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A typical dense non-Brownian particulate suspension exhibits shear thinning (decreasing viscos-
ity) at low shear rate/stress followed by a Newtonian plateau (constant viscosity) at intermediate
shear rate/stress values which transitions to shear thickening (increasing viscosity) beyond a critical
shear rate/stress value and finally, undergoes a second shear thinning transition at extremely high
shear rate/stress values. In this study, we unify and quantitatively reproduce all the disparate rate
dependent regimes and the corresponding transitions for a dense non-Brownian suspension with in-
creasing shear rate/stress. We employ discrete particle dynamics simulations based on the proposed
mechanism to elucidate its accuracy. We find that a competition between inter-particle interactions
of hydrodynamic and non-hydrodynamic origins and the switching in the dominant stress scale with
increasing the shear rate/stress lead to each of the above transitions. Inclusion of traditional hy-
drodynamic, attractive/repulsive DLVO (Derjaguin and Landau, Verwey and Overbeek) forces, the
inter-particle contact forces and a constant friction (or other constraint mechanism) reproduce the
initial thinning as well as the shear thickening transition. However, to quantitatively capture the
intermediate Newtonian plateau and the second shear thinning, an additional non-hydrodynamic
interaction of non-DLVO origin and a decreasing coefficient of friction, respectively, are essential;
thus, providing the first explanation for the presence of the intermediate Newtonian plateau along
with reproducing the second shear thinning in a single framework. Expressions utilized for vari-
ous interactions and friction (the chosen constraint mechanism) are determined from experimental
measurements and hence, result in an excellent quantitative agreement between the simulations and
previous experiments.

I. INTRODUCTION

Dense suspensions of particles are abundant in nature
and industrial applications with examples ranging from
household cornstarch solution to metallic pastes used in
solar cells [1]. In spite of the Newtonian behavior of the
suspending fluid medium, suspensions exhibit plethora of
non-Newtonian behaviors including yield-stress [2], non-
zero normal stress differences [3], shear rate dependent
rheology [4, 5], and particle migration [6] to name a few
[7]. The general consensus amongst researchers is that
there is no time scale but a stress scale that gives rise to
the non-linear rate dependent behavior in dense particu-
late suspensions [8].

Historically, it has been reported that a typical dense
(φ ' 0.5) non-Brownian suspension (particle sizes >
O(1µm)) exhibits four distinct rate dependent regimes
in its rheological flow curve. The suspension rheological
behavior transitions from one regime to the other with
increasing the imposed shear rate/stress. The suspension
exhibits shear thinning (decreasing viscosity) at low shear
rates followed by a Newtonian plateau (almost constant
viscosity) at intermediate shear rates which transitions
to shear thickening (ST, increasing viscosity) beyond a
critical shear rate. ST can be gradual (continuous ST)
or sudden (discontinuous ST). Finally, if we further in-
crease the shear rate/stress to extremely high values, the
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suspension again undergoes another shear thinning tran-
sition [4, 5, 7, 9, 10]. This is depicted in fig. 1.
Numerical models and theoretical studies to date are

able to quantitatively capture the shear thinning at low
shear rates [2, 11, 12] and the ST transition at intermedi-
ate shear rates [11–16]. The initial shear thinning at low
shear rates arises from the presence of repulsive double
layer barrier (steric interactions) and the Van der Waals
attractive forces (collectively known as DLVO interac-
tions).
ST in suspensions has been known from the early 20th

century and has been an active topic of research since
then. As a result, a plethora of explanations for this
phenomenon can be found in the literature. Some of
these explanations include sudden emergence of turbu-
lence between the particles [17], order disorder transi-
tions [18, 19], hydrodynamics induced particle clustering
[13, 20–22]. But none of these explanations can quan-
titatively reproduce the viscosity jump observed in ST
transitions [11, 23, 24], especially at high volume frac-
tion (φ > 50 %). E.g., purely hydrodynamic interac-
tions based simulations [14, 25–27] give a weak loga-
rithmic shear thickening (weak CST). Even though this
purely hydrodynamics based point of view is able to de-
scribe the rheology of moderately concentrated suspen-
sions (φ < 45%) which exhibit a weak CST, it cannot pre-
dict the strong CST and CST to DST transition routinely
observed in highly concentrated suspensions (φ > 50%)
[11, 22, 28–31]. The recently proposed lubricated to fric-
tional transition of the particle contacts [11, 32, 33] and
constraint based mechanisms [12, 34] have been proven to
be very efficient in capturing the ST onset, CST to DST
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FIG. 1: Schematic showing the typical rheological flow
curve for dense non-Brownian suspensions. This rheological
behavior is commonly observed for non-Brownian
suspensions [4, 5, 7, 9].

transition and the shear jamming in dense suspensions.

Over the years, many explanations have been given
for the second shear thinning at extremely high shear
rates. These include an increase in the maximum packing
density due to breakdown of spanning clusters [35], elas-
tohydrodynamic effects [36], micro-scale non-Newtonian
shear thinning effects of the interstitial solvent [37], in-
homogeneous microstructure at high shear rates after
the ST transition [38], surface tension effects and even-
tual sample ejection [28], adhesion-based constraint re-
laxation due to stress [12]. However, none of these expla-
nations can make quantitative predictions for the second
shear thinning regime. In addition, the reason for the
intermediate Newtonian plateau still eludes researchers
[5, 7]; limiting the existing numerical and theoretical
frameworks from being able to quantitatively reproduce
the entire unified flow curve. Thus, understanding the
origins of the Newtonian plateau is a crucial piece of the
puzzle that allows us to unify all the four rate depen-
dent regimes and the corresponding transitions from one
regime to the other.

To this end, we propose a unifying mechanism which
quantitatively reproduces various regimes and transitions
in the rheological flow curve of a dense non-Brownian
suspension of smooth hard spheres. Since we are specifi-
cally interested in non-Brownian suspensions, we assume
the Péclet number (Pe) to be >> O(103) which typi-
cally corresponds to particle sizes > O(1 µm). Quanti-
tative agreement between the discrete particle dynamics
simulations based on the proposed mechanism and the
experimental data bolsters the validity of the proposed
model. Though bits and pieces of this puzzle have been
studied in detail in the contexts of specific suspensions
showing specific behaviors, e.g., initial shear thinning due
to the presence of attractive forces [2] and ST due to lu-
bricated to frictional contact transition [11, 30, 39], an
effort to unify all the four disparate regimes has not been
done. Furthermore, as mentioned, there is no explana-

tion for the Newtonian plateau in the literature and the
explanations given for the second shear thinning are not
quantitative. We show that the inclusion of inter-particle
interactions of non-DLVO origin is the key to explain
and quantitatively capture the intermediate Newtonian
plateau regime. Relaxation of constraint on the parti-
cle motion in the form of decreasing friction accurately
predicts the second shear thinning; thus, unifying all the
four disparate regimes observed in the flow curve of a
non-Brownian dense suspension for the first time. Fi-
nally, we will also demonstrate the versatility of the pro-
posed model to reproduce various other rheological flow
curves containing one or more of the above mentioned
four regimes.

II. PHILOSOPHY BEHIND UNIFICATION

In a Stokes flow regime, i.e., the particle Reynolds
number, Re, is negligible, the particle motion in sus-
pensions is governed by a simple balance between the
hydrodynamic (FH) and the sum of all other non-
hydrodynamic interaction acting on the particle (

∑

α F
α)

[25]. Each of these interactions lead to correspond-
ing stress scales in the system which scale as ≈
O(|Fα|/6πη0a

2), where η0 and a are the suspending fluid
viscosity and the particle characteristic length scale, re-
spectively. This scaling implicitly tells us that each in-
teraction is competing with the hydrodynamic interac-
tions which scale as |FH | ≈ 6πη0a

2γ̇, where γ̇ is the
imposed shear rate. There is a general consensus that
the competition between these stress scales gives rise to
the rate dependent rheological behavior in dense suspen-
sions [8]. Previous experiments [5] and computations [2]
show that the attractive and repulsive forces of DLVO
origin gives rise to the first shear thinning at low shear
rates suspensions and hence are the choice of interactions
for capturing the first shear thinning regime. The exact
expressions for DLVO interactions are readily available
from the theoretical analyses and previous experimental
data [5, 40].
We hypothesize that the presence of non-DLVO forces

which are non-contact inter-particle interactions and be-
come dominant when the particles are extremely close
but not touching each other delay the ST transition to a
higher shear rates/stress after the initial shear thinning.
This happens because non-DLVO forces introduce an ad-
ditional stress scale which needs to be overcome before
the activation of the constraint mechanism (explained be-
low) required for ST transition; and hence, gives rise to
the intermediate Newtonian plateau. The presence of the
non-DLVO forces has been confirmed by experimental
measurements [41] and has been analyzed theoretically
as well [42–44]. The non-DLVO forces can arise due to
the presence of charge layers on the particle surface or
due to hydration effects [41]. As will be shown from the
simulation results, it is the magnitude of the non-DLVO
forces which determines the range of shear rate/stress
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where the Newtonian plateau is observed. Absence of
non-DLVO interactions lead to disappearance of the in-
termediate Newtonian plateau. The quantitative match-
ing with the experimental data can only be obtained by
accounting for the non-DLVO forces, thus, corroborating
the validity of this hypothesis.

Any microscopic mechanism that introduces con-
straints on particle motion can result in the shear thick-
ening transition, while relaxation of such a constraint can
qualitatively reproduce the shear thinning. Lubrication
interactions between individual asperities on particle sur-
faces can lead to continuous (CST) as well as discontin-
uous (DST) shear thickening [16]. Constraint formation
and relaxation by stress e.g., adhesion, can qualitatively
reproduce the shear thinning and shear thickening tran-
sitions [12]. However, to obtain a quantitative matching
with experiments, we must know the exact expressions
from experimental measurements for these constraint in-
teractions. Hard particle-particle contacts resulting in
friction is a constraining mechanism which has been in-
vestigated thoroughly and hence, exact expressions from
experimental measurements are available. So, without
the loss of generality, friction is the choice of constraint
mechanism for this study to quantitatively reproduce the
CST, DST and CST to DST transition with increasing
φ, and second shear thinning in the flow curve of a dense
non-Brownian suspensions.

It has been shown that a sudden activation of friction
between the particles as they come into dry contacts ow-
ing to the irregularities on particle surfaces result in ST
transition (CST and DST depending on the suspensions
volume fraction, φ) [11, 45]. The same has also been
validated by experiments [33, 46]. This is analogous to
activating a constraint on the relative motion between
the particles. On the other hand, a coefficient of friction
decreasing with the normal load between the particles
is analogous to relaxation of the constraint and hence
would result in shear thinning [1, 47]. Constraint mech-
anisms based on friction have been proven to be very
efficacious in reproducing various shear stress-shear rate
curves that are observed experimentally for dense suspen-
sions, CST to DST transition beyond a critical volume
fraction and most importantly jamming [48, 49]. Further-
more, there are many experimental studies that validate
the role of friction [33, 46, 47]. Hence, friction is the
constraining mechanism utilized here. We would like to
emphasize that, owing to the additive nature of the non-
hydrodynamic forces, any other constraining mechanism
can be readily used, given expressions for the interac-
tions are known. So, the proposed unifying mechanism
utilizes the Stribeck curve for inter-particle friction along
with hydrodynamic, DLVO (attractive, repulsive forces),
non-DLVO and contact forces to unify disparate regimes
in the flow curve of non-Brownian dense suspensions.

FIG. 2: Schematic showing the coefficient of friction, µ
(thin black line), and the dimensionless normal force
magnitude, |Fn| (thick red line), between a close particle
pair as a function of dimensionless inter-particle gap,
λ = h/hr . Boundary, partial elastohydrodynamic (EHL) and
full film lubrication regimes in the Stribeck curve are
demarcated based on the value of λ. Similarly, dominant
inter-particle interactions in each of these regimes are also
shown in red font. The insets at the top show the various
regimes in terms of separation between two close particles.
The arrows in these insets are shown to qualitatively
indicate the size of the inter-particle gap and the range of
the dominant inter-particle interaction with respect to the
roughness and the particle size.

Stribeck curve for friction

The Stribeck curve for friction behavior has been
used widely in the literature to explain the sliding phe-
nomenon occurring in lubricated contacts [50]. In a typi-
cal Stribeck curve, the coefficient of friction, µ, is plotted
as a function of the Sommerfeld number, S = ηV/W ,
where η is the lubricant dynamic viscosity, V is the rela-
tive sliding velocity between contacting surfaces and W
is the normal load [50]. However, for rough surfaces, the
surface asperity height dictates the full-film to boundary
lubrication contact transition (see [51] and the references
therein). Particle surface roughness is one of the impor-
tant parameters governing the rheology of dense suspen-
sions as even the most idealized smooth particles have
surface irregularities of O(0.001−0.01) times the particle
radii [47]. These surface asperities not only lead to inter-
particle contacts, but also dictate the friction in inter-
esting ways. Hence, efforts on investigating the influence
of particle roughness on dense suspension rheology have
gained much traction in the recent years [16, 45, 49, 52].

In the case of particles coming into contact, the aver-
age roughness height results in an additional secondary
length scale (along with the primary length scale which
is particle size) in the system. While the particle size
distribution governs the hydrodynamic interactions, the
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secondary length scale introduces geometrical and inter-
particle force constraints [45]. So, we define λ as the
dimensionless gap between the particles, i.e., λ = h/hr.
Here, h is the inter-particle gap, and hr is the average
roughness height (defined below). High λ (λ > 2) signi-
fies no dry contact between the particles and the friction
force is mostly due to the force transmitted via lubri-
cation interactions (full-film contact) [50]. The effect of
increasing the shear rate/stress in the suspension is to
reduce the average inter-particle gap thus bringing parti-
cles close to each other. As particles come closer to each
other, λ decreases, and partial-elastohydrodynamic lubri-
cation (partial-EHL) results in a sudden rise in µ [53, 54].
In this regime (1 < λ < 2), partial dry contact between
the particles is expected to occur. In addition, as the
inter-particle gap becomes comparable to mean particle
surface roughness size, repulsive forces of non-DLVO ori-
gin (arising due to hydration or stagnant charge layer on
the particle surface) are expected to be present with mag-
nitudes a few orders higher than the repulsive forces of
DLVO origin, viz, arising from the double layer potential
[55–57].
As λ decreases further (λ < 1), the contact enters

boundary lubrication, i.e., full dry contact between the
particles. In this regime, the coefficient of friction has
a high value if the contact between the particles is elas-
tic which is true if the asperity deformation is smaller
than a threshold value δc [58]. If λ decreases even fur-
ther, the contact enters a plastic regime which results in
a significant reduction in the coefficient of friction. This
reduction in the friction coefficient with plastic deforma-
tion of asperities requires tremendous normal load which
happens only at extremely high shear rate/stress values.
As a result, we get the second shear thinning regime.
These phenomena are depicted in fig. 2.

Summary of relevant Interactions:

The transitions in the flow curves are governed by the
competition between various stress scales in the system
for non-Brownian suspensions. In the present study, we
have four such stress scales that determine the various
transitions:

1. Attractive and repulsive forces when the particles
are not touching and are separated, i.e., λ > 2
(full film regime in the Stribeck curve). In this
regime, the friction is due to the tangential lubri-
cation forces which is implicit in our hydrodynamic
force modeling. Hence, Coulomb’s friction law is
not applicable.

2. The non-DLVO force is a non-contact force, hence
does not lead to constraints on sliding motion.
This force is present only when the particles are
not touching but are very close to each other, i.e.,
1 < λ < 2 (EHL regime on the Stribeck curve).

3. The inter-particle contact and a high coefficient of
friction when the particles just come into contact
(0.95 < λ ≤ 1) lead to the shear thickening transi-
tion.

4. The decrease in the coefficient of friction as the
asperities deform more and enter a plastic region
(λ ≤ 0.95) explains the second shear thinning
regime. It should be noted that the second shear
thinning was also observed for non-attractive &
non-adhesive particles [10] which cannot be ex-
plained by stress induced relaxation of constraints.

We briefly elaborate on the methods and simulation
framework used in this study in the following section be-
fore presenting the main results.

III. SIMULATION METHODOLOGY

We simulate the shear flow of neutrally buoyant
inertia-less bi-spherical particles with radius ratio 1.4
and equal volume fractions in a cubical domain of size
L = 15a. Here a is the radius of the smaller particle. For
this particular particle size distribution, the dry close
packing fraction (φd) is 0.66 [49]. We use φd to normal-
ize the volume fraction (φ) values in this study for direct
comparison with experiments. Simulation results do not
change much for a bigger domain size L = 20a. The sus-
pending fluid is Newtonian with viscosity, η0. The im-
posed shear rate is γ̇ with Lees-Edwards periodic bound-
ary conditions on all the sides. Also, the Péclet number,
Pe > O(103) [4, 5, 7], so, the flow is in the non-Brownian
regime.
We use Ball-Melrose approximation [59] to calculate

the hydrodynamic interactions, FH , repulsive force of
electrostatic origin, FR, Van der Waals attractive force,
FA, repulsive forces of non-DLVO origin, FND, and con-
tact interactions, FC . The repulsive forces (FR and
FND) act normally towards the particle center. FR

decays with inter-particle surface separation h over a
Debye length κ−1 as |FR| = FRexp(−κ(h− 2hr)) for
h > 2hr and |FR| = FR for h ≤ 2hr. The non-
DLVO repulsive forces are dominant when the inter-
particle gap is comparable to particle surface roughness
size [60, 61]. So, we use a non-DLVO repulsive force
for hr ≤ h ≤ 2hr with an exponentially decaying form
|FND| = FNDexp(−A(h − hr)/a) for h ≥ hr [41] and
|FND| = FND for h < hr. We choose A = 1000
for this study. Similarly, the attractive force of Van
der Waals origin also acts normally but in the oppo-
site direction to the repulsive force and is modelled as

|FA| = FA/
(

(h− hr)
2
+ 0.01

)

. 0.01 is used to prevent

the divergence in F
A when h → hr [2]. We use the DLVO

repulsive force as the characteristic force scale to non-
dimensionalize the governing forces. So, the characteris-
tic stress scale is given by σ0 = FR/6πa

2 (and rate scale,
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FIG. 3: a) Relative viscosity as a function of dimensionless shear rate (γ̇/γ̇0) for two different volume fractions (PS =
present simulations) compared against experiments (EX = Experiments, γ̇0 = 200s−1 for experimental data) of Chatté et al.,
(2018) [5]. The volume fractions are scaled with dry close packing fraction φd for direct comparison. φd = 0.66 for the
simulations. b) Probability distribution function (PDF, dotted lines) of the average dimensionless inter-particle gap (〈λ〉)
with increasing γ̇/γ̇0 (legends) along with the friction coefficient (solid lines) for log decay friction model. Dotted lines are
spline fits to guide the eye. Dashed lines demarcate the transition between interaction ranges as explained in fig.2.

TABLE I: Simulation parameters

φ γ̇/γ̇0 κ−1 FA hr FND

0.52 & 0.57 0.001 − 50.0 0.04a 10−3FR 0.01a 10FR

γ̇0 = σ0/η0), related to the transition from lubricated
contacts (hydrodynamic) where particles are separated
to direct contact between particles.

We model the surface roughness as a hemispherical
bump of size, hr, on the base sphere. The contact inter-
actions are modeled using the Hertz law for the normal
contact force (|FC

n | = kn(δ/δc)
3/2) and a linear spring for

the tangential contact force (FC
t = ktξt), respectively [1].

Here, δ = hr − h is the asperity deformation, δc is the
threshold for elastic to plastic transition and ξt is the tan-
gential spring stretch. The contact activates only when
h ≤ hr. Contact interactions obey the Coulombs friction
law, |FC

t | ≤ µFC
n . The details and validation of the al-

gorithm can be found elsewhere [1, 45, 49]. Fig.2 depicts
how |Fn| varies with λ. It is well known that µ is not
constant and depends on the normal load |FC

n | [5, 33, 58].
Since |FC

n | ∝ δ3/2 following the Hertz law, µ can also be
described as a function of the dimensionless inter-particle
gap, λ = h/hr, (since δ = 1−λhr). We calculate the bulk
stress σ in the system by volume averaging the stresslets
due to all the interactions [1, 45, 49]. Rheological prop-
erties can be quantified from the bulk stress, e.g., the
relative viscosity of the suspension, ηr = σ12/(η0γ̇), sec-
ond normal stress difference, N2 = σ22 − σ33, and so on.

Friction coefficient. We use the dimensionless gap size
(λ = h/hr) dependent Stribeck curve to model µ [54].
For λ > 1, the reduction in µ with decreasing λ is cap-

tured in lubrication interactions [15] and hence there is
no need to use Coulombs friction law explicitly. We ap-
proximate µ in the partial-EHL regime by a step function
[15] for simplicity. For λ ≤ 1, asperities come into con-
tact resulting in a sudden rise in µ. µ has a high value
if the contact is elastic, i.e., δ ≤ δc, where δ is the as-
perity deformation defined as δ = |h − hr| [47, 58]. If
the asperities deform further such that, δ > δc, the con-
tacts transition into plastic regime resulting in a steep de-
crease in µ. Experimental measurements [5] have shown
that the friction coefficient decreases with the normal
load as µ = −a′ ∗ ln(|FC

n |) + b′ or in terms of λ (since
|Fn| ∝ δ3/2 by Hertz law and δ = hr(1− λ)) we can say,
µ = −a ∗ ln((1− λ))+ b for 0 < λ < 1 where a′, b′, a and
b are constants. We choose a = 1/2 and b = −0.2 in this
study. We call this friction model log decay friction. Data
for additional friction models along with results for vary-
ing a and b in the log decay model are shown in sec. IV.

Thus, all the expressions used for various forces have a
solid experimental backing. One way to distinguish them
experimentally is to measure them carefully in terms of
the inter-particle gaps as modeled in the paper. We
have used the expressions from the experimental mea-
surements [5], to make a quantitative comparison with
their results. However, the freedom to choose the values
of various input parameters such as the relative magni-
tudes of the forces, the Debye length, parameters a and
b in the friction law and the roughness size based on the
system one is trying to model is the core of the model
enables the model to capture various regimes in the flow
diagram. For the systems which do not show a Newto-
nian plateau, one only needs to switch off the non-DLVO
forces or make their magnitude 0. This allows us to unify
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FIG. 4: Scheme of the physics involved in the shear
thinning (I − II) - Newtonian plateau (III) - shear
thickening - shear thinning (IV ) regimes in the rheological
behavior of a typical dense non-Brownian suspension. The
insets at the top show the approximate inter-particle gaps in
regimes I − IV . In these insets, the outermost circle
represents the range of DLVO forces, the inner orange circle
represents the range in which non-DLVO forces are
dominant and the innermost circle represents the particles.
Thus, with increasing shear rate we observe different regimes
depending on which forces are dominant in the suspension
on average as depicted by the overlaps of different force
zones in the insets.

various flow regimes observed for non-Brownian suspen-
sions as demonstrated in the following sections.

RESULTS & DISCUSSION

We demonstrate the accuracy of the proposed model
by direct comparison of the calculated suspension rela-
tive viscosity with experimental values for polyvinyl chlo-
ride particles suspended in a Newtonian fluid medium [5]
in fig. 3a. Chatté et al. (2018) [5] used a system that
has previously been characterized to take advantage of
the data from the literature. They use a dispersion of
polyvinyl chloride (PVC) particles suspended in a New-
tonian fluid (Dinch). The classical studies by Hoffman
[4, 9] also used PVC particles. In addition, PVC particles
are known to transition from a lubricated-to-frictional
contact regime [33]. They use two dispersion with a log-
normal (D1) and a trimodal with lognormal peaks (D2).
The sizes of the particles are chosen in such a way that
the Brownian effects are negligible. Hence, these disper-
sions are non-Brownian.
It has been shown that a poly-disperse system with a

log-normal distribution of the particle sizes can be quan-
titatively modeled as a bi-disperse system in a way such
that both of these dispersion have similar rheological
property values [72]. Hence, we are particularly inter-

ested in the D1 dispersion as we can use a simple bi-
disperse system and still reproduce the same rheology
as done in the main text. However, because these two
systems have different random packing fractions (φd), in
order to compare the viscosities, we need to normalize
the volume fraction values for these systems by φd [8].
The random packing fraction for D1 dispersion is ≈ 69%
while the random packing fraction for the bi-disperse sys-
tem used for simulations is ≈ 67%. Hence, a close quan-
titative agreement between the experiments and simula-
tions is expected if we accurately model the underlying
physics. Also note that to access such a wide range of
shear rate values and the different regimes in the flow
curve of these suspensions, they use a combination of
rotational and special capillary rheometers as simple ro-
tational rheometers cannot access regions of very high
normal stress differences [28, 36]. These regions corre-
spond to high viscosity values after the shear thickening
transition and the second shear thinning regime.

Fig. 3a shows that the proposed model does an excel-
lent job in quantitatively capturing the rate dependent
rheological properties in low, intermediate and high shear
rate limits, respectively. This shows that the hypothesis
that accounting for non-DLVO interactions recovers the
initial transition from shear thinning to the intermediate
Newtonian regime. A universal friction law based on the
“Stribeck curve” accurately recovers the onset of ST and
then the second shear thinning that is typical to dense
non-Brownian suspensions is indeed true.

We plot the probability distribution (PDF) of the en-
semble average of the dimensionless inter-particle gap 〈λ〉
at different shear rate values corresponding to different
regimes in the rheological state diagram (fig. 3b) to ex-
plain the observed shear rate dependent rheological be-
havior. With increasing shear rate values, the peak and
mean of the PDF of 〈λ〉 shift to the left on the Stribeck
curve. This determines the various transitions in the rhe-
ological state diagram. At low shear rates, the particles
are prevented from coming into direct contacts due to
the combined effect of the repulsive and attractive forces
of the DLVO origin. This is analogous to having par-
ticles with bigger radii. As we increase the shear rate,
the particles are pushed closer resulting in the reduction
of this apparent bigger radius. As a result, the effec-
tive volume fraction of the suspension decreases with in-
creasing shear rate in this regime which results in the
observed shear thinning. In the intermediate shear rate
regime, the stress is high enough to overcome the DLVO
repulsive barrier between the particles so that the par-
ticles are on average separated by a distance ≈ O(hr).
But the stress is not high enough to overcome the short
range non-DLVO repulsion which is an order of magni-
tude higher than the DLVO barrier. This leads to the
Newtonian plateau in the relative viscosity. This effect is
similar to the effect of Brownian forces in colloidal sus-
pensions in the intermediate Péclet number regime which
gives rise to the Newtonian plateau in colloidal suspen-
sions. This plateau in the ηr at intermediate γ̇ values is
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FIG. 5: a) Contributions from hydrodynamic (ηH
r ), non-contact (DLVO and non-DLVO, ηNC

r ) and contact (ηC
r ) interaction

to the total relative viscosity of the suspension for φ/φd ≈ 0.86. The trends in the respective contribution follow from fig. 4.
Lines are for guiding the eye. b) Flow curve for different coefficient of friction functions for φ/φd ≈ 0.86.

not present if we do not consider short range repulsive
forces of non-DLVO origins [2]. This indicates the gov-
erning role of non-DLVO forces in dense non-Brownian
suspensions.

If we increase the shear rate further, the stress in the
suspension becomes high enough so that the repulsive
barrier due to the DLVO and non-DLVO forces breaks
and the particles come into contacts due to the touching
of asperities on their surfaces. The contact remains in
the elastic region resulting in a high µ between the par-
ticles and constraints relative sliding between the parti-
cles. This leads to a jump in the suspension viscosity.
The shear thickening transition takes place above a criti-
cal shear rate value (γ̇c, e.g., γ̇c/γ̇0 for φ/φRCP ≈ 0.86 is
0.1). In the shear thickening transition regime, the vis-
cosity increases gradually (continuous shear thickening)
at lower volume fractions while it undergoes a sudden
increase (discontinuous shear thickening) at higher vol-
ume fractions. As we increase the shear rate further,
the asperities are plastically deformed (δ > δc). As a
result the coefficient of friction between the particles de-
creases significantly which is analogous to relaxation of
the constraint on the relative sliding motion between the
particles. This gives rise to the second shear thinning
transition at high shear rates. The consequences of this
shift in the PDF of 〈λ〉 to the left with increasing γ̇ are
depicted pictorially in fig. 4.

The direct consequence of the shift in the PDF of 〈λ〉
can be seen on the different contributions from hydrody-
namic (ηHr ), non-contact (ηNC

r , DLVO and non-DLVO)
and contact (ηCr ) interaction to the total relative viscos-
ity (ηr) in fig. 5a. As we increase the shear rate, ηHr
increases gradually. At low and intermediate shear rate
values, ηCr is 0 as the repulsive barrier prevents direct
contacts. In this regime, ηNC

r decreases with increasing

the shear rate which explains the first shear thinning be-
havior. But beyond γ̇c the particles come into direct con-
tacts thus resulting in the sudden jump in ηr due to high
ηCr . This is also known as lubricated-frictional transition
which has been well studied [62]. In the high shear rate
regime beyond γ̇c, the contribution from the contact in-
teractions to the bulk suspension stress is dominant and
hence determines the suspension viscosity. Since µ de-
creases with increasing the shear rate due to lowering of
λ, ηCr and as a consequence ηr decreases with an increase
in the shear rate.
We use the ordering metric Q6 to quantify the ordering

in the suspensions. Q6 can be calculated as follow:

Q6 =

√

√

√

√

4π

13

m=6
∑

m=−6

〈Y6m〉2. (1)

Here Ynm(θ, φ) are the spherical harmonics which depend
on the polar (θ) and the azimuthal (φ) angles which to-
gether give us the orientation of the center-to-center vec-
tor for the neighbouring particle pairs. 〈Y6m〉 is the av-
erage of Y6m(θ, φ) over all the neighbouring particles in
the suspension. Q6 quantifies the ordering in the suspen-
sion system. Q6 = 0 indicates a completely homogeneous
or disordered system. The maximum value that Q6 can
have is ≈ 0.575. This maximum values is reached for a
face-centered cubic structure.
The neutron scattering [22] and rheo-confocal [63] mea-

surements for Brownian suspensions (Pe < O(105)) hint
towards the role of ordering in the colloids in the ini-
tial shear thinning. Since we use a bidisperse suspension
for preventing any clustering and ordering in the suspen-
sion, we expect the particles to remain homogeneously
distributed. Still, to investigate if there is any ordering
in the suspensions we plot the order metric Q6 [64] in
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FIG. 6 a) DLVO force (repulsion & attraction) profiles as a function of dimensionless gap for two different attractive force
magnitudes, b) Effect of varying the attractive force magnitude on the first shear thinning regime.

fig.5b. A small value of Q6 signifies absence of ordering
in the suspension, while a large value (> 0.5) indicates
a strong ordering. We find that Q6 values are negligi-
ble which tells us the absence of any ordering. However,
we observe a gradual rise and a spike in Q6 for the lower
shear rates just before the ST transition (the end of New-
tonian plateau). Q6 drops down significantly once the
suspension undergoes ST transition (γ̇/γ̇0 ≈ 0.1). These
calculations insinuate that the ordering in the initial thin-
ning regime might be the consequence of DLVO and non-
DLVO forces preventing the particles from coming into
hard contacts as the peak in Q6 coincides with the range
of shear rates when DLVO and non-DLVO interactions
are dominant.

IV. PREDICTING OTHER FLOW CURVES

We have used the expressions for DLVO repulsive force
and the coefficient of friction from the experimental mea-
surements by Chatté et al. (2018) [5] to make a quan-
titative comparison with their results and validate the
model. However, the freedom to choose the values of
various input parameters such as the relative magnitudes
of the forces, the Debye length, the friction law, and the
roughness size based on the system one is trying to model
enables the model to capture various regimes and transi-
tions in the flow diagram. Increasing the magnitude of at-
tractive forces or increasing the Debye length with results
in a steeper initial thinning [2, 65] (sec. IVA). Decreasing
(increasing) the magnitude of non-DLVO forces will re-
sult in a narrower (wider) Newtonian plateau (sec. IVB).
For the systems which do not show the second shear
thinning, one only needs to make the coefficient of fric-
tion a constant which gives us a constant viscosity in
the shear thickened regime [45] (sec. IVC). Though sim-

ulation results show that only constraining the sliding
motion between the particles gives a satisfactory agree-
ment with experimental data for smooth particle sus-
pensions [47], our model can also account for roughness
effects ((sec. IVD)) both geometrically (by varying the
roughness size [45]) and physically (by constraining the
rolling and twisting motion [66]). Other constraints on
the particle motion such as rolling and twisting friction
become important only for rough particles [32]. Incorpo-
rating rolling and twisting friction in the current model
is straight-forward but not done as we are dealing with
smooth particle suspensions. This makes the proposed
model very general and applicable to a wide variety of
systems.

In this section, we present the simulation results ob-
tained by varying various controlling parameters in the
proposed model. The key parameters in the model are:
1) DLVO repulsive force scale, FR, 2) DLVO attractive
force scale, FA, 3) non-DLVO short range repulsive force
scale, FND and, 4) the exact dependence of the coeffi-
cient of friction on the contact normal load |FN

c | or on
the asperity deformation δ. Each of these parameters
determine the suspension behavior and the critical tran-
sition shear rates for the four regimes described.

A. Magnitude of FA controls the initial shear

thinning

We first plot the DLVO force profiles if we increase
the magnitude of the attractive forces, FA in the DLVO
interactions. These are presented in fig. 6a. For these
simulations, we keep the other parameters fixed as given
in the Table I in the main text. We use the same fric-
tion model as in the main text. We only vary the mag-
nitude of the attractive forces, FA. Fig. 6b shows the



9

γ̇/γ̇0

10−3 10−1 101

η
r

102

103

104
EX [1]
FND = 10FR

FND = 1FR

FND = 100FR

(a)

γ̇/γ̇0

10−4 10−2 100 102

Q
6

0.04

0.045

0.05

0.055
FND = 10FR

FND = 100FR

(b)

FIG. 7 a) Effect of changing the magnitude of the non-DLVO force. The Newtonian plateau disappears in the absence of
non-DLVO forces. Thus, we can reproduce thinning-thickening-thinning using the proposed model as well. This is
useful for suspensions which do not have significant Newtonian plateau e.g., silica particles [22]. b) The order
metric Q6 for two different non-DLVO force magnitude. The gradual increase in Q6 in the first shear thinning
regime and peak in the Newtonian regime hint towards the link between ordering and the initial shear thinning -
Newtonian plateau [22].

effect of changing the magnitude of the attractive forces
in the DLVO interactions. As expected, with increasing
the magnitude of the attractive forces, we observe that
the slope of the shear thinning curve at low shear rate
values increases [2]. With the increase in FA, the λ below
which the net DLVO force is repulsive, decreases. Note
that, the critical shear rate for shear thickening transition
does not change with changing FA. This is because, be-
fore the lubricated-to-frictional transition can take place,
the particles still need to overcome the non-DLVO re-
pulsive forces. So, in this model, the magnitude of the
non-DLVO forces determines the critical shear rate for
the onset of shear thickening transition. The Newtonian
plateau disappears in the absence of non-DLVO forces.
Thus, we can reproduce thinning-thickening-thinning us-
ing the proposed model as well. Changing the magnitude
of the non-DLVO forces does not change the viscosity
jump magnitude and the viscosities in the second shear
thinning regime. This is because both of these depend
on the friction model used.

B. FND controls the presence, absence and the range

of the intermediate Newtonian plateau

Fig. 7a shows the effect of varying the magnitude of
the non-DLVO forces on the flow curve of dense non-
Brownian suspensions. For these simulations, we keep
the other parameters fixed as given in the Table I and
only change FND. We use the same friction model as
before. We only vary the magnitude of the non-DLVO
forces. The range of shear rates over which Newto-
nian plateau is observed increases with an increase in

the magnitude of the non-DLVO forces. This is because
non-DLVO forces are essentially non-contact forces. So,
as their magnitude increases, the lubricated-to-frictional
transition in the particle contacts is pushed to higher
critical shear rates. Changing the magnitude of the non-
DLVO forces, however, does not change the slope of the
second shear thinning curve at high shear rates as it de-
pends on the friction model. This investigation shows
that the presence/absence and the range of the New-
tonian plateau is determined by the presence/absence
and the magnitude of the non-DLVO interactions, re-
spectively. More experiments measuring the non-DLVO
forces between particles made of different materials and
their corresponding Newtonian plateau range can shed
more light on the role of the non-DLVO interactions.

As we use a bi-disperse system, we observe only a weak
ordering in the suspensions. Previous studies in the col-
loidal regime [22, 63], have attributed the shear thinning
at low shear rates to the ordering of particles in layers
in the colloids. In our simulations for non-Brownian sys-
tems, there is no evidence of any significant ordering.
Hence, the initial shear thinning regime observed is due
to the apparent lowering of the volume fraction as the
inter-particle gaps between the particles reduce as we in-
crease the shear rate. The particles are pushed closer as
the hydrodynamic force dominates over the non-contact
DLVO forces with an increase in the shear rate. We,
however, see a gradual rise in Q6 until it reaches a peak
just before the shear thickening transition as shown in
fig. 7b. The peak is sustained over the range for which
we observe the Newtonian plateau. This hints that the
ordering and the flattening of the viscosity just before
the shear thickening might be the outcomes of the non-
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FIG. 8 a) Different friction laws tested for the sensitivity analysis of the model to µ. −a ∗ log((1− λ) + b is the log decay

model derived from the experimental measurements from ref. [5]. The black solid line (a = 1/2, b = −0.2), red
dashed line (a = 1/4, b = −0.2) and the dotted pink line ((a = 1/2, b = −0.5)) show how µ for log decay model

changes with dimensionless inter-particle gap λ = h/hr = 1 + δ/hr. Dash-dotted blue line shows a hypothetical
exponentially decaying µ. Finally, the grey solid line shows the Brizmer [58] model for µ which has been previously
used in the literature to explain the shear thinning in dense non-Brownian suspensions [47]. b) Variation of
viscosity for different friction models. If we use a constant µ instead, we will not observe the second shear thinning
regime. The data shows that the friction model determines the viscosity jump during the shear thickening
transition and the slope in the second shear thinning regime. The flow curve for suspensions which do not exhibit
the second shear thinning can be obtained by choosing a constant coefficient of friction.

contact interactions between the particles. Experiments
can shed more light on this link.

C. Governing role of friction in the ST transition

and rheology at high shear rates

The second shear thinning after the shear thickening
transition at high shear rates the result of the decreasing
coefficient of friction in the boundary contact regime of
the Stribeck curve. This is because the shear thickening
transition is manifested as the particle contacts transi-
tion from not touching lubricated regime to a touching
frictional regime beyond the critical shear rate. Now as
we increase the shear rate (stress) further, the asperities
deform more and the contact normal load between the
particles increases. This results in a reduction in the co-
efficient of friction between the particles as shown by the
measurements by Chatté et al. (2018) [5]. Hence, the
viscosity jump across the shear thickening transition and
the slope of the second shear thickening regime is sensi-
tive to the friction law used in the model. This is depicted
in fig. 8b for friction laws shown in fig. 8a. A higher value
of friction leads to a larger viscosity. Hence, the Brizmer
model has a larger viscosity in the second shear thinning
regime than other friction laws. In addition, the viscosity
jump after the shear thickening depends on the friction
law used. A friction law with less steep decrease with
particle deformation (e.g., Brizmer law) results in a less

steep second shear thinning regime. A constant µ will
result in the disappearance of the second shear regime
[45] (see fig. 8b).

There is an ongoing debate in the community regard-
ing the presence of the second shear thinning regime as it
is not observed in all the systems. We would like to point
out that the second shear thinning has been observed to
be prominent for high volume fractions and has been seen
to be present at very high shear rates (> (104−105)s−1).
Hence, to observe this regime, one would need to be
able to shear the suspension at such high shear rates.
Most of the experimental studies on ST suspensions do
not explore such a high shear rate regime as they stop
their investigation right after the suspension undergoes
ST [22, 29–31, 36, 68–70]. But those which do have re-
ported the second shear thinning at high shear rates in
suspensions [4, 5, 9, 28]. In addition, we expect the sec-
ond shear thinning to depend on the particle material as
well. Since, the asperities need be deformed plastically to
enter the low coefficient of friction region, the stress (and
hence shear rate) required for the same would depend on
particle properties. E.g., since the Young’s and elastic
modulus of Silica particles is larger than PVC particles,
a significantly higher shear stress/rate would be required
to deform Silica asperities plastically. Thus, delaying the
onset of second shear thinning to very high γ̇ values. We
expect our simulation results to encourage experimental-
ists to investigate different suspension systems at very
high shear rate values to shed more light on the link be-
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FIG. 9: Effect of varying particle surface roughness height,
ǫr on the suspension viscosity. Increasing surface roughness
results in a stronger initial shear thinning and increases the
viscosity during and beyond the ST transition. Note that
the ST transition is governed by the direct contact between
the particles which is due to the breaking of the lubrication
film due to the particle asperities. Here all the other
parameters are the same as given in Table I, except ǫr which
is varied. φ = 52%. Increase in the viscosity with roughness
in the thinning regimes is consistent with ref. [52] and the
increase in the viscosity during the ST jump is consistent
with ref. [67]. The viscosities in the Newtonian plateau are
comparable for small change in the roughness values.

tween plastic deformation of particle asperities and the
second shear thinning regime.

D. Effect of particle surface roughness

Earlier theoretical and numerical studies had predicted
that increasing the particle surface roughness would lead
to a decrease in the suspension viscosity [71]. However,
recent experiments show that rough particle suspensions
have a higher viscosity compared to smooth particle sus-
pensions [52]. We have resolved this discrepancy and
showed that the increase in suspension viscosity with par-
ticle surface roughness can be explained by using a nor-
mal load/roughness deformation dependent µ [1] similar
to the one used in this study.

The proposed model in this study is equipped to quan-
tify the effects of varying particle roughness which is not
possible in models which allow particle overlaps. Simu-
lation results accurately predict a rise in the suspension
viscosity with with particle asperity size, ǫr, as shown
in fig. 9. The increase in the suspension viscosity with
particle roughness manifests itself in the form of a higher
viscosity jump across ST transition, in agreement with
previous experiments [67] and simulations [45].

V. NORMAL STRESS DIFFERENCES

Fig. 10a and 10b show the dependence of the second
normal stress difference N2 = σ22 − σ33 and the dimen-
sionless normal stress differenceN2/σ12 in the dimension-
less shear rate. We observe N2 to be negative for all the
investigated input parameters. We find that N2 qualita-
tively mimics the shear stress σ in the suspension. We
also find that the first normal stress difference is small
compared toN2 and is dominated by fluctuations. Hence,
it is not presented here.

CONCLUSIONS

Although explanations for each regime in the flow
curve of a typical non-Brownian suspension of smooth
particles except the Newtonian plateau are present in
bit and pieces in the literature [2, 11, 47], a unified
model which can quantitatively predict all of the four
regimes. viz., shear thinning - Newtonian plateau -
shear thickening - shear thinning with increasing shear
rate/stress, is not yet available. We unify disparate
rate dependent rheological regimes in the flow curve of
a dense non-Brownian suspension of smooth particles.
The unifying mechanism is based on the competition be-
tween the inter-particle hydrodynamic interactions, non-
hydrodynamic interactions of DLVO and non-DLVO ori-
gins, contact forces and Stribeck curve for the friction
coefficient (a constraint mechanism), each interaction re-
sulting in a characteristic stress scale in the system. The
switching between dominant stress scale with increas-
ing the shear rate/stress explain the various regimes and
transitions observed in a dense non-Brownian suspension
(particle sizes > O(1µm)). Specifically, we show that
accounting for the non-DLVO forces and a coefficient of
friction decreasing with the increasing normal load (as-
perity deformation) is crucial to quantitatively reproduce
the intermediate Newtonian plateau and the second shear
thinning in the same framework. We validate the pro-
posed hypothesis by performing particle scale dynamic
simulations and compare the results with previous ex-
periments.
The presence of Newtonian plateau which has eluded

researchers [5, 7] is explained by the inclusion of non-
DLVO interactions that are non-contact interactions [41]
& delay the onset of lubricated to frictional transition
(hence ST). Furthermore, we do not find any significant
ordering in the initial shear thinning regime as it was
observed in some cases for mono-disperse suspensions.
This begets an interesting question whether the ordering
at low shear rates/stresses for mono-disperse suspensions
is an outcome of various non-contact interactions rather
than being the reason for the initial shear thinning? Fur-
ther investigations are needed in this direction.
The results also show that only constraining the slid-

ing motion between the particles is enough for smooth
particle suspensions, unlike rough particles where con-
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FIG. 10 a) Evolution of second normal stress difference, N2 with applied dimensionless shear rate. N2 is always negative.
b) N2 scaled by the shear stress in the suspension. This plot shows that N2 mimics the stress in the system.

straint on rolling motion might be crucial [32]. The
ST transition is the result of constraints on the rela-
tive particle motions due to friction while the second
shear thinning arises due to the reduction in coefficient of
friction with asperity deformation (or normal load) at a
very high shear rate/stress. Our simulation results show
that using experimentally obtained expressions for the
non-hydrodynamic interactions and the constraint mech-
anism (e.g., coefficient of friction) is required to obtain a
quantitative agreement with the experimental results.

Although we have used specific force profiles from the
direct measurements [5] for DLVO forces and µ, the
model can reproduce the flow curve for any generic sys-
tem given its repulsive, attractive, non-DLVO force pro-
files and friction law. We demonstrate the versatility of
the proposed model to reproduce a gamut of flow behav-
iors by varying the relative magnitudes and expressions
of various interactions. In addition, the model accurately
predicts a rise in the suspension viscosity with particle

surface roughness, in agreement with recent experiments.
These results show that the macroscopic rheological be-
havior is determined by the microscopic particle pair in-
teractions. Thus, to gain further insights into the physics
behind the rheological behavior of dense suspensions, ac-
curate measurements of inter-particle interactions (espe-
cially non-DLVO interactions) and µ as a function of
inter-particle gap while immersed in the fluid medium
are needed.
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