases are labeled
by ki = Er,/Eg,;, which is the initial ratio of turbulent
kinetic energy, Er, to cylindrical stagnation solution ki-
netic energy, Fg. Here, the plasma starts with this initial
energy mix at some radius (taken as h; = 2.5, R; = h; Ro,
in Fig. 1) and then evolves in time in a manner we now
describe.

To get a more general sense for f; and the hydrody-
namic dissipation relation, Eq. (1), we consider an essen-
tially heuristic treatment for a mass of plasma contain-
ing a mix of stagnating flow and some non-stagnating
flow (statistically uncorrelated with the radial stagna-
tion flow). We treat this non-stagnating flow as turbu-
lent for the sake of calculating its dissipation, this is dis-
cussed further at the end of the present section. For this



mixed-flow plasma, we treat the stagnating flow identi-
cally to the self-similar cases discussed above, here using
the isothermal cylindrical solution. In other words, the
stagnating flow component is treated as unaffected by the
presence of the statistically-uncorrelated non-stagnating
flow.

Then this component’s flow quantities follow as above,
and in particular we have the stagnating flow kinetic en-
ergy, Fg = M’U%/Q, with M the constant total mass,
and vg = 2(Rg/to)VInh the average velocity character-
izing the total kinetic energy. We similarly write the
turbulent-component kinetic energy E7 = Mv2 /2. Thus
ki = (vr,i/vs)?.

The characteristic turbulent velocity, vy, evolves ac-
cording to,

d (v}/2) 2h 5 v}
At 3hT T X2Roh

(3)

This model equation is based on existing models [37, 38]
of turbulence undergoing compression in velocity fields
that are linear in radius (u(r,t) ~ ), as is the case here.
The first term on the right side of Eq. (3) models energy
injection into the turbulence by the compression (two-
dimensional compression in this case, with no compres-
sion along z). The second term models the turbulent
dissipation in the high-Reynolds number limit for a flow
with saturated lengthscale [30, 39].

This lengthscale is taken as a fraction of the (changing)
plasma diameter [ = A2Rph. By saturated lengthscale,
we refer to the use of a constant value of A (constant
fraction of the plasma size). Then, in the pure turbulent
decay case h=0,vs =0, we will find fi = A. We use this
saturated lengthscale form of the dissipation here partly
for convenience in solving the model, and also because
there are existing computed values for \ for compressing
turbulence, with prior work finding A ~ 0.19 in a low-
Mach case [38, 40] (the forcing studied in Ref. 40 mimics
compression) and A ~ 0.35 in a supersonic isothermal
turbulence case [37]. The plots in Fig. 1 use A = 0.35.

Equation (3) can be solved explicitly for vy, with an
initial condition vy ; = vr(h = h;) that can be expressed
in terms of vg and k;. Defining the total kinetic en-
ergy F = Ep + Eg and the (total) characteristic ve-
locity v = y/2FE /M, we can again compute the compo-
nents of the dissipation relation, Eq. (1) and the (com-
bined) hydrodynamic dissipation lengthscale. Defining
or = vr/(Ro/to) and explicitly writing f; = [/2R and
v we have,

~2 —=3 -
_91\3/2 U nup
Alnh+v2)° (1——+7>
J ( 7) 3 Mv2Inh

)
- 4y2Inh

-1
2 1

o = — = (E(h;) — E(h .

vr h2/3{hf/3 kilnhi+ 1 /\( (hi) ())}

Here we use the shorthand E(h) = Erf [\/21n h/3]

In writing the model equation for vr, Eq. (3), we
have assumed that this turbulent component is isotropic.
The assumed value of \ also comes from simulations
in which the compression (and turbulent energy) is
isotropic. Since the compressions at hand are cylindri-
cal, this means there is an assumption that the turbulent
energy is either generated isotropically or that nonlinear
interactions are sufficient to isotropize it (on one hand, in
turbulence driven by large two-dimensional compression
this need not be the case [41], on the other hand, turbu-
lence experiments often generate turbulence by colliding
flows in planar geometry [22-24]).

Practically, if we alter this isotropy assumption we
should still expect distinguishable behavior between k; =
0 and k; # 0 in Fig. 1. Further, since here we take
h; = 2.5, the effects of compression on the turbulent
component in Fig. 1 are already quite modest; most im-
portant is that for k; # 0 we now have two hydrodynamic
components which dissipate differently.

Note that the stagnating flow completely converts
(dissipates) its kinetic energy in the time ¢; =
to/m/2Erfi(/In h;), which is on order of to for h; not
too large. We may write an initial turbulent dissipation
timescale as 77; = l;/vr; = to(Ahi)/(VkiInh;). This
will again be on order of to for a range of h;, k;, A, how-
ever, this dissipation timescale is now in the sense of a
power-law decay rather than complete conversion. Thus,
in the finite time to stagnation (h = 1), there can be in-
complete dissipation of Erp; this leads to certain curves in
Fig. 1 ending far from 0,0 when plotted on the interval
h € [hi,1]. The k; = 10 curve, having a shorter dissi-
pation timescale, dissipates more substantially over the
interval, but its behavior is still distinct from the ideal
stagnation because the lengthscale associated with this
dissipation is very different.

This turbulent dissipation timescale is still fast in
many cases compared to other ways we may consider
non-stagnating flow to dissipate (e.g. the viscous decay
timescale is longer by on order of the Reynolds num-
ber). Other dissipation mechanisms may have different
lengthscale behaviors. In general, we may expect that
substantial changes in the y versus —Ex and f; curves
can still occur for Er dissipating in a manner other than
turbulent dissipation, when the dissipation mechanism is
not matched in rate and lengthscale to the stagnation
energy conversion.

IIT. DEMONSTRATION APPLICATION

We seek to produce the curve y vs —Ex during a
stagnation and to infer I(¢). To do so requires measure-
ments of £ i, m, and v. Here we work with experimental
measurements from the stagnation period of gas-puff Z-
pinches [10, 19], and synthetic data from 2D simulations
designed to match the experiments [42]. This data con-
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FIG. 2. (a), (b): Scatter plots of y vs Pr for Z-pinch exper-
iment data and synthetic data from matched 2D simulations,
respectively. On the right, the continuous simulation data is
shown (black, solid) in addition to simulation points matched
in time to the experimental measurements (plus one “addi-
tional” data point because the last matched time is Pr ~ 0
for the simulations). In both cases, time progresses clockwise
from the left-most (green) triangle. (c), (d): Instantaneous
values of the fractional hydrodynamic lengthscale, f;, inferred
taking —FEx ~ Pg for the experiments and simulations, re-
spectively, after peak emission as stagnation is approached.

sists of a set of radiation measurements of the stagnat-
ing plasma which are discussed in more detail elsewhere
[10, 19, 43]; we treat synthetic and experimental data the
same. Both the experiments and the matching simula-
tions focused on analyzing only a subset (L,; = 2 mm) of
the z extent of the stagnating plasma which was observed
to have peak radiation emission at a similar time (the ex-
act stagnation time varies along the column). Then, we
expect that the 2D (r,z) simulations will stagnate ap-
proximately ideally, lacking any 6 variation, while the
experiments may have such variation. First we describe
the time-dependent inference of m and v, then we discuss
the estimation of —F.

The Z-pinch experimental measurements (Table T of
Ref. 19) give, at six times during stagnation, the plasma
radius, 7, electron density n., and an inference of the
plasma kinetic energy through measurements of the total
Doppler-broadened ion energy and the electron tempera-
ture. Together these permit us to calculate the radiating
plasma volume and m(t) and v(t) for the six measure-
ment times.

We calculate Iy (t) = 2k, o(t) [Bk(TET —
T;)/mi]"/2, and m(t) = (nt“r®/ Z)m;V}y, with the plasma
volume Vy(t) = w(rky™)?L, and Z ~ 8. Here Tl
is a total Doppler-broadened ion temperature, 7T; is the

thermal ion temperature, and n!""® is an electron den-

sity inferred through a combination of radiation mea-
surements. We use the radiating plasma diameter, 1,;(t),
which is measured through X-ray pinhole imaging at the
six times, as the reference lengthscale, f; = 1/l,.

Possessing measurements of m(t) and v(t), we could
directly calculate Ex ~ A(mv?®/2)/At by taking the ap-
proximate time derivative using our data. It is impor-
tant to note that we are looking for time variation of
Ex in Eq. 1 that has to do with dissipation of hydro-
dynamic motion, rather than changes in hydrodynamic
motion, say, due to flows into or out of the measure-
ment region. Given the type of observations available
for the current experiments, we do not pursue this direct
derivative strategy, to try to reduce the influence on our
measurements of unknown flows of hydrodynamic energy
into or out of the measurement region.

Instead, we proceed as follows. At present, we infer
the radiating mass and v,,,s at six times in the hottest,
densest, part of the stagnation using K-shell radiation
measurements [10, 19]. When hydrodynamic motion is
dissipated in this region, it flows into ion and electron
thermal energy, which are equilibrated on a timescale
that is very fast compared to the stagnation time [10].
Some portion of this energy is then radiated; if this radi-
ation is considered to be time-local to the hydrodynamic
dissipation, then we write,

_EK:PR+EO:PR(1+EO/PR)7 (6)

with Pr the radiated power, which is measured at each
time. Here Fo is other changes in the plasma energy, at
present principally changes in plasma thermal and inter-
nal energies. This approach is motivated by the observa-
tion that, over the whole of the stagnation time period,
the total radiation can be accounted for by changes in
the hydrodynamic motion [10, 43], a fact first noted in
other Z-pinch experiments [44].

While the timescale for collisional-radiative equilib-
rium is shorter than the stagnation period, it is not nec-
essarily a well-separated timescale, so that time-locality
of the radiation to the hydrodynamic dissipation is only
approximate. Nonetheless by pursuing this strategy for
inferring Ef, we infer m, v.p,s and Pgr (representing
a portion of EK) using the same plasma and radiative
state. Together with Eq. (1), Eq. (6) gives a relation for

fl :l/lpla
nmv3/lpl = [iPr (1 + EO/PR) : (7)

Panels (a) and (b) in Fig. 2 show a plot of y =
nmv?® /1, against Pg for the experimental and synthetic
(simulation) data, respectively. To estimate Pr from the
absolutely calibrated hard X-ray measurements (Ppcp
in Table T of Ref. 19), we write Pr = Ppcpll + A(Te)],
where A is a temperature dependent factor calculated us-
ing a collisional-radiative code, which estimates the ratio



of soft radiation to that picked up in the hard X-ray mea-
surements. For all but the first and last times, A < 30%;
the analysis can also be carried out using the raw Ppcp
without changing the essence.

When [ is small in Eq. (1) a small change in nmv
(~ y) leads to a large change in -Ef. For the k; = 0
case in the top plot of Fig. 1, this fact corresponds with
the horizontal approach of the curve y(t), —Ek (t) to the
origin as ideal stagnation is approached and f; — 0. Sim-
ilar behavior (though using Pgr), appears to occur in the
simulation curve in Fig. 2, suggesting a small lengthscale
during these times, but this behavior is not observed in
the experiment. We turn now to quantitative inference
of f;, but we raise this observation because ultimately,
if we consider a larger class of stagnations than the few
cases examined here, we may find the shape of the y vs
—FEx curve more easily interpreted than a specific focus
on f,[45]

The simplest approach to a quantitative estimate of f;
is to approximate —Fx = Pg, allowing us to evaluate f;
at each time from measurements of m, v, Pr (and ),
and this is what we do here. We note that the quan-
tities needed for the hydrodynamic-dissipation relation
technique we outline in the present work could be gener-
ally inferred in different ways, depending on the observed
system and available types of measurements.

When inferring f; leading up to stagnation, we utilize
data points after peak radiation. In the ideal solutions,
flow stagnation occurs after peak dissipation (Rpeqr =
VeRy for the cylindrical case). For experiments with
large thermal energy losses like the present ones, we may
expect a shift in maximum radiation away from peak
compression and toward peak —Fk. Indeed, examining
the radial velocity profiles for the simulations (Fig. 8 in
Ref. 42) we find the pinch is still compressing well after
peak radiation (at 42 ns).

Plots (c) and (d) in Fig. 2 show f;, inferred approxi-
mating —Fx ~ Pg, from peak emission onwards for the
experiments and simulations. The accuracy of this in-
ferred f; depends on the degree to which Eo/Pr is a
correction factor; estimating Eo, directly from the data
(which also includes temperature in this case), we esti-
mate Eo/Pr ~ 1/2 — 1/3 for the experimental data at
and after the peak emission. In both the experiment and
simulations, we expect that f; inferred this way is more
accurate nearer to peak radiation (e.g for Pr = 5 GW).
While the instantaneous fi, inferred using Pg, will not be
exact because Pg represents only a portion of F, it may
be sufficient for a relative measure of stagnation ideality
between similar experiments where the energy flow dy-
namics are in comparable regimes. In principle one could
create models for the apportionment of F in Eq. (6).

The instantaneous f; for the experiment are generally
in the 0.1 to 0.3 range (~ 0.12 to ~ 0.27), indicating a
hydrodynamic lengthscale that is 10% - 30% of the ra-
diation diameter, or a lengthscale of roughly 80 to 240
microns. The available temperature measurements [19]
suggest Eo < 0, so that fi from the instantaneous anal-

3

ysis may be an underestimate.

These f; are generally consistent with A ~ 0.19, 0.35
from the (homogeneous, isotropic) compressing turbu-
lence simulation cases mentioned in Sec. IT A. We should
be cautious applying this intuition in isolation, since in
principle f; could take such values for other reasons as
well. In the ideal self-similar solution, f; ~ 0.03 by the
time —FEy is half its peak value in Fig. 1, but we can
see even modest amounts of k; # 0 give f; 2 0.1 with
the chosen set of model parameters. It is important to
note that the profiles of the hydrodynamic quantities in
the present experiments need not (and probably do not)
match the self-similar profiles of the basic model.

The firmer theoretical comparison is the result from
the detailed simulation, shown in panel (d) of Fig. 2. We
see that, at peak Pg, f; is smaller in the simulation data
than in the experimental data; this behavior is consistent
with the behavior for smaller (or zero) k; in the model
Fig. 1. Further the simulation generally shows smaller
values of f; in the region of high Pr where this f; is likely
a better estimate, indicating hydrodynamic dissipation
at a smaller scale which is therefore more consistent with
ideal stagnation. We see f; ~ 0.04 at P ~ 6 — 8 GW,
yielding [ ~ 35 microns for a minimum hydrodynamic
scale (I; ~ 880 microns), while the experimental f; and
[ are nearly an order of magnitude larger at comparable
Pr after peak emission.

Note that we may find that f; evaluated exactly from
the simulations underlying the simulated data presently
used does not decrease all the way to 0, both because
there is still some small averaging in z over plasma that
may stagnate at slightly different times, and because the
radial flow solution is not the self-similar one (perhaps in
particular, the flow does not momentarily go to 0 every-
where at stagnation as in the ideal self similar case).

In calculating the experimental quantities in Fig. 2 we
have used a plasma radius and density inferred (in Ref.
19) using an analysis that accounts for the likely non-
uniform density in the radiating plasma and is therefore
more complex than an analysis assuming a uniform radi-
ating plasma. However, we note that the results in Fig. 2
are not so sensitive these assumptions, and in particular,
the analysis repeated assuming a uniform plasma yields
nearly identical values for f; (the uniform plasma data
are also summarized in Ref. 19). Similarly, the plasma
kinetic energy in the present data is inferred, in part,
using energy balance arguments [10], but similar results
have been found in additional experiments using a com-
pletely independent technique (see Alumot et al. [20] and
Fig. 8 and surrounding discussion in Maron [46]).

In any event, we hope the present demonstration ap-
plication is useful independent of the details of this par-
ticular Z-pinch case. We have highlighted a number of
practical considerations in inferring the hydrodynamic-
dissipation relation quantities in a plasma, such as the
distinction between changes in Fx due to dissipation ver-
sus flows into or out of the observed plasma. Additionally
we raised and explored the possibility of using Pr as a



surrogate for —F, and, although the quantity of data
is limited, found that f; inferred in this way apparently
distinguishes a closely matched 2D simulation from its
experiment counterparts.

IV. SUMMARY

In summary, here we have developed a technique for
directly inferring properties of the conversion of flow en-
ergy to internal energy in stagnation. We have motivated
the utility of this technique for assessing the turbulent
dissipation scale as well as the ideality (hydrodynamic
symmetry) of implosions, through the use of a length-
scale fraction f;. We show that f; — 0 with approach to
stagnation in two theoretical ideal compression cases, one
spherical and one cylindrical, while it tends to grow or re-
main steady for turbulence. We also show the behavior of
f1 and the hydrodynamic-dissipation curve y = nmuv3/l
vs —Ef in a basic model for a flow region containing a
mix of stagnating and non-stagnating (turbulent) flow.

A powerful aspect of the present technique is that it es-
sentially infers spatial information about flows, without
requiring any spatial resolution of them. This may make
the technique particularly useful for those experiments
where spatially resolving features of the flows is difficult
or infeasible. Because of the generality of the framework,
we hope that the technique shown here permits assess-
ment of a variety of implosions or flow stagnations and
generates new insights into this important process.
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