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Tactoids are spindle-shaped droplets of a uniaxial nematic phase suspended in the co-existing
isotropic phase. They are found in dispersions of a wide variety of elongated colloidal particles,
including actin, fd virus, carbon nanotubes, vanadium peroxide and chitin nanocrystals. Recent
experiments on tactoids of chitin nanocrystals in water show that electric fields can very strongly
elongate tactoids even though the dielectric properties of the co-existing isotropic and nematic
phases differ only subtly. We develop a model for partially bipolar tactoids, where the degree of
bipolarness of the director field is free to adjust to optimize the sum of the elastic, surface and
Coulomb energies of the system. By means of a combination of a scaling analysis and a numerical
study, we investigate the elongation and director field’s behavior of the tactoids as a function of their
size, the strength of the electric field, the surface tension, anchoring strength, the elastic constants
and the electric susceptibility anisotropy. We find that tactoids cannot elongate significantly due
to an external electric field, unless the director field is bipolar or quasi bipolar and somehow frozen
in the field-free configuration. Presuming that this is the case, we find reasonable agreement with
experimental data.

I. INTRODUCTION

If an isotropic phase of rod-like colloidal particles un-
dergoes a phase transition leading to a coexisting, uniax-
ially ordered nematic phase, then this typically happens
via an intermediate stage characterized by an isotropic
background phase in which are dispersed spindle-shaped
droplets called tactoids, see Fig. 1. These tactoids even-
tually sediment and coalesce to form a macroscopic ne-
matic phase, although this may take a very long time [1–
6]. First discovered in 1925 by Zocher in vanadium pen-
toxide sols [7], who also coined the term tactoids (“Tak-
toide” in German), they have since been observed in a
plethora of molecular, polymeric and colloidal lyotropic
liquid crystals. These include dispersions of tobacco
mosaic virus particles [8], iron oxyhydroxide nanorods
[9], polypeptides [10], carbon nanotubes [5, 11, 12], fd
virus particles [13, 14], F-actin fibers [15], actin filaments
[16, 17], chromonic liquid crystals [18], amyloid fibers [19]
and cellulose nanocrystals [20–23].

The peculiar, pointy and elongated shape of the tac-
toids, which reflects the underlying symmetry of the ne-
matic phase, was initially explained in terms of the sur-
face anchoring of the director field, presumed to be uni-
form [24]. The fact that the degree of elongation depends
on the volume of the droplets, and that polarization mi-
croscopic images show their director field to be bipolar
rather than uniform, at least if they are sufficiently large
[5], reveals that this explanation is incomplete. In a
bipolar configuration the director field conforms to a bi-
spherical coordinate system, illustrated in Fig. 1 and in
more detail in Fig. 2. If the focal points of the coordinate
system reside on the poles of the droplets, representing
proper surface defects known as boojums [25], the direc-
tor field is then properly bipolar.

Theoretical studies of van Kaznacheev et al. [26, 27]
and Prinsen et al. [28–30] have revealed that the boo-

jums are by and large virtual, situated outside of the
droplet in an extrapolated director field, and that the
director field is almost always incompletely bipolar and
hence only quasi bipolar [4, 26, 28, 31–33]. The smaller
the droplet, the further the virtual boojums move away
from the poles of the droplets and the more strongly the
director field resembles that of a spatially uniform di-
rector field that represents its ground state. The full
crossover from uniform to bipolar director fields has only
recently been observed experimentally for tactoids in dis-
persions of carbon nanotubes in chlorosulfonic acid, both
in bulk and sessile, that is, on planar surfaces [5, 12], see
Fig. 1.

What has emerged, is a picture in which there are two
length scales that predict the structure and shape of tac-
toids of a certain size. Following de Gennes, these length
scales may perhaps be called extrapolation lengths, and
are defined as ratios of elastic constants and surface ener-
gies [34]. These surface energies are the bare surface ten-
sion between the isotropic and nematic phases, and the
surface anchoring energy penalising a deviation from the
preferred planar anchoring of the director field of elon-
gated colloidal particles along the interface [35]. Droplets
that are smaller than the smallest of these two length
scales, that is, the length scale associated with the sur-
face anchoring, tend to have a uniform director field and
elongated shape. If a droplet is larger than the larger
extrapolation length, which is associated with the bare
surface tension, then it tends to be bipolar and nearly
spherical. Droplets of a size in between these two length
scales remain elongated but have director field in between
uniform and bipolar, see Fig. 1.

The situation becomes more complex if yet another
length scale enters the stage. For instance, if the nematic
is not uniaxial but chiral, that is, cholesteric, then the
cholesteric pitch interferes with these two length scales.
This gives rise to an additional regime separating uniaxial
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from twisted nematic (cholesteric) configurations [30, 36–
38]. The same is true if an external electric or mag-
netic field is applied to nematic rather than cholesteric
tactoids. The impact of a magnetic field on tactoids of
vanadium pentoxide fibers dispersed in water was investi-
gated experimentally and theoretically by Kaznacheev et
al., who found that an externally applied magnetic field
stretches tactoids, at least if they are sufficiently large
[26]. This, indeed, points at the existence of another
pertinent length scale.

The existence of such a length scale was recently con-
firmed by Metselaar et al., who studied the impact of
a high-frequency electric AC field on tactoids of chitin
fibers dispersed in water [39]. These authors find very
large elongations of tactoids in the presence of an electric
field, with aspect ratios increasing from about two in zero
field to about twenty for droplets larger than some crit-
ical size. Their numerical simulations, based on the lat-
tice Boltzmann method, mimic this observation, showing
that in order to obtain a very large length-to-breath or
aspect ratio for the droplets, a large anchoring strength is
required. Interestingly, large anchoring strengths are also
known to lead to quite elongated tactoids in zero field,
but the effect is apparently somehow dramatically en-
hanced by an electric field that arguably align the fibers
and hence also the director field along the field direction.

If the planar anchoring of the director field to the inter-
face between the coexisting isotropic and nematic phases
were absolutely rigid and strictly bipolar, then the the-
ory of Kaznacheev and collaborators [26] would predict
an in principle unbounded growth of the length of the tac-
toids with increasing electric or magnetic field strength.
[40] Actually, the chitin tactoids are not actually strictly
bipolar but quasi bipolar, in which case the anchoring
would be imperfect.

Interestingly, in the lattice Boltzmann simulations of
Metselaar et al., the director field seems to respond to the
external alignment field not by keeping the bi-spherical
geometry and simply stretching it, as is presumed in the
calculations of Kaznacheev and co-workers. Instead, the
director field seems to become uniform in the center of
the droplet to bend sharply close to the interface in or-
der to accommodate planar anchoring [41]. This is highly
surprising, because such a change in the geometry of the
director field would require very large local deformation
of the director field and associated with that would be
a large elastic free energy of deformation. We should
perhaps not exclude the possibility that the limited spa-
tial resolution of the simulations produces such a strong
director field deformation [41].

In this paper we delve more deeply into the problem of
how external fields deform nematic tactoids, extending
the theory of Kaznacheev et al. [26] by allowing for im-
perfect anchoring. By means of a combination of a scal-
ing analysis and a numerical minimization of a free en-
ergy with a prescribed director field geometry and droplet
shape, we conclude that the external field cannot pro-
duce aspect ratios that exceed those in zero field. We

find a highly complex behavior characterized by no fewer
than five different scaling regimes for the level of elon-
gation and director field deformation of tactoids. If we
fix the geometry of the equilibrium director field at zero
field, and let only the aspect ratio respond to the external
field, then we do find very large aspect ratios for large
field strengths. Our predictions agree qualitatively with
the experimental findings of Metselaar et al. [39]. This
seems to suggest that the droplet shape and the director
field relax with different rates in response to an external
field that is suddenly switched on. In follow-up work, we
intend to study a two-mode relaxational dynamics model
to investigate further the observations of Metselaar et al.
[39].

FIG. 1. (a) Polarized optical micrograph illustrating a num-
ber of nematic tactoids of different size and extinction pattern
associated with the director-field conformation, in a solution
of carbon nanotubes in chlorosulfonic acid at 1000 ppm. Ar-
rows show the orientation of crossed polarizers. Schematics
of (b) a bipolar tactoid with boojum surface defects at the
poles, (c) a homogenous tactoid, and (d) an intermediate tac-
toid described by virtual boojums outside of the droplet. The
parameters R and r represent the major and minor axes of
the tactoid, respectively. Adopted from Ref. [5].

The remainder of the paper is structured as follows.
In Section II, we present our free energy that consists
of a contribution of the Oseen-Frank elastic free energy,
a Rapini-Papoular surface free energy and a Coulomb
free energy associated with the electric field. In Section
III, we work out the scaling theory of fully bipolar and
quasi-bipolar droplets in the presence of an external field,
producing the various relevant length scales in the prob-
lem.
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In section IV, we compare the results of the variational
theory that we evaluate numerically with our findings of
the scaling theory, and find a very good agreement. Fi-
nally, in Section V we summarize our findings, compare
our predictions with the experimental results of Metse-
laar et al. [39] and discuss the potential implications for
our understanding of the relaxation dynamics of nematic
tactoids.

II. FREE ENERGY

We consider a nematic droplet suspended in an
isotropic fluid medium. The free energy F describing the
droplet in an external electrical field consists of a sum of
three terms,

F = FE + FS + FC, (1)

representing the Frank elastic free energy associated with
a potentially deformed director field FE, an interfacial
free energy FS, and a Coulomb energy FC.

Focusing on twist-free bipolar director fields, the Frank
elastic free energy of the droplet reads [42],

FE =

∫ [
1

2
K11(~∇ · ~n)2 +

1

2
K33

(
~n× (~∇× ~n)

)2
−1

2
K24

~∇ ·
(
~n~∇ · ~n+ ~n× (~∇× ~n)

)]
dV,

(2)

where the integration is over the entire volume V of
the droplet, ~n represents the position-dependent director
field, and K11, K33 and K24 are the elastic moduli of the
splay, bend and saddle-splay deformations, respectively
[34]. Here, we do not allow for twisted director fields
that may arise if the bend elastic constant is sufficiently
small [37]. Note that these parity-broken structures are
anyway suppressed if the tactoids are elongated [30].

Within a Rapini-Papoular approximation [43], the in-
terfacial free energy can be written as

FS = σ

∫ [
(1 + ω (~q · ~n)

2
]

dA, (3)

where σ is the interfacial tension between the nematic
phase of the droplet and isotropic medium, ω is a dimen-
sionless anchoring strength and the integration is over
the interfacial area A of the droplet. We presume that
ω > 0, implying that the anchoring penalises a director
field ~n that is not parallel to the interface, that is, at
right angles to the surface normal ~q. Rod-like particles
prefer a planar anchoring of the nematic at the interface
with the coexisting isotropic phase for entropy reasons
[2, 35, 44]. In principle, both the surface tension and
anchoring strength could depend on the curvature of the
interface, but even for very small droplets the effect seems
to be very small [33].

Finally, the Coulomb energy of a nematic droplet in

an electric field ~E can be written as [34, 45],

FC = − 1

8π
εa

∫ (
~n · ~E

)2
dV, (4)

where εa = ε‖ − ε⊥ ≥ 0 is the dielectric susceptibility
anisotropy of the dispersion of rod-like particles, which
can be described as a second-rank tensor with compo-
nents ε‖ and ε⊥ parallel and perpendicular to the droplet
axis [46]. Note that we ignore a potential permanent
dipole moment on the particles and that we have not ex-
plicitly written a constant term that is not a function of
the director field. It is important to note that both ε‖ and
ε⊥ are not all that different from the dielectric constant
of the isotropic phase, because the dielectric response of
the suspension is dominated by that of the solvent [39].
This means that any elongation of the droplets caused
by an electric field is not due to a difference between the
dielectric properties of the isotropic and nematic phases,
as would be the case for a thermotropic nematic tac-
toid suspended in a polymeric fluid [47], but due to the
anisotropy of the dielectric response of the nematic phase
itself.

Having collected all contributions to the free energy,
we need to address an issue of some contention, which
is whether or not the susceptibility anisotropy, the sur-
face energies and the elastic constants depend on the
strength of the electric field. In principle, they do. The
reason is that these quantities depend on the level of
alignment of the particles in the coexisting isotropic and
nematic phases [35, 48–50]. We also note that strictly
speaking the isotropic phase becomes paranematic in the
presence of an alignment field. In fact, the isotropic-to-
nematic phase transition ends in a critical point, at which
both the interfacial tension and anchoring should vanish
[6, 51–53]. To keep our analysis as simple as possible,
and within the philosophy of linear response theory, we
shall ignore any impact of the electric field on the elastic
constants and surface energies, and presume the external
field in some sense to be sufficiently weak not to affect
these quantities, yet sufficiently strong to deform the tac-
toids.

To find the equilibrium shape and director-field con-
figuration of tactoids, we would need to solve the ap-
propriate Euler-Lagrange equations that result from a
minimization of the free energy, given in Eq. 1. The
minimization is with respect to the director field ~n (~r),
which depends on the spatial coordinate ~r as well as on
the droplet shape. This has to be done subject to the
conditions of a constant droplet volume and a constant
unit length of the director, |~n| ≡ 1 [42], which produces
a quite complex mathematical problem, also numerically,
in view of the free boundary [28, 37].

Hence, we follow the earlier work of Kaznacheev et
al. [26, 27] and Prinsen et al. [28–30], and restrict the
geometry of both the director field and droplet shape.
For the shapes of the droplets we use circle sections ro-
tated about their chord, producing potentially elongated
droplets with sharp ends that are very similar to the tac-
toid shapes found in a wide variety of experiments, in-
cluding those of Metselaar et al. [39]. We are aware
that the equilibrium shape of the poles is a cusp
if 0 ≤ ω < 1 and the director field (nearly) uni-
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FIG. 2. Cross section (solid) and director field (dashed) of a
tactoid presumed in our calculations. The droplet is cylindri-
cally symmetric about its main axis. 2R denotes the length
of a tactoid and 2r its width. 2R̃ is the distance between the
virtual boojums, which are the focal points of the (extrapo-

lated) director field. For R = R̃, the virtual boojums become
actual boojums, i.e., surface point defects. Also indicated is
α, the opening angle of the spindle-shaped droplet, see also
the main text.

form, which in that case has a more rounded
form. However, as we showed in [28], the free
energy difference between the exact Wulff shape,
the spindle shape and ellipsoids of revolution is
minute for ω < 1, so we deem the approximation
not to be a grave one.

For the director field we employ a bispherical coordi-
nate system first used by Williams to describe spherical
bipolar droplets [37], and more recently by Prinsen et
al. [28–30], Jamali et al. [5, 12] and Kaznacheev et al.
[26, 27] for elongated bipolar droplets. We do not fix the
position of the foci of the bispherical director field to the
poles of the tactoid to allow for a smooth interpolation
between a uniform and bipolar director field, although we
do prescribe them to reside on the main axis of revolution
of the tactoid. See also Fig. 2.

Within this prescription, the shape and director-field
configuration of a tactoid is completely described by two
parameters, at least if the volume of the droplet is known.
These two parameters are the opening angle α and the ra-
tio y ≡ R̃/R of the distance between the virtual boojums,

2R̃, and length of the droplet, 2R. The former quantity
describes the aspect ratio x ≡ R/r = cot(α/2) of the
droplet, with r the half width of the droplet, and the lat-
ter the degree of “bipolarness” of the director field. For
a spherical droplet, we have x = 1 and α = π/2, whilst
for a strongly elongated one x � 1 and α � 1. For a
tactoid with a uniform director field y � 1, and for a
bipolar tactoid y → 1, see also Fig. 2. We note that the
quantities x and y will explicitly contribute to the scaling
theory presented in the following section.

It turns out practical to render the free energy dimen-
sionless, and define f = f(α, y) ≡ σF/ (K11 −K24)

2
.

The optimal free energy minimizes f with respect to
the opening angle α or aspect ratio x and the bipo-
larness y, keeping the volume V of the droplet con-
stant. Let the dimensionless volume be defined as v ≡
V (σ/(K11 −K24))

3
. The dimensionless free energy f

can then be written as a sum of surface and volume terms

f(α, y) = v2/3φ−2/3v (α) [φσ(α) + ωφω(α, y)]

+ v1/3φ−1/3v (α) [φ11(α, y) + κφ33(α, y)]

− vφ−1v (α)ΓφC(α, y),

(5)

where we refer to the Supplementary Information (SI)
for details. The first line represents the two surface
contributions, the second line corresponds to the three
types of elastic deformation of the director field, and
the last is related to the Coulomb energy. Here, κ ≡
K33/(K11 − K24) measures the magnitude of the bend
elastic constant relative to the effective splay constant,
and Γ = 1

8π εaE
2σ−2 (K11 −K24) is the appropriate

quantity to probe the impact of the electric field rela-
tive to the surface tension and elastic deformation.

For the case of lyotropic nematics of rod-like particles,
we typically have σ ≈ 10−7 − 10−6 N m−1 for the sur-
face tension [54], and K33/K11 ≈ 1 − 102 and K11 ≈
10−12− 10−11 N for the elastic constants [12, 28, 55–57].
Dimensionless anchoring strengths ω are typically in the
range from about 1 to 10 [5, 11, 27, 29].

All three terms are renormalized by a function measur-
ing how the opening angle α affects the droplet volume
for a given aspect ratio x. The common factor is given
by

φv(α) =
7π

3
+
π

2

(
1− 4α cotα+ 3 cos 2α

sin2 α

)
. (6)

The first line of Eq. 5 consists of the sum of a contribution
from the bare surface tension,

φσ(α) = 4π

(
1− α cotα

sinα

)
, (7)

and a term originating from the anchoring of the director
field to the interface,

φω(α, y) =
π

2
(y2 − 1)2 sin3 α

×
∫ π

0

dξ

[
sin2 ξ cos2 ξ

N(y, ξ, α) (1 + sin ξ cosα)
3

]
,

(8)

for which we have not been able to obtain an explicit
expression. Here,

N(y, ξ, η) =

(
sin ξ cos η +

1

2
Z(ξ, η)

(
y2 − 1

))2

+ y2 sin2 ξ sin2 η,

(9)

and

Z(ξ, η) = 1 + sin ξ cos η. (10)

Note that in Eq. 8, we inserted η = α to obtain the
expression for N in Eq. 9.

The contribution of the splay and saddle-splay defor-
mation to the Frank elastic energy also gives rise to an
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integral that we have also not been able to solve analyt-
ically,

φ11(α, y) =8π

∫ π

0

dξ

∫ α

0

dη sin2 ξ cos2 ξ sin η

× 1

N(y, ξ, η) (1 + sin ξ cos η)
3 ,

(11)

where we note that within our family of bispherical direc-
tor fields, the saddle-splay deformation merely renormal-
izes the contribution from the splay deformation, giving
rise to an effective splay constant that is the difference of
the splay and bend-splay constants, explaining the scal-
ing of the free energy that we introduced above in terms
of this difference [28, 29]. The contribution of the bend
elastic deformation reads

φ33(α, y) =8π

∫ π

0

dξ

∫ α

0

dη sin4 ξ sin3 η

× 1

N(y, ξ, η) (1 + sin ξ cos η)
3 .

(12)

Finally, the free energy of the interaction of the ne-
matic droplet with an electric field yields an even more
daunting integral,

φC(α, y) = 8π

∫ π

0

dξ

∫ α

0

dη
sin2 ξ sin η

(1 + sin ξ cos η)3

×
(
y2Z2 + sin2 ξ sin2 η − cos2 ξ

)2
N(y, ξ, η) (1 + sin ξ cos η)

2 .

(13)

Details of the derivation of all these expressions can be
found in the SI.

The various integrals can be solved explicitly for the
cases y = 1 and y →∞, but so far have eluded analytical
evaluation for the general case y ≥ 1 [26, 28]. Hence, we
need to take recourse to a numerical evaluation and min-
imization with respect to the opening angle α and the
bipolarness y. We recall that there is a one-to-one map-
ping between the opening angle α and the aspect ratio x
of the tactoids. From Eq. 5 we deduce that our param-
eter space is quite substantial: (i) the scaled volume of
the droplets, v, (ii) the dimensionless anchoring strength
ω, (iii) the ratio of the bend and splay elastic constants
κ, and (iv) the dimensionless strength of the magnetic
field Γ.

Before numerically solving the pertinent equations in
Section IV, we first analyze in Section III the problem
from the perspective of scaling theory for (nearly) spher-
ical and (highly) elongated droplets. This allows us to
demarcate the crossovers between the various parameter
regimes, and find the scaling exponents relevant to the
behavior of the droplet shape and director field. As we
shall see in Section IV, our scaling theory and our varia-
tional theory are consistent with each other.

For those not interested in the full scaling analysis,
which is rather technical in nature and details transitions
between no fewer than five regimes, we refer to Figs. 3

and 4 that summarize our main findings. The scaling
relations that we find are summarized in Tables I, II and
III, and Table IV lists all crossover volumes and external
field strengths.

III. SCALING THEORY

Rather than getting the exact expression for the free
energy Eq. 5, we may also estimate the equilibrium shape
and director-field configuration of a tactoid by applying
simple geometric arguments or resorting to asymptotic
relations valid for the various integrals that we intro-
duced in the preceding section. We assume that the
droplet looks like a spindle with the short axis r and the
long axis R ≥ r, and that its director-field is quasi bipo-
lar, i.e., the director field converges outside the droplet
to virtual point defect or boojums, see Fig. 2. The (half)

distance between the (virtual) defects is R̃ ≥ R.
Referring to the free energy functions Eqs. 1-4, we no-

tice that the elastic and electric-field contributions must
be proportional to the droplet volume V ∝ Rr2, while the
surface contributons must be proportional to the area of
the droplet S ∝ rR. Following Prinsen et al. [29], we
argue that the radius of curvature of a bend deformation
must scale as R̃2/r and that of the splay as R̃2/R. Fur-
thermore, the anchoring strength term, proportional to
(~q · ~n)2, scales as (r2/R2)(1−R2/R̃2)2 [12, 29], as we in

fact also shwo in the SI. Finally, the field term ( ~E ·~n)2 is

proportional to E2r2R2/R̃4.
As already alluded to in the previous section, there are

two quantities that a nematic droplet can optimize in or-
der to lower its free energy: the aspect ratio x = R/r ≥ 1

and the bipolarness y = R̃/R ≥ 1. The dimensionless
free energy of a droplet with aspect ratio x and bipolar-
ness y reads within our scaling ansatz

f(x, y) ∼ v2/3x1/3(1 + ωx−2(1− y−2)2)

+ v1/3y−4x−4/3(1 + κx−2) + Γvx−2y−4,
(14)

where we have ignored all constants of proportional-
ity. The values of the dimensionless anchoring strength
ω, bend constant κ = K33/ (K11 −K24), electric field
strength Γ = 1

8πσ
−2εaE

2 (K11 −K24) and volume v ≡
V σ3/(K11 − K24)3 determine what values of x and y
minimize the free energy f . The first term in Eq. 14
represents the surface free energy, the second term the
elastic deformation and the last term the interaction of
the droplet with the external electric field. Notice that
the various terms can also be derived from Eq. 1 by ap-
plying a formal expansion for small α ' x−1, and keeping
only the leading order term of each contribution. We re-
fer to SI for details.

As we shall see, there are always two terms that dom-
inate the shape and director field of a tactoid: either the
surface and elastic energy, or the surface and Coulomb
energy. This is a result of the different scaling with the
dimensionless volume v: v1/3 for the elastic free energy,
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v2/3 for the interfacial free energy and v for the Coulomb
free energy. This means that droplet size crucially deter-
mines the shape and director field behavior of tactoids.

It is important to note at this point that the specific
form of our scaling ansatz for the free energy, Eq. 14,
automatically ensures that y ≥ 1 but not that x ≥ 1. The
former follows directly from the observation that the first
term has a minimum for y = 1, whilst all the other terms
decrease as y > 0 increases. Further, Eq. 14 does not
hold for lens-shaped tactoids, that is, for x < 1. Indeed,
the surface free energy for x � 1 would require a term
proportional to an area that scales as r2 rather than the
Rr that is valid for x ≥ 1. Similar arguments hold for
the elastic and Coulomb terms [32, 58, 59].

In order to deal with the fact that our free energy does
not automatically ensure the condition that x ≥ 1 for
ω ≥ 0, we have to separate the case of elongated droplets
with x� 1 from that of spheroidal droplets with x ≈ 1.
In fact, for ω < 0 the tactoids become lens-shaped with
x < 1, a case we do not consider in this work as it has
been dealt with elsewhere. [32, 58, 59]. The case x ≈ 1
can be investigated by putting x = 1 in the free energy,
and not optimizing with respect to both x and y, but
only with respect to y. The crossover from elongated
to spheroidal emerges automatically from our analysis,
as we shall see. In what follows, we first analyze the
the simpler case for which the aspect ratio is close to
unity, and next consider the case where the aspect ratio
is significantly larger than unity.

A. Nearly spherical tactoids

As we shall see in the next subsection, tactoids are al-
ways nearly spherical if the anchoring strength ω is about
unity or smaller (see Eq. 3), irrespective of the value of
the scaled volume v and that of the scaled strength of
the electric field Γ. If ω � 1, then the droplets become
spherical only for a range volumes that we will specify
below, and then only if the field strength is below some
critical value.

Minimizing the free energy f(1, y) for nearly spherical
droplets with respect to the bipolarness y, we find for its
optimal value

y2 ' 1 + ω−1 (1 + κ) v−1/3 + Γω−1v1/3. (15)

This expression immediately highlights the importance of
the volume of the droplet. The director field is uniform,
corresponding to y � 1, either if ω−1(1+κ)v−1/3 � 1 or
Γω−1v1/3 � 1. In other words, if v � v− = ω−3(1 + κ)3

or v � v+ = ω3Γ−3. For droplet volumes v− ≤ v ≤ v+,
the director field is (quasi) bipolar, and y ≈ 1.

Thus, we find that there are potentially three different
regimes and two critical volumes that dictate the behav-
ior of the droplet. For v � v−, we obtain the scaling
relation

y ∼ v−1/6ω−1/2(1 + κ)1/2, (16)

v < v− v− < v < v+ v+ < v

Γ ≤ Γc y ∼ ω−1/2v−1/6 y ∼ 1

Γc ≤ Γ (1 + κ)1/2 y ∼ Γ1/2ω−1/2v1/6

TABLE I. Summary of the various scaling regimes for the
bipolarness y of nearly spherical tactoids (x ' 1) in the pres-
ence and absence of an electric field, for large, intermediate
and small droplet sizes v, relative to the crossover volumes
v− and v+. If the electric field is weak and 0 < Γ < Γc, the
bipolarness of the droplet has three different regimes. Under
a strong field, Γ > Γc there are two regimes. Expressions for
the crossover volumes v− and v+ and the critical field strength
Γc are listed in table IV. Notice that for Γ = 0, v+ →∞ and
there are strictly speaking only two regimes.

whilst for v � v+, we have

y ∼ v1/6Γ1/2ω−1/2. (17)

Notice that the exponents of −1/6 for volumes v � v−
and of +1/6 for v � v+ are universal. A summary of
these results is given in Table I.

We notice that as the electric field strength increases,
v+ decreases and the two critical volumes merge into one
critical volume: v− = v+. This happens at a critical
electric field Γc ' ω2(1 + κ)−1. If Γ ≥ Γc, the bipo-
larness y is always greater than unity for any size of
the droplet, and the droplet is never fully bipolar. The
crossover of a decreasing bipolarness to an increasing one
with increasing volume then happens at a critical volume
vc = ω−3(1 + κ)3, where we inserted Γc in the expres-
sion for v+. If Γ > Γc, we find the crossover to occur
for vc = Γ−3/2(1 + κ)3/2 that can be found by equat-
ing Eqs. 16 and 17. The summary of the results of this
subsection is presented in Table I.

So, in conclusion, if Γ > Γc, then y � 1 decreases with
increasing volume v of the tactoid until larger than the
critical value vc. If larger than vc, y increases again with
increasing volume and y does not approach the value of
unity, that is, the tactoid does not become bipolar. For
Γ < Γc, the director field is bipolar if v− < v < v+, but
not outside of this range of volumes. For v < v− the
bipolarness y decreases with increasing volume, whilst
for v > v+ it increases with increasing volume. All in all
this demarcates three scaling regimes for the degree of
bipolarness of the director field.

As we shall see next, for elongated tactoids the number
of regimes increases to five.

B. Elongated tactoids

For elongated tactoids, matters become significantly
more complex. To calculate the optimal values for the
bipolarness y and the aspect ratio x for x & 1, we need
to minimize the free energy Eq. 14 with respect to both
x and y. This gives rise to the following set of coupled
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equations,

y4 = ωx−2
(
y2 − 1

)2
+ v−1/3x−5/3(1 + κx−2) + v1/3Γx−7/3,

(18)

and

y2 = 1 + ω−1x1/3
(
1 + κx−2

)
v−1/3

+ Γω−1v1/3x−1/3.
(19)

Inserting the last two terms of Eq. 19 in Eq. 18, we find

x2

ω
=
(
1− y−2

)
+
(
1− y−2

)2
. (20)

Inserting this back in Eq. 19 produces a non-linear equa-
tion entirely in terms of the quantity y. Unfortunately,
we have not been able to solve this expression exactly.
It can of course be solved numerically, but this would
obviously defeat the purpose of the scaling theory. For-
tunately, the governing equations can be solved asymp-
totically in a number of useful limiting cases that we will
discuss next.

For instance, we have seen in the preceding section
that for very large and very small droplet volumes the
director-field must be nearly homogeneous, implying that
y � 1. We note that large and small here refers to the
critical volumes v− and v+, introduced already in the pre-
ceding subsection for nearly spherical tactoids but that
now will conform to slightly different expressions given
below. Eq. 20 tells us that if y →∞, the director field is
uniform, and the aspect ratio is (apart from a multiplica-
tive constant) equal to

√
ω. This is consistent with the

exact result x = 2ω1/2 obtained by means of the Wulff
construction for ω ≥ 1 [28].

Inserting x ' ω1/2 in Eq. 18 gives, to leading order for
large values of y,

y2 ∼ v−1/3ω−5/6
(
1 + κω−1

)
+ v1/3ω−7/6Γ. (21)

This means that for sufficiently small droplets

y ∼ v−1/6ω−5/12
(
1 + κω−1

)1/2
, (22)

whilst if they large sufficiently large we have

y ∼ v1/6ω−7/12Γ1/2. (23)

It is worth mentioning that the result for large droplets
does not depend on the value of κ that is a measure for
the magnitude of the bend elastic constant. Recall that
in Eqs. 16 and 17, we find the same scaling of the bipo-
larness with the dimensionless volume for nearly spheri-
cal droplets. The scaling with the anchoring strength is
slightly different, however.

Equation 22 applies for v � v− = ω−5/2(1 + κω−1)3

and Eq. 23 for v � v+ = Γ−3ω7/2, as can be deduced
from Eq. 21. These critical volumes differ slightly from
those we calculated for nearly spherical tactoids, as al-
ready announced. We conclude that if v− ≤ v ≤ v+ the
elongated droplets must be bipolar.

If v+ drops below v−, the tactoids are always more
or less uniform, and x ' ω1/2. This happens at a
critical field strength Γc = ω2(1 + κω−1) that we find
by setting v+ = v−. The crossover of decreasing to
increasing bipolarness with increasing volume now oc-
curs at a critical volume vc = ω−3 for Γ = Γc. If
Γ > Γc, the crossover happens at a critical volume
vc = Γ−3/2ω1/2(1 + κω−1)3/2, which we find by equating
Eqs. 22 and 23.

What the aspect ratios of the tactoids are when v− ≤
v ≤ v+, so when the director field is no longer uniform,
can be inferred from Eqs. 19 by inserting y = 1 + δ in
Eq. 20 and presuming that δ � 1. Solving these equa-
tions then gives to leading order in δ = x2ω−1 � 1
an expression for the aspect ratio: x5/3 ∼ v−1/3(1 +
κx−2) + v1/3Γx−2/3. For small droplets with a volume
v+ � v > v−, we have x ∼ v−1/5 if we ignore the contri-
bution from the bend elasticity; thus the droplet becomes
less elongated with increasing volume. For larger ones,
v− � v < v+, the aspect ratio x ∼ v1/7Γ3/7 grows again
with increasing volume.

As we need to insist that x > 1 for the equations to
hold, we take the value of x = 1 as the crossover to the
regimes where the droplets are more or less spherical.
Inserting this condition in the equation for the aspect
ratio gives 1 ∼ v−1/3(1 + κ) + v1/3Γ, which we translate
in two crossover volumes. In the absence of a field, the
crossover from an elongated droplet with x = ω1/2 to a
nearly spherical droplet with x = 1 occurs for v = v<
with v< ≡ (1 + κ)3 > v− another crossover volume. For
sufficiently weak fields, they start to elongate again if
v> < v < v+ = Γ−3ω7/2 with the crossover volume v> ≡
Γ−3 smaller than v+ since we presume that ω > 1. For
v > v+ the director field is uniform and the aspect ratio
obeys again x ∼ ω1/2.

The picture that emerges is one where for v < v− the
nematic droplets have a more or less uniform director
field with an aspect ratio of about ω1/2, and the same
for v > v+. If v > v−, the droplets become increasingly
bipolar and the aspect ratio decreases with increasing
volume. If the scaled volume v increases further to get
closer to v+, the bipolar character of the director field
diminishes again with increasing volume, while the as-
pect ratio increases to its maximum value of about ω1/2,
see Fig. 3. Notice that we have presumed that ω � 1;
otherwise, we would not have x� 1.

Somewhere in the size range v− ≤ v ≤ v+, the droplets
actually become nearly spherical, in which case the the-
ory of the preceding section applies. This happens in
the range of volumes for which v< < v < v>. The
nearly spherical drop regime disappears if v< = v>.
Equating these critical volume shows that this occurs
for field strengths Γ larger than the critical value of
Γ∗ ≡ (1 + κ)−1. In that case we only have crossover
from decreasing elongated to increasing elongated at a
crossover volume v∗ = Γ−5/4. Since Γ∗ < Γc, we con-
clude that for ω � 1 we lose the spherical tactoid regime
before we lose the bipolar director field.
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The summary of these results are presented in Tables
II, III, and IV, as well as in Fig. 4, showing the different
regimes and crossovers. The conclusion of our scaling
theory is that the aspect ratio of the nematic droplets
is at most ω1/2, independent of the volume or the field
strength. In other words, external fields cannot elongate
a tactoid to aspect ratios beyond those that are found in
the absence of a field, at least for the family of director
fields that we presume. We return to this issue in the
Discussion section below.

In the next section, we present the numerical evalua-
tion of our variational theory and obtain the mathemati-
cally exact response of the director field and the shape of
the droplet in the presence of an electric field, and com-
pare these with the scaling theory. As we shall see, our
scaling predictions are robust. This means also that the
conclusions that we base them on are robust.

FIG. 3. Dependence of (a) the degree of bipolarness y and
(b) the aspect ratio x of tactoids on the scaled volume v in
the presence of an electric field, according to the scaling the-
ory. Blue solid line: the field strength Γ is below the critical
value Γc, and the anchoring strength ω is somewhat larger
than unity. The volumes v− and v+ demarcate crossovers
from quasi bipolar director fields to bipolar ones, and v< and
v> those from elongated to spherical droplet shapes. Dash-
dotted line: same curve, but now for Γ = Γc. Dashed lines:
Γ > Γc. For fields above the critical field strength Γ∗, the tac-
toids are always elongated provided the anchoring strength ω
is sufficiently large. See the main text. The slopes of the var-
ious curves are listed in Tables I, II and III, and the values
of the various crossover volumes and field strengths in Table
IV.

v < v− v− < v < v+ v+ < v

Γ ≤ Γc y ∼ ω−5/12v−1/6 y ∼ 1

Γc ≤ Γ
(
1 + κω−1

)1/2
y ∼ Γ1/2ω−7/12v1/6

TABLE II. This table summarises the various scaling regimes
for the bipolarness y of elongated tactoids (x� 1) in the pres-
ence and absence of an electric field, for large, intermediate
and small droplet sizes v, relative to the crossover volumes
v− and v+. If the electric field is weak and 0 < Γ < Γc, the
bipolarness of the droplet has three different regimes. Under
a strong field, Γ > Γc there are two regimes. Expressions for
the crossover volumes v− and v+ and the critical field strength
Γc are listed in table IV. Notice that for Γ = 0, v+ →∞ and
there are strictly speaking only two regimes.

v<v− v−<v<v< v<<v<v> v><v<v+ v+<v
Γ<Γ∗ x ∼ 1

Γ∗<Γ <Γc x ∼ v−1/5 x ∼ Γ3/7v1/7

Γc<Γ x ∼
√
ω

TABLE III. This table summarises the various scaling regimes
for the aspect ratio x of tactoids in the presence and absence
of an electric field, for large, intermediate and small droplet
sizes v, relative to the crossover volumes v− and v+, and v<
and v>. For simplicity, we have dropped any dependence of
the aspect ratio on κ. Expressions for the crossover volumes
v−, v+, v< and v>, and the critical field strengths Γc and Γ∗,
are listed in table IV. Notice that for Γ = 0, v+ → ∞ and
v> →∞.

IV. NUMERICAL RESULTS

The scaling theory of the preceding section has en-
abled us to identify different scaling regimes, which we
now investigate by numerically minimizing the free en-
ergy Eq. 5. To this end, we evaluate Eq. 5 for opening
angles 0 ≤ α ≤ π and degrees of bipolarness of the direc-
tor field 1 ≤ y ≤ ∞ and find the values of these quantities
for which the free energy f is minimal. So, for a given
scaled volume v, anchoring strength ω, ratio of bend-to-
splay elastic constants κ and electric field strength Γ, we
obtain the optimal values of both α and y. We recall that
the aspect ratio of the tactoids x is directly linked to the

ω . 1 ω & 1

v− ω−3 (1 + κ)3 ω−5/2
(
1 + κω−1

)3
v+ ω3Γ−3 ω7/2Γ−3

vc Γ−3/2 (1 + κ)3/2 Γ−3/2ω−1
(
1 + κω−1

)3/2
v< − (1 + κ)3

v> − Γ−3

v∗ − Γ−5/4

Γ∗ − (1 + κ)−1

Γc ω2 (1 + κ)−1 ω2
(
1 + ω−1κ

)−1

TABLE IV. Listing of all crossover volumes v and critical
field strengths Γ, for small and large values of the anchoring
strength ω. Crossovers form elongated to spherical tactoids
only occur if ω is sufficiently large.
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FIG. 4. Schematic “phase” diagram of director fields of tac-
toids in an external field. Plotted is the scaled volume v versus
the scaled field strength Γ. Indicated are the crossovers be-
tween the five regimes, demarcated by the crossover volumes
v−, v+, v<, v>, v∗ and vc. Expressions for the crossover vol-
umes v−, v+, v< and v>, and the critical field strengths Γc

and Γ∗, are listed in table IV. See also the main text. In the
region bounded by v− and vc, tactoids with sufficiently large
anchoring strength ω � 1 are elongated with a director field
that is quasi bipolar with a bipolarness y that decreases with
increasing volume. In the region bounded by vc and v+ in the
upper right-hand corner it is quasi bipolar with a bipolarness
that increases with droplet volume. In region bounded by v−
and v+ in the upper left-hand corner the director field is for
all intents and purposes bipolar. The tactoids are more or less
spherical in the region bounded by v< and v> in the upper
most left-hand corner, and elongated outside of that region,
at least if ω � 1. The volume vc demarcates the crossover
from decreasing to increasing bipolarness for quasi bipolar di-
rector fields, the volume v∗ that between decreasing aspect
ratio to increasing aspect ratio.

opening angle via the relation x = cot(α/2). In order to
find the minimum free energy, we numerically calculate
all integrals given in Sect. II.

It is clear that the electric field drives the director field
to align itself with it, implying that the major axis of a
tactoid orients parallel to the electric field. This hap-
pens irrespective of whether the director-field configura-
tion is uniform or bipolar. If the electric field is suffi-
ciently weak, the director-field is not perturbed by the
electric field. If the field is sufficiently strong, we would
expect the director field of the droplet to become homo-
geneous, even if the director field in the absence of a field
is bipolar. What weak and strong here mean depends
on volume of a tactoid as we have seen in the preceding
section, and is schematically summarized in the Figs. 3
and 4.

Figure 5 confirms this expectation. Shown is the bipo-
larness y as a function of the dimensionless volume v
of the tactoids, for the case where we (arbitrarily) set
for the dimensionless bend constant κ = 10 and for the
anchoring strength ω = 14. Indicated are results for dif-
ferent values of the dimensionless electric field Γ. We
confirm the scaling prediction that two critical volumes
emerge, one associated with the crossover from a quasi
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FIG. 5. The bipolarness y of the director field of a tactoid in
the presence of an electric field as a function of its dimension-
less volume v. Indicated by the different symbols are results
for different values of the dimensionless electric field strength
Γ. The dimensionless anchoring strength is fixed at ω = 14
and the dimensionless bend constant at κ = 10.

bipolar to a bipolar director field, v−, and one with the
crossover from a bipolar to quasi bipolar director field,
v+. For Γ ≥ 100, we only find quasi bipolar director
fields characterized by a bipolarness y > 1 for all vol-
umes v. The scaling exponent β we find for y ∼ vβ

equals β = −0.15 for small volumes and β = +0.16 for
large volumes, values that agree reasonably well with the
predicted exponents of −1/6 and +1/6 that we obtained
from the scaling theory and are quoted in table II.

Figure 5 also shows that the bipolarness y increases
with the electric field strength Γ, if the volume of a tac-
toid is sufficiently large, v > v+. According to the scal-
ing prediction Eq. 23, y should scale as Γ1/2. Figure 6,
in which we plotted the bipolarness as a function of the
field strength for the case where ω = 14 and κ = 10, con-
firms that the scaling exponent is 0.5 over three decades
of Γ. So, indeed, increasing the field strength leads to
director fields that become increasingly homogeneous, as
one would in fact expect from the scaling theory of the
previous section. See also Table II.
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y

FIG. 6. Bipolarness y of a tactiods as a function of the dimen-
sionless electric field Γ for a dimensionless volume v = 107.
Anchoring strength ω = 14 and dimensionless bend constant
κ = 10. The solid line shows the scaling of y as with Γ0.5.
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According to the scaling theory of the preceding sec-
tion, the impact of the (scaled) bend elastic constant κ
on the bipolarness y of a tactoid is negligible for suffi-
ciently large tactoids in the presence of an external field.
See Table II. It is neglible for small tactoids too, but
only provided κ � ω. Our numerical results presented
in Fig. 7 confirms for the case ω = 14, the bipolarness is
an invariant of κ for sufficiently large volumes, but be-
comes a function of κ for values larger than about 10, as
expected from the scaling theory.
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FIG. 7. Bipolarness y of the droplet as a function of the di-
mensionless volume v of tactoids in the presence of an electric
field for different values of the dimensionless bend constants
κ indicated by the symbols. Anchoring strength ω = 14 and
dimensionless field strength Γ = 100.

For bend elastic constants κ > 10 ≈ ω, the bipolar-
ness should exhibit a power-law scaling predicted by the
scaling relation Eq. 22 that then takes the simpler form
y ∼ v−1/6ω−11/12κ1/2. In Fig. 8 we have plotted the
bipolarness y as a function of κ for Γ = 100 and v = 10−4.
The exponent that we measure is 0.49, which is indeed
close to the value obtained from the scaling theory.
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FIG. 8. Bipolarness of a tactoid as a function of the dimen-
sionless bend constant κ in the presence of an electric field.
Anchoring strength ω = 1.4, dimensionless field strength
Γ = 100 and dimensionless volume v = 10−4.

Our scaling theory also predicts the bipolarness of the
tactoids to depend on the anchoring strength, ω. Indeed,
Eqs. 16 and 17 for nearly spherical tactoids, and Eqs. 22

and 23 for elongated ones, predict that both for small and
large droplets the bipolarness should shift with shifting
anchoring strength. This makes intuitive sense, because
the larger the anchoring strength is, the larger the free
energy penalty becomes for imperfect planar anchoring.
Hence, with increasing anchoring strength the tactoids
should become increasingly bipolar. This is what our
numerical calculations also confirm, as is shown in Fig. 9.
On a logarithmic scale the curves shift vertically by an
amount that depends on the anchoring strength ω.
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FIG. 9. Bipolarness y of a tactoid as a function of the di-
mensionless volume v in the presence of an electric field for
different values of the anchoring strength, indicated by the
symbols. Dimensionless field strength Γ = 100 and bend con-
stant κ = 10.

The scaling of the bipolarness y with the anchoring
strength ω is highly non-trivial, as is implicit in the
scaling predictions Eqs. 16 and 17 for nearly spherical
tacoids, and Eqs. 22 and 23 for elongated ones. It de-
pends not only on the shape of the tactoids, but also
whether the tactoids are large or small, and on whether
or not the bend elastic constant is large. To account
for this, we plot in Figs. 10 and 11 the bipolarness y as
a function of the anchoring strength ω for two droplet
sizes and fixed values of Γ = 10 and κ = 0. The appro-
priate scaling regimes for ω < 1 for which the droplets
are approximately spherical, and ω > 1 for which they
are elongated, are also illustrated in the figure. Four dif-
ferent scaling exponents, which agree rather well with the
predictions from scaling theory are shown in the figure.

How the value of the bend elastic constant κ impacts
the dependence of the bipolarness y and the anchoring
strength ω is highlighted in Fig. 12 for a large and small
value of κ. For the range of anchoring strengths shown, a
small tactoid volume of v = 10−4 and a field strength of
Γ = 102, we find scaling exponents of −0.43 and −0.90
for the small and large values of dimensionless bend con-
stants κ, which have to be compared with the scaling
predictions of −5/12 ' −0.42 and −11/12 ' −0.92.
Again, we find quite good agreement between our nu-
merical work and the scaling theory. (See also table II.)

Having exhaustively verified the theoretical scaling
predictions for the degree of bipolarness of the tactoids,
we now proceed to investigate how their aspect ratio de-
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FIG. 10. Bipolarness y of a tactoid as a function of an anchor-
ing strength ω > 1 for small and large droplets, with dimen-
sionless volumes v = 10−2 and v = 106. The dimensionless
electric field strength is fixed at Γ = 10 and the dimensionless
bend constant at κ = 0. Indicated are also the scaling rela-
tions y ∼ ω−0.43 for the small volume and y ∼ ω−0.62 for the
large volume. See also the main text.
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FIG. 11. Bipolarness y of a tactoid as a function of anchoring
strength (ω < 1) for small and large droplets, with dimen-
sionless volumes v = 10−2 and v = 106. The dimensionless
electric field strength is fixed at Γ = 10 and the dimension-
less bend constant at κ = 0. Indicated are also the scaling
relations y ∼ ω−0.51 and y ∼ ω−0.52. See also the main text.

pends on the volume and how it responds to the presence
of an electric field. It is well known that, in the absence
of an electric field, the aspect ratio of a nematic tactoid
decreases with increasing droplet size. This happens to
be so not only in bulk, but also if the tactoids deposited
on a partially wetting surface [5, 12, 39]. Indeed, from
the scaling theory we expect that for v > v−, the as-
pect ratio x should scale as v−1/5 at least if κ � ω and
ω → ∞ [12, 28, 29]. For finite ω = 14 the decay of the
aspect ratio with volume is even a weaker function of the
volume, as Fig. 13 shows for the field-free case Γ = 0.

Notice that for the dimensionless bend constant of
κ = 10, the predicted critical magnetic field strength
of Γ∗ = 1/11 ' 0.09 coincides with the smallest non-
zero value of Γ taken in our numerical calculations. This
means that our results of Fig. 13 should show conditions
characterised by an absence of an intermediate regime
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FIG. 12. Bipolarness y as a function of anchoring strength ω
for two different dimensionless bend constants of κ = 0.1 and
κ = 103. The dimensionless volume is set at a value v = 10−4.
Also indicated are the scaling exponent of −0.43 for the small
value of the bend constant and of −0.90 for the large value of
the constant. See also the main text.

with spherical tactoids, excluding the case Γ = 0. See
also the phase diagram of Fig. 4. The predicted crossover
volume v∗ ∼ Γ−5/4 from a decreasing aspect ratio to an
increasing aspect ratio varies 5 orders of magnitude for
the range of field strengths shown in the figure, in agree-
ment with our numerical results presented in the figure.
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FIG. 13. The aspect ratio x of a tactoid as a function of the
dimensionless volume v for different (dimensionless) electric
field strengths Γ indicated by the symbols. The anchoring
strength is set at ω = 14 and the dimensionless bend constant
at κ = 10.

What Fig. 13 also shows is that for increasingly large
fields, the drop in aspect ratio becomes small mirroring
the prediction of our scaling theory. This happens for
Γ > Γc ∼ ω2/(1 + κ/ω) ' 100 for our choice of param-
eters, when the drop in aspect ratio in fact disappears.
This value is consistent with our numerical findings. In
that case the director field is for all intents and purposes
uniform irrespective of the volume of the nematic droplet.
This means that in our model, there is an upper limit for
the aspect ratio, namely 2

√
ω.

All of this implies that for our choice of director field
geometry, an externally applied electric (or magnetic)
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field cannot elongate tactoids beyond their maximum as-
pect ratio that under the field-free conditions happens
for sufficiently small droplets. This, clearly, goes against
the grain of the experimental observations of Metselaar
et al. of tactoids in electric fields [39], and those of Kaz-
nacheev and collaborators in magnetic fields [26]. As we
argue in the next section, this must means that either (i)
the director field does not conform to a bispherical geom-
etry in an external alignment field; (ii) the tactoids are
in a restricted equilibrium characterized by a bipolarness
that is fixed to the value of the field-free initial state; or
(iii) the various elastic and surface constants do depend
on the strength of the field.

V. DISCUSSION AND CONCLUSIONS

In this paper, we present a model in which the direc-
tor field and shape of a nematic tactoid can adjust them-
selves both in order to optimize the interfacial, elastic
and Coulomb energy in the presence of an externally ap-
plied orienting field. We restrict the shape of the tactoid
to that of the family of circle sections of revolution, and
the director field to that of the family of fields that can
be described by bispherical geometries[60, 61]. We find
that the known “phase” diagram of nematic tactoids be-
comes more complex in the presence of an electric field.
[28–30]

In the absence of such an alignment field there are
three regimes, separating elongated tactoids with a uni-
form director field if they are sufficiently small from
roundish bipolar ones if very large, with an intermediate
size range where the drops are quasi bipolar and some-
what elongated. In the presence of an alignment field,
we have identified up to five regimes depending on the
strength of the anchoring of the director to the interface.
A schematic of the new phase diagram is given in Fig. 4.

Close comparison of theoretical predictions based on
this model and experimental observations on tactoids of
carbon nanotubes in chlorosulfonic acid by Jamali et al.
have shown that, in the absence of an electric orienting
field, there is a very good agreement between the the-
ory and experiments [5]. The predicted gradual crossover
from elongated to more or less spherical shapes, and from
uniform to bipolar director fields, is confirmed experi-
mentally, not only for tactoids in bulk solution but also
for sessile tactoids, i.e., tactoids on surfaces [12]. Curve
fits provide access to information on the surface energies
and bend constants [5, 12, 27, 29, 62–66].

For instance, if we curve fit the theory to the exper-
imental data of Metselaar et al. on tactoids formed in
dispersions of chitin fibres in water in the absence of an
electric field, we obtain a reasonably good agreement if
we set ω = 1.6, κ = 20 and (K11 − K24)/σ = 4 µm.
See Fig. 14, where the aspect ratio x is plotted against
the actual volume of the droplets. Also shown in the fig-
ure is the predicted bipolarness y of the tactoids, which
vary between 3 and just over 1 over that range of droplet

volumes. It suggests that the tactoids of chitin in wa-
ter are either bipolar or quasi bipolar, in agreement with
experimental observation. [39]

Because of the scatter in the data, and since we do not
cover the whole range of volumes from nearly uniform to
bipolar director fields as was done in the work of Jamali
et al. [5], we cannot expect these estimates to be highly
accurate. Still, if we take them at face value, we find
them to differ quite substantially form the ones found by
Jamali et al. for carbon nanotubes in chlorosulfonic acid,
with ω = 5.6, κ = 1.3 and (K11 −K24)/σ = 78 µm [5].
This, however, should not be too surprising, given that
both the elastic constants and surface energies depend
sensitively on the dimensions of the particles [35, 54, 56].
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FIG. 14. Aspect ratio x and bipolarness y of the director-
field as a function of volume of a droplet in the absence of the
electric field with Γ = 0. Left vertical axis shows us the aspect
ratio (we use blue triangles for the aspect ratio) and the right
vertical axis shows us bipolarness (cross signs for bipolarness)
and the red circles represent the experimental data of [39].
The best fit we obtain by eye are for the parameter values
κ = 20, ω = 1.3 and (K11 −K24) /σ = 4 µm. Notice that the
largest tactoids are bipolar because y → 1 and the smalles
ones quasi bipolar with y ≈ 3.

Rather unexpectedly, our predictions fail if an external
field is applied. In the experiments of Metselaar et al.,
sufficiently large tactoids elongate up to ten times their
original aspect ratio, which is much more elongated than
the droplets in the absence of a field [39]. As we have seen
in our model calculations, the presence of very large field
strengths do not lead to highly elongated shapes but to
uniform director fields. As already announced, this might
perhaps suggest that the bipolarness of the tactoids can-
not respond sufficiently swiftly to the switching on of the
external field. Before discussing the accuracy of this pre-
sumption, we first investigate its consequences assuming
that it is true.

The procedure that we pursue is as follows. First we
calculate the bipolarness y of the director field for the
field-free case with Γ = 0. Next, in the presence of an
orienting field, so for Γ > 0, we use this value of the bipo-
larness and optimise the free energy only with respect
to the aspect ratio x. Following this procedure, we do
find a strong elongation of the droplets as Fig. 15 shown,



13

where we compare the prediction of the full-equilibrium
and this restricted-equilibrium model with the dynamical
data of Metselaar et al. for tactoids of chitin in water.
Shown is the aspect ratio of the droplets as a function of
their volumes for a single electric field strength. For the
largest droplets, the full relaxation takes more than the
maximum of 1100 seconds, so the tactoids have not fully
equilibrated yet, see Fig. 15 of [39].
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FIG. 15. Aspect ratio x of tactoids as a function of volume V
in the presence of an electric field. We compare our numerical
results with the experimental data of [39]. The best fit by
eye we obtain taking as parameter values Γ = 500, ω = 1.3,
κ = 20 and (K11 −K24) /σ = 4 µm.

It seems that within a restricted-equilibrium calcula-
tion, agreement with the experimental data is indeed
rather good, even if they do not yet represent fully re-
laxed tactoids. The data confirm our expectation that
the electric field only has an impact on the shape of
the tactoids if they are sufficiently large. How large,
depends on the strength of the electric field. This is
shown in Fig. 16, where we show predictions of our
restricted-equilibrium model for the aspect ratio x of ne-
matic droplets as a function of the dimensionless volume
v for different dimensionless field strengths Γ. Accord-
ing to the scaling theory of section III, we should expect
an x ∼ Γ3/7v1/7 for a fully bipolar director field corre-
sponding to sufficiently large droplets. The slopes of the
various curves shown in Fig. 16 agree with this. Figure
17 shows that the scaling with the electric field strength
Γ for different tactoid volumes v also agrees with the
scaling prediction of 3/7 ≈ 0.43.

All of this of course begs the question why our full equi-
librium model, in which the tactoids choose their optimal
aspect ratio and director field in response to the external
field, does not agree with the experimental observations.
Above we have presumed that the bipolarness of the tac-
toids cannot respond swiftly to the switching on of an
electric field, at least less swiftly than the aspect ratio
can respond. In that case a restricted equilibrium pic-
ture applies, which would be valid for intermediate times.
This implies that after an initial increase in aspect ratio,
this aspect ratio should decrease again for (potentially)
much later times. This has not yet been investigated but
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FIG. 16. Aspect ratio x of a tactoid as a function of the
dimensionless volume v for different electric field strengths Γ
according to the restricted equilibrium model. See the main
text. Anchoring strength ω = 14 and bend elastic constant
κ = 10.

△

△

△

△

□

□

□

□

○

○

○

○

- y=7.50 Γ .41

- y=11.11 Γ 0.39

- y=15.57 Γ 0.40

100 101 102

101

102

Γ

x

FIG. 17. Aspect ratio x of a tactoid as a function of the
electric field Γ according to the restricted equilibrium model.
Anchoring strength ω = 14 and dimensionless bend constant
κ = 10. Different symbols show different volumes: triangles
v = 107, squares v = 108 and circles v = 109. Indicated are
also the scaling exponents, which are close to 0.4 for the three
tactoid volumes.

would be an interesting avenue of future experimental
research.

Whilst this may seem a somewhat far-fetched explana-
tion to align theory and experiment, it does tie in with
the observations of Jamali et al., who collected data on
hundreds of tactoids of carbon nanotubes in chlorosul-
fonic acid [5]. Even after 15 days of equilibration, the
scatter in the observed aspect ratio remains appreciable
and cannot be explained by thermal fluctuations. In-
deed, the experiments of Metselaar et al. also point at
long relaxation times: the largest droplets do not seem
completely equilibrated even after 7000 seconds. On the
other hand, the Lattice Boltzmann simulations presented
in the work of Metselaar et al. [39], which do mirror the
large elongation of the tactoids in an external field, point
at a relatively swift relaxation of the director field after
the external field is switched on.

In the simulations, the director field seems to keep the
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almost perfect planar alignment to the interface of the
tactoid with the surrounding isotropic fluid, while in the
bulk of the tactoid the director field seems to become
homogeneous [41]. This suggests a different kind of re-
laxation of the director field in response to the alignment
field than the one we presumed in our work, which con-
serves the geometry of director field. This kind of director
field is in our view surprising, as it involves a strong de-
formation with a small radius of curvature that is very
costly in elastic free energy. This is why, generally, it
is believed that wall defects in nematics spread out very
quickly [34]. (See, however, Tromp et al. [67].) We
emphasize that in general, the interplay of the defective
points (disclinations) and curvature in not trivial. The
complexity arises from solving the elasticity equations in
3D in the presence of defects [68, 69].

In fact, a simple scaling theory supports this
view in the context of tactoids. Let us for sim-
plicity take a spherical tactoid of radius R. A
locally deformed director field that preserves per-
fect planar anchoring would give a free energy of
the form F ' σR2 + KR2ξ−1 + γR2ξ. Here, K is
some combination of the bend and splay elastic
constants, ξ ≤ R is the width of the deformed di-
rector field that we equate to its radius of curva-
ture, and γ = aE

2 is the Coulomb energy per unit

volume. If we optimize ξ, we get ξ = K
1/2
11 γ−1/2 ≤ R

for γ ≥ K11R
−2. For γ ≤ KR−2, we have ξ = R.

Hence, we obtain F ' σR2 + KR + γR3 for γ ≤
KR−2 and F ' σR2 + γ1/2 + K1/2R2 for γ ≥ KR−2.
For a smooth director field in the limit of large
field strengths, we have F ' σR2 + σωR2 because
the director field is then approximately uniform.

This shows that for γ ≥ ωσ/R the uniform direc-
tor field has a lower free energy than the locally
deformed one. Of course, we cannot exclude the
possibility that for KR−2 < γ < ωσ/R a locally
deformed director field wins out albeit that this
might also be accompanied by an imperfect an-
choring.

In conclusion, we should perhaps not exclude the pos-
sibility that the lattice Boltzmann simulations, which
are coarse-grained and characterized by rather large in-
terfacial widths even on the scale of the width of the
droplets, allow for larger deformations in the interfacial
region than a continuum theory would. Because of this,
we feel that additional and more comprehensive simula-
tion studies would be useful to perform in order to settle
this issue [70].

Finally, we cannot exclude the possibility that the ex-
ternal field has a sizeable impact on both the interfacial
tension, the anchoring and on the elastic constants, be-
cause they all depend on the degree of orientation order
of the particles [35, 48, 49]. Indeed, all of them depend
on the degree of alignment of the particles, where we
note that the isotropic phase becomes paranematic in
the presence of an external field [52, 71, 72]. This implies
that the interfacial tension between the nematic droplets
and the host phase should decrease with increasing field
strength. In fact, it should disappear altogether at some
critical field strength. The study presented in this paper
shows that these issues can only be resolved with more
detailed experimental investigation of the impact of ex-
ternal fields on the properties of isotropic and nematic
phases of rod-like colloidal particles.
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[55] É. Generalova, A. Kaznacheev, and A. Sonin, Effect of
magnetic field on lyotropic nematic in the vanadium pen-
toxide (V2O5)-water system, Crystallography Reports
46, 111 (2001).

[56] T. Sato and A. Teramoto, On the frank elastic constants
of lyotropic polymer liquid crystals, Macromolecules 29,
4107 (1996).

[57] C. F. Dietrich, P. J. Collings, T. Sottmann, P. Rudquist,
and F. Giesselmann, Extremely small twist elastic con-
stants in lyotropic nematic liquid crystals, Proceedings
of the National Academy of Sciences 117, 27238 (2020).

[58] A. Verhoeff, R. Otten, P. van der Schoot, and H. Lekkerk-
erker, Magnetic field effects on tactoids of plate-like col-
loids, The Journal of Chemical Physics 134, 044904
(2011).

[59] A. Verhoeff, I. Bakelaar, R. Otten, P. van der Schoot, and
H. Lekkerkerker, Tactoids of plate-like particles: Size,
shape, and director field, Langmuir 27, 116 (2011).

[60] P. Lucht, Bipolar coordinates and the two-cylinder capac-
itor, Rimrock Digital Technology, Salt Lake City, Utah
84103 (2015).

[61] https://en.wikipedia.org/wiki/bipolar coordinates.
[62] M. Bagnani, P. Azzari, S. Assenza, and R. Mezzenga,

Six-fold director field configuration in amyloid nematic
and cholesteric phases, Scientific Reports 9, 1 (2019).

[63] P.-X. Wang and M. J. MacLachlan, Liquid crystalline

tactoids: ordered structure, defective coalescence and
evolution in confined geometries, Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 376, 20170042 (2018).

[64] G. Nyström and R. Mezzenga, Liquid crystalline filamen-
tous biological colloids: Analogies and differences, Cur-
rent Opinion in Colloid & Interface Science 38, 30 (2018).

[65] R. K. Bharadwaj, T. J. Bunning, and B. Farmer, A
mesoscale modelling study of nematic liquid crystals con-
fined to ellipsoidal domains, Liquid Crystals 27, 591
(2000).

[66] A. DeBenedictis and T. J. Atherton, Shape minimisa-
tion problems in liquid crystals, Liquid Crystals 43, 2352
(2016).

[67] R. Tromp and P. van der Schoot, Quench-induced ne-
matic textures of wormlike micelles, Physical Review E
53, 689 (1996).

[68] S. Li, P. Roy, A. Travesset, and R. Zandi, Why large
icosahedral viruses need scaffolding proteins, Proceedings
of the National Academy of Sciences 115, 10971 (2018).

[69] R. Zandi, B. Dragnea, A. Travesset, and R. Podgornik,
On virus growth and form, Physics Reports 847, 1
(2020).

[70] A. Kuhnhold and P. van der Schoot, Structure of nematic
tactoids of hard rods, work in preparation.

[71] S.-D. Lee, Comment on effects of elongational flow on the
isotropic–nematic phase transition in rod-like systems,
The Journal of Chemical Physics 86, 6567 (1987).

[72] S. Varga, G. Jackson, and I. Szalai, External field in-
duced paranematic-nematic phase transitions in rod-like
systems, Molecular Physics 93, 377 (1998).


