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Swarming patterns that emerge from the interaction of many mobile agents are a subject of great
interest in fields ranging from biology to physics and robotics. In some application areas, multiple
swarms effectively interact and collide, producing complex spatiotemporal patterns. Recent studies
have begun to address swarm-on-swarm dynamics, and in particular the scattering of two large,
colliding swarms with nonlinear interactions. To build on early numerical insights, we develop a
self-propelled, rigid-body approximation that can be used to predict the parameters under which
colliding swarms are expected to form a milling state. Our analytical method relies on the assump-
tion that, upon collision, two swarms oscillate near a limit-cycle, where each swarm rotates around
the other while maintaining an approximately constant and uniform density. Using this approach
we are able to predict the critical swarm-on-swarm interaction coupling, below which two colliding
swarms merely scatter, as a function of physical swarm parameters. We show that the critical cou-
pling gives a lower-bound for all impact parameters, including head-on collision, and corresponds
to a saddle-node bifurcation of a stable limit cycle in the uniform, constant density approximation.
Our results are tested and found to agree with both small and large multi-agent simulations.

I. INTRODUCTION

Swarming occurs when spatiotemporal patterns and
behaviors emerge from the interaction of large numbers
of coupled mobile systems, typically with fairly limited
capabilities and local dynamics. Examples have been dis-
covered in nature over many spatiotemporal scales from
colonies of bacteria, to swarms of insects[1–4], flocks of
birds [5–7], schools of fish[8, 9], crowds of people[10], and
active-matter systems more generally[11]. Understand-
ing the principles behind swarming patterns and describ-
ing how they emerge from simple models has been the
subject of significant work in physics, applied mathe-
matics, and engineering sciences [12–24]. Parallel with
this work, and because of the robustness, scalability, and
collective-problem solving capabilities of natural swarms,
much research has focused on designing and building
swarms of mobile robots with a large and ever expanding
number of platforms, as well as virtual and physical inter-
action mechanisms[11, 25–29]. Applications for such sys-
tems range from exploration[26], mapping[30], resource
allocation [31–33], and swarms for defense [34–36]

Since the overall cost of robotic systems has decreased
significantly in recent years, it has become possible to use
artificial swarms in the real world [26, 27, 37, 38]. This in-
troduces the possibility of having multiple swarms occu-
pying the same physical space, resulting in mutual inter-
actions and perturbations of one another’s dynamics[39].
As the potential for such swarm-on-swarm interactions
increases, a basic physical understanding of how multi-
ple swarms collide and merge becomes necessary. Recent
work in swarm robotics and autonomy has begun to ad-
dress how swarms can be designed to detect, herd, or
capture another[40–42]. Yet, most approaches are algo-
rithmic and rely on simulation-based optimization, and
are thus lacking in basic physical and analytical insights.

Though much is known about the behaviors and sta-

bility of single isolated swarms with physically-inspired,
nonlinear interactions[43–47], much less is known about
the intersecting dynamics of multiple such swarms, even
in the case where one swarm is a single particle, as in
predator–prey modeling[48]. Recent numerical studies
have shown that when two flocking swarms collide, the
resulting dynamics typically appear as a merging of the
swarms into a single flock, milling as one uniform swarm,
or scattering into separate composite flocks moving in
different directions[39, 49, 50]. Though interesting, a
more detailed analytical understanding of how and when
these behaviors occur is needed, especially when design-
ing robotic swarm experiments for, e.g., swarm herding
and capture[40–42], and controlling their outcomes.

To make progress, we consider a very well-known
model of swarming[43–46, 51, 52], consisting of mobile
agents moving under the influence of self-propulsion, non-
linear damping, and pairwise interaction forces. In the
absence of interactions, each swarmer tends to a fixed
speed, which balances its self-propulsion and damping,
but has no preferred direction[53]. A simple model that
captures the basic physics is

r̈i =
[
αi − β|ṙi|2

]
ṙi − λi

∑
j 6=i

∂riU(|rj − ri|) (1)

where ri is the position-vector for the ith agent in two
spatial dimensions, αi is a self-propulsion constant, β is
a damping constant, and λi is a coupling constant[43–
47]. The total number of swarming agents is N , and
each agent has unit mass. Beyond providing a basis
for theoretical insights, Eq.(1) has been implemented
in experiments with several robotics platforms including
autonomous ground, surface, and aerial vehicles[54? ?
, 55].

An example interaction potential that we consider in
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detail is the Morse potential,

U(r) = Ce−r/l − e−r (2)

– a common model for soft-core interactions with lo-
cal repulsion and attraction ranges, scaled as l and 1,
respectively[46, 51]. In the following, we assume that
two interacting swarms are subject to the same under-
lying physics, Eqs.(1-2), but with different initial con-
ditions and potentially different control parameters. In
particular, we assume that within each swarm the pa-
rameters are homogeneous, e.g., αi ∈ {α(1), α(2)} and
λi ∈ {λ(1), λ(2)}, where the superscripts (1) and (2)
denote the first and second swarms, respectively. The
summation in Eq.(1) is taken over all agents (in both
swarms). However, by construction, each swarm will be
initially separated by a large distance compared to the
interaction scales, l and 1, and the maximum distance
between agents within each swarm. Therefore, the in-
teraction force an agent feels will be at early times effec-
tively confined to their own swarm, given the exponential
decay with distance implied by Eq.(2). The assumption
that the two swarms satisfy the same basic physics makes
sense if the swarms are composed of similar agents, and
should be a reasonable, baseline assumption for the col-
lision of swarms of simple, programmable mobile robots.

II. COLLISION OF TWO FLOCKING SWARMS

As in [49, 50], we are interested in the collision of
two flocking swarms composed of approximately equal
numbers of agents. The swarms are each prepared at
t= 0 in a flocking state with initial velocities and posi-
tions that are a large distance from the collision region
(D = 50 � 1, l, and the sizes of the flocks), such that

ri = d
(1)
i −D x̂ and ṙi =

√
α(1)/β x̂ if i ∈ (1), and

ri =d
(2)
i +D

√
α(2)/α(1)x̂ + ∆y ŷ and ṙi = −

√
α(2)/β x̂

if i ∈ (2). The internal flocking coordinates, d
(1)
i

and d
(2)
i , represent local minimum energy configurations

(LMECs), defined by −
∑
j 6=i ∂di

U(|dj − di|) = 0i ∀i
[56]. This property demonstrates one of the advantages
of models like Eq.(1) for running robotic-swarm experi-
ments, since the relative configurations of flocks can be
directly controlled through the potential function. Note
that the speed of the ith agent is equal to

√
αi/β, which

is the condition that allows for flocking. Given this setup,
the net force on every agent is initially zero– a conse-
quence of the LMEC and the finite-range of interactions.

In general, in two spatial dimensions there are four
initial conditions that one can specify for the centers of
each flock. However, note that the speeds are fixed by
the flocking condition, and the absolute positions do not
matter, only the relative distances– leaving two initial-
condition parameters, the relative distance and velocity
between the flocks. In this work, however, we are in-
terested in collisions that result in swarm milling states,
which have zero total linear momentum. As a conse-

quence, the flocks should be nearly aligned upon col-
lision, with small transverse velocities. In the nearly
aligned regime, the relevant initial-condition parameter
is the distance between the two flocks as they approach
x=0, regardless of the direction of their velocities. This
distance is often called the “impact parameter” in clas-
sical mechanics[57], and it signifies the closest distance
the two flocks would approach in the absence of interac-
tion forces. The impact parameter is denoted ∆y in our
initial conditions.

Depending on the value of ∆y and the coupling
strength, the two flocks typically scatter or mill. In the
former the swarms leave the collision region in separate
flocking states with perturbed velocities. In the latter
they form a milling state, and circulate around a station-
ary center of mass[58]. To guide our analysis, we perform
numerical experiments for different values of ∆y and λ,
and determine which final state the swarms relax to. Fig-
ure 1(a) shows such an example, final-scattering diagram
for the collision of symmetric flocks with equal parame-
ters. The final swarm states are specified with blue and
red for scattering and milling, respectively; the green
portions indicate the formation of a combined flocking
state, which is comparatively infrequent for the parame-
ters shown (and decreases in frequency as N→∞). The
scattering diagram is built by integrating Eq.(1) from the
initial separation until well after collision, t= 1500. For
a fixed value of ∆y, λ is swept from 0.01 to 0.35 in in-
crements of 0.0017. Similarly, ∆y is swept from 0 to 7.5
in steps of 0.1. For each value of ∆y and λ, if the center
of mass (CM) of both swarms is stationary, the point is
colored red. If the two CMs continue to separate after
collision, the point is colored blue. If the CMs are not
stationary but remain a fixed distance apart, the point
is colored green.

In general, predicting the complete scattering dia-
grams for such swarm collisions is a very hard nonlin-
ear dynamics problem, since ultimately one must address
whether or not a certain set of initial conditions in a
high-dimensional phase space falls within the basin of
attraction for a given final state. This kind of question
does not typically have a systematic answer, particularly
for high-dimensional nonlinear systems, apart from sim-
ply doing many numerical simulations. For instance, if
the collisions are head-on (∆y = 0), then λ & 0.19 in
order for a MS to form. On the other hand, if ∆y is
much larger than the attractive length scale (1), then
the coupling must be similarly large; e.g., if ∆y=7, then
λ&0.35 (keep in mind that swarms can very much collide
even if ∆y is larger than the nominal sizes of the flocks,
since Fig.1 (a) shows red regions for sufficiently large cou-
plings). Hence, whether or not a MS is formed clearly de-
pends on initial conditions– different ∆y have different,
non-generic, transition couplings. However, between the
two limits we find a unique critical value λmin, designated
with a white box and dashed line in Fig.1(a), which is the
smallest coupling needed to form a MS, over all impact
parameters, ∆y. For reference, this value is λmin=0.13,
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FIG. 1. Collision of two symmetric flocks. (a) Scattering di-
gram indicating the aggregate swarm state as a function of the
distance between the two flocks before collision ∆y, and the
coupling λ: scattering (blue), milling (red), and merged flock-
ing (green). The critical coupling is specified with a dashed
vertical line, and separates the scattering and milling regions.
(b) The same diagram for the collision of two agents. (c) Four
time-snapshots for λ=λmin showing each swarm with differ-
ent colors: red squares and blue circles. Velocities are drawn
with arrows. Swarm parameters are α= 1, β = 5, C = 10/9,
l= 0.75, and N = 100. The swarms are initially separated by
a large distance, 2D=100 for all simulations.

or approximately 0.7-times the head-on-collision value in
Fig. 1(a).

What the critical point might mean, in general, can
be understood by first studying the scattering-diagram
for a simple two-agent system, shown in Fig.1 (b). Note
that the two diagrams are qualitatively very similar de-
spite the significant difference in the number of agents.
Even in the simple two-agent case, it is not clear that
the scattering-diagram can be derived without resorting
to simulations. However, it is possible to show that the
MS corresponds to a stable limit-cycle oscillation that is
born in a generic saddle-node (SN) bifurcation, exactly at
the point where the red-region first emerges as we sweep
the coupling in Fig.1 (b) (see App.V A). Crucially, the
SN bifurcation is independent of the impact-parameters
∆y, and in fact, gives a rigorous lower bound for the tran-
sition coupling for all impact parameters in the system.
Building on this bifurcation insight we focus on λmin in
this work, because it is generic, in that it depends on
the physical parameters of the swarm and not on initial
conditions, and it gives a lower-bound for head-on colli-
sions and all other collision distances ∆y. Just as in the
two-agent case, we will show that λmin corresponds to
the birth of stable bound-state oscillations of two flocks,
and therefore we can do a first-principles calculation to
approximate it.

In order to visualize collisions that result in milling in
many-agent swarms, we show four time-snapshots in Fig-
ure 1(c) when λ= λmin. Agents in the two swarms are
drawn with different colors, and their velocities shown
with arrows. In the first snapshot (upper left), the

swarms approach collision with configurations and veloc-
ities identical to those specified in the first paragraph of
this section– namely, the LMEC with constant velocity.
In the second snapshot (upper right) the swarms rotate
around each other with a constantly changing heading,
roughly uniform velocity distribution, and a configura-
tion approximately equal to the LMEC. Over time each
swarm’s density elongates in the direction of rotation
(third snapshot, lower left), as the velocity distribution
becomes less homogeneous. Finally, on long times scales
the two swarms blend into one and form a MS with agents
from each uniformly distributed across the whole.

In order to predict the critical coupling, λmin, our ap-
proach is to find an analytical description of the collision
dynamics that is applicable for the first two snapshots in
Figure 1(c), where two approximately constant-density
flocks approach, and then rotate around a common cen-
ter. Our conjecture is that if such rotations are approxi-
mately stable, then a MS occurs upon collision (and visa
versa). Though we will analyze two-flock collisions in this
way assuming Eq.(2), our method should be applicable to
a broader range of second-order dynamical swarms given
position-dependent, nonlinear interactions with finite at-
tractive and repulsive length scales.

A. Uniform constant density approximation

First, we would like to find a low-dimensional approx-
imation for the flocking state dynamics. A clue comes
from Figure 2(a), which plots the fraction of agents at
a given distance r from the CM of a single moving flock
for different values of the repulsion strength, C. We can
see that the radial distribution is approximately linear
in r. Moreover, since the potential is radial, we ex-
pect the steady-state angular distribution to be uniform;
the inlet panel shows an example flocking state with
such a spatial distribution of agents. Together, these
imply a roughly uniform density in the flocking state,
ρ=N1/πR

2, where R is the maximum radius and N1 is
the number of agents in flock (1). Given the uniform-
density assumption, the predicted fraction of agents at a
given r is f(r)=2r∆r/R2, where ∆r is the bin-size used
to plot the distribution. This prediction is drawn with
lines for comparison in Figure 2(a). Note that the actual
distribution is not-quite linear in r; the uniform density
approximation predicts both more and fewer agents near
the flock’s boundary than is actually observed, depend-
ing on the value of C. This suggests a straightforward
improvement in the accuracy of our calculations (that
follow): input the exact density function.

Assuming a uniform density, we can describe a flock in
general by the position of its center, the velocity, and the
boundary radius, R. In particular, every agent, including
those on the boundary, move with constant speed,

√
α/β,

where α is the self-propulsion constant for the flock. A
self-consistent formula can be derived for R, and used to
compute it, by satisfying force-balance on the boundary.
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FIG. 2. Uniform constant density approxima-
tion for flocking states (UCDA). (a) fraction of
agents a distance r from the flock’s center for C =
1.0 (red-squares), 1.1 (blue-circles), 1.25 (green-diamonds)
when l = 0.75, where C is the repulsive-force strength with
length-scale l. The dashed, solid, and dotted lines indicate
UCDA predictions from solving Eq.(3). The inlet panel
shows an example flocking state with the UCDA boundary
drawn in black for C = 1.1. (b) Flocking state boundary,
R = max{r}, from simulations: (l = 0.85, magenta-xs),
(l = 0.75, blue-circles), (l = 0.60, green-diamonds) and
(l=0.50, red-squares) compared to UCDA predictions shown
with lines near each series. Other swarm parameters are
α=1, β=5, λ=2, and N1 =100.

For example, consider an agent with di =R x̂. The x-
component of the interaction force must be zero,

0 =

∫ 2π

0

∫ 1

0

(
C

l
e−

R
l

√
1+u2−2ucosφ − e−R

√
1+u2−2ucosφ

)

· ucosφ− 1√
1 + u2 − 2ucosφ

· ududφ , (3)

where u≡r/R. Note that the y-component of the force is
trivially zero due to the uniform-angular distribution of
agents. Comparisons between simulations and numerical
solutions to Eq.(3) are shown in Fig.2(b) for a range of
control parameters, and indicate good agreement. Be-
cause of this agreement, and its relative simplicity, we
continue our analysis assuming a uniform steady-state
density of agents in a flock.

Next, we can approximate the initial collision dynam-
ics of the flocks by assuming that the uniform density
configuration remains constant within each flock, with a
boundary given by Eq.(3). Namely, the rigid-body col-
lision model that we will analyze below is of two inter-
acting, constant-density disks composed of self-propelled
agents. Consider two representative agents positioned
at the center of each swarm, r(1)(t) and r(2)(t). If we
directly apply Eq.(1), it is easy to check that the interac-
tion forces on agents positioned at r(1)(t) and r(2)(t), due
only to agents within the same flock, vanish, given the
assumed uniform angular distribution of agents within
each flock. If agents away from the center of flock (1)

have coordinates r
(1)
j =r(1)+ r cosφx̂+ r sinφŷ, then the

interaction force on an agent at r(1) from flock (1) is:

0 =

∫ 2π

0

∫ R

0

(
C

l
e−r/l − e−r

)
N1rdrdφ

πR2

(
cosφx̂ + sinφŷ

)
.

(4)

Hence, the non-zero contributions to the interaction
sums in Eq.(1) for r(1)(t) and r(2)(t) only come from the
other flock, since the interaction force from their own
flocks cancel. Moreover, the interaction force from the
opposing flock is felt gradually as the two swarms ap-
proach, because of the finite-range interactions and the
initially large separation between the flocks. To find the
non-zero contribution, we simply need to integrate the
interaction force over a constant-density disk of radius
R, centered on the opposing swarm’s center, r(2)(t) or
r(1)(t), respectively. If we assume that the two swarms
are equally sized, each with N/2 agents, directly applying
Eq.(1) for r(1)(t) and r(2)(t) gives:

r̈(1) =
[
α(1)− β|ṙ(1)|2

]
ṙ(1) − λ(1)N

2
E(r(2), r(1);R) (5a)

r̈(2) =
[
α(2)− β|ṙ(2)|2

]
ṙ(2) − λ(2)N

2
E(r(1), r(2);R) (5b)

E(r(2), r(1);R) =

∫ 2π

0

∫ R

0

r(2) + d− r(1)

|r(2) + d− r(1)|
· rdrdφ
πR2

·

(
C

l
e−|r

(2)+d−r(1)|/l − e−|r
(2)+d−r(1)|

)
(5c)

d = r cosφ x̂ + r sinφ ŷ, (5d)

where d is an internal-coordinate inside the constant-
density disk centered at r(2)(t) or r(1)(t), respectively.
Equations (3-5d) constitute the rigid-body dynamical
system that we call the uniform constant density approx-
imation (UCDA) [59]. The integrals in Eq.(5c) can be
evaluated using e.g., trapezoid rule. Our next step is
to study stable oscillations of r(1)(t) and r(2)(t) in the
UCDA and compare to swarm collision dynamics.

B. Stable Oscillations

Stable oscillations in the UCDA come in the form
of circular-orbit limit cycles where both flocks oscillate
around a common center with the same frequency, a fixed
phase difference, and different amplitudes in general. We
can compute the parameters for such limit cycles by sub-
stituting the ansatz r(1)(t) = A1cos(ωt)x̂ + A1sin(ωt)ŷ
and r(2)(t)=A2cos(ωt+γ)x̂+A2sin(ωt+γ)ŷ into Eqs.(5a-
5d). The result is the following four root equations sat-
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isfying Fi=0 for i∈{1, 2, 3, 4}:

F1 = −A1ω
2 +

λ(1)N

2
Ex (6a)

F2 = −A1ω
[
α(1)− βA2

1ω
2
]

+
λ(1)N

2
Ey (6b)

F3 = −A2ω sin γ
[
α(2)− βA2

2ω
2
]

+A2ω
2 cos γ +

λ(2)N

2
Ex

(6c)

F4 = A2ω cos γ
[
α(2)− βA2

2ω
2
]

+A2ω
2 sin γ +

λ(2)N

2
Ey
(6d)

with

Ex =

∫ 2π

0

∫ R

0

A2 cos γ + r cosφ−A1

d
·
(C
l
e−d/l − e−d

)
· rdrdφ
πR2

(6e)

Ey =

∫ 2π

0

∫ R

0

A2 sin γ + r sinφ

d
·
(C
l
e−d/l − e−d

)
· rdrdφ
πR2

(6f)

d =
√

(A2 cos γ + r cosφ−A1)2 +(A2 sin γ + r sinφ)2.
(6g)

Solutions to Eqs.(6a-6d) for L ≡ [A1, A2, γ, ω] can be
shown to exactly match limit cycles within the UCDA;
more importantly, they agree with the transient oscil-
lations for collisions in the full system, Eqs.(1-2). For
example, Fig.3(a) shows CM-trajectories in red and blue
for two colliding swarms when λ=λmin. We can see that
the trajectories approach the UCDA limit-cycle, shown
with a black-dashed line, before slowly decaying into the
origin. The critical case can be contrasted to couplings
above the critical value, e.g., λ=2λmin shown in the inlet
panel, where the two colliding flocks rapidly decay into
the MS. Using this picture as a basis, the maximum rota-
tion radius during collisions can be compared directly to
limit-cycle radii predictions from Eqs.(6a-6g). In Fig.3(b)
we plot such a comparison using the maximum horizon-
tal distance reached by the CM of the rightward moving
flock (as a proxy for the collision radius). UCDA pre-
dictions and simulations quantitatively agree fairly well
over a broad range of parameter values. Qualitatively, as
the repulsive-force constant C increases, the two swarms
oscillate at larger distances from each other upon colli-
sion, particularly for larger values of the repulsion scale,
l. This increase in rotation distance, A1, is accompanied
by a decrease in rotation frequency, ω ∼ A−1

1 .
Next, we can consider stability. When control param-

eters are changed (one at a time), stable limit cycles sat-
isfying Eqs.(6a-6g) disappear generically through saddle-
node bifurcations (SNs). As stated previously in Sec.II, a
post-collision MS in the full system Eqs.(1-2) is not ex-
pected to form unless stable limit-cycles exist, and hence,
λmin can be approximated by the SN value in the UCDA.
We can find a general condition to determine λmin at
the SN through the following. Using the defined vector
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FIG. 3. Collision dynamics resulting in milling. (a) Center-
of-mass trajectories for two colliding swarms when λ=λmin,
shown with solid-blue and dashed-red lines. Arrows give the
direction of motion. The dashed-black line indicates the bi-
furcating limit cycle in the uniform constant density approx-
imation. Other swarm parameters are α= 1, β= 5, l= 0.75,
N=100, and C=1.0. The inlet panel shows the correspond-
ing trajectory for λ = 2λmin. (b) Maximum x-coordinate
reached by the center of mass of the rightward moving (blue)
flock when λ=λmin. Simulation results are shown with blue
circles for l=0.75, green diamonds for l=0.6, and red squares
for l = 0.5. Limit-cycle predictions from Eqs.(6a-6d) and
Eq.(7) are drawn with lines near each series. Other swarm
parameters are α=1, β=5, and N=200.

components F specified in Eqs.(6a-6d), we compute the
derivatives of F with respect to the limit-cycle param-
eters, L. At the SN the Jacobian matrix J , defined as
Jmn≡∂Fm/∂Ln, has

det J(L;λmin) = 0. (7)

Combining Eq.(7) with Eqs.(6a-6d) gives a total of 5 root
equations for the approximate critical coupling and asso-
ciated limit-cycle.

In practice, if we consider symmetric collisions or
asymmetry in the α’s only (as we do in the remainder),
the above results simplify. For example, in the case of
symmetric collisions the relevant branch of stable limit
cycles have A1 = A2, γ = π, and ω =

√
α/β/A1. More-

over, the symmetric critical coupling predicts a scaling
collapse (see App.V B for derivation and further details):

2α

λminNβ
= A2

1

∫ 2π

0

∫ R

0

2rdrdφ

πR2
·
C
l e
−d/l − e−d

d
·[

1− (2A1 −rcosφ)2

d2
− (2A1 −rcosφ)2

d
·
C
l2 e
−d/l − e−d

C
l e
−d/l − e−d

]
.

(8)

where the right hand side is a function of the pairwise-
interaction parameters only. The Eq.(8) is similar in
structure to an escape velocity equation, e.g., from a fixed
potential well

v2/2−NλminVeff(C, l) = 0, (9)

where v is the speed of each flock, and Veff(C, l) quan-
tifies the strength of the potential between agents (see
App.V B). As a consequence, if the potential-forces and
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number of agents are held constant, flocks moving twice
as fast require four times the coupling in order to be cap-
tured in a MS. Similarly, flocks with twice as many agents
must fly

√
2-times faster in order to escape forming a MS.

Comparisons between λmin from simulations of the full
discrete-particle system Eq.(1), and the above predic-
tions from Eq.(7) and Eqs.(6a-6d), are shown in Fig.4;
λmin was measured by building final-scattering diagrams
like Fig.1(a) for each parameter value. For these theory-
simulation comparisons, note that the parameters α, N ,
and C are swept over a large range. In the left sub-
plot (a), we show results for collisions with symmetric
parameters. As demonstrated with Eqs.(8-9) our pre-
dicted scaling collapse holds. Qualitatively, the critical
coupling increases monotonically with C, implying that
the stronger the strength of repulsion, the larger the cou-
pling needs to be in order for colliding swarms to form
a MS. Also, note that our UCDA predictions are fairly
robust to heterogeneities in the numbers in each flock,
particularly for smaller values of C/l− 1; predictions re-
main accurate for number asymmetries in the flocks as
large as 20%.

1.21.00.8

20

30

60

1 2 3
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16

(a) (b)

1.4

40

50

FIG. 4. Critical coupling for forming milling states upon col-
lision. (a) Symmetric parameter collisions for α = 1 (blue)
and α=2 (red): N=10 (squares), N=20 (diamonds), N=40
(circles), and N = 100 (triangles). Green stars denote α= 1
and magenta x’s denote α = 2, when 40 agents collide with
60. (b) Asymmetric collisions for C=10/9 in which α(1) =1.
Blue points indicate equal numbers in each flock: N=20 (di-
amonds), N = 40 (circles), and N = 100 (triangles). Green

stars denote collisions between 40 agents with α(1) = 1 and
60 agents with α(2). Solid and dashed lines indicate theo-
retical predictions for (a) and (b), respectively from solving
Eqs.(6a-6d) and Eq.(7). Other swarm parameters are β = 5
and l=0.75.

On the other hand, in Fig.4(b) we compare the mea-
sured λmin and predictions as a function of asymmetry in
the self-propulsion force constant for different N ’s. The
first swarm has α(1) = 1, while α(2) is varied. Contrary
to the symmetric case the scaling collapse disappears,
apart from N . Moreover, the branch of stable limit cy-
cles with equal radii A1 = A2 disappears in a cusp bi-
furcation (the solid-black line in in Fig.4(b) vanishes for
α(2) & 1.5). Above the cusp point, the upper branch of
SNs corresponds to stable limit cycles where A1 < A2

and γ = −π/2, shown with a dashed-black line in the
lower left corner of Fig.4(b). Interestingly, we can see
that for larger values of α(2)−α(1) the critical coupling is

nearly linear in the difference, meaning that if one flock
doubles its speed, then the coupling needed to form a
MS is expected to quadruple – again, a consequence of
the flock speed equalling

√
α/β. Finally, note that as in

(a), predictions remain accurate for a significant range of
differences in the numbers in each flock.

III. DISCUSSION

To summarize, in this work we studied the collision of
two swarms with nonlinear interactions, and focused in
particular on predicting when such swarms would com-
bine to form a mill. Unlike the full final-scattering dia-
gram, which depends on whether or not a particular set of
initial conditions falls within the high-dimensional basin-
of-attraction for milling – a hard problem in general, we
concentrated on predicting the minimum coupling needed
to sustain a mill after the collision of two flocks. By
noticing that colliding swarms, which eventually form a
mill, initially rotate around a common center with an
approximately constant density, we were able to trans-
form the question of a critical coupling into determining
the stability of limit-cycle states within a rigid-body ap-
proximation. This approach produced predictions that
only depended on physical swarm parameters, and pro-
vided a lower-bound on the critical coupling for arbitrary
impact parameters in nearly aligned colisions. For exam-
ple, in the case of symmetric flocks with equal numbers
and physical parameters, the scatter-mill transition point
was similar to an escape-velocity condition in which the
critical coupling scaled with the squared-speed of each
flock, and inversely with the number of agents in each
flock. Our bifurcation analysis agreed well with many-
agent simulations.

Though our analysis dealt directly with soft-core inter-
acting swarms, the basic approach could be extended to
a broader range of models, as long as the forces between
agents in Eq.(1) have a finite range. For instance, the
results presented are similar for other choices of poten-
tial functions, which quantify the interaction between two
agents, e.g., elastic interactions mediated through a net-
work topology with an exponentially decaying coupling
[60]. In terms of quantitative improvement in the cal-
culation of the critical coupling, one straightforward ap-
proach would be to move beyond the uniform-density as-
sumption, and replace the formulas in Secs.II A-II B with
an exact steady-state density for flocking states given an
arbitrary choice of potential functions. As pointed out in
Sec.II A, the UCDA works well, particularly for predict-
ing the the sizes of flocks, but can both over and under
predicts the density of agents near a flock’s boundary (see
Fig.2). Instead of assuming that upon collision agents
maintain their relative configuration inside a flock, one
can build an expansion in terms of the relative velocity
of, e.g., the ith agent with respect to the flock’s average,
vi=〈v〉+ δvi, and keep the lowest order in δvi(t). Simi-
lar to the approach here, one can then try to analyze the
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stability of bound-state oscillations of two flocks that in-
clude the averaged dynamics and fluctuations around it,
as in[61]. We also note that many other dynamical mod-
els of swarming, such as velocity-consensus models[62],
produce flocking states that have a steady-state density
of agents; we predict that our analysis in terms of a
critical coupling, slowly varying flocking densities, and
bound-state oscillations may carry over to such models
as well.

Beyond these generalizations, one can develop a similar
approach for a broader range of swarm collision prob-
lems, since it is well known that systems like Eq.(1)
produce collective motion states other than flocking.
For instance, one can develop an analogous dynami-
cal system for analyzing the stability of collisions be-
tween different collective-motion states, such as flocks
colliding with mills. Typically, milling states also have
a steady-state density of agents, even though individ-
uals perform complex rotations around a stationary
center[43, 44, 46, 51, 52]. Here again, we believe our
approach could prove useful.

In terms of applications, recent work in understanding
the physics of swarm robotics and autonomy has begun to
address how one swarm can detect, capture, redirect, or
otherwise defend itself against another[40–42]. Most cur-
rent approaches, however, are primarily algorithmic, and
lack basic physical and analytical insights. It is to this
deficit that this work is in part addressed. In particular,
our work fits nicely into the robotic swarm capture and
redirect problem, since the critical coupling sets a general
divide in parameterspace between scattering and milling
swarms. For the collision of swarms of mobile robots, is-
sues of noise, delay, and topology naturally arise, which
are not included in this analysis. On small time scales
we expect noise on Eq.(1) to generate fluctuations in a
flock’s heading direction with a quasi-stationary prob-
ability distribution of agents in the co-moving frame,
which has a larger boundary than predicted by Eq.(3). In
the presence of noise, it is this distribution which would
replace the density in the formulas in Secs.II A-II B. We
point out that, since noise will inevitably cause drift in
real collisions, our lower-bound stability result becomes
perhaps more useful, not less, since the exact collision
distance ∆y cannot be controlled deterministically. On
longer time-scales the two flocks will lose agents, one by
one, in a process that is similar to noise-induced escape;
the escape of individual agents is much more likely in
flocks with finite-range interactions than switching, since
the latter requires a collective-fluctuation of many agents
simultaneously[63]. In Fig.4 we show that our critical-
coupling results are fairly robust to modest variations in
the number of agents within each flock, and hence we do
not expect the noise-induced loss of agents to significantly
change our results. On the other hand, the effect of delay
in swarming dynamics can produce stable oscillations in
the center of mass of a swarm[53]. In fact, simulation re-
sults similar to those shown in Fig.1 have suggested that
time-delayed interactions tend to expand the red-region,

effectively reducing the critical coupling at which bound-
state oscillations become stable[50]. Finally, commu-
nication topology significantly affects robotic swarming
dynamics, for instance, generating new kinds of hybrid
motion-states and transitions. However, mean-field tech-
niques that properly account for topology, yet are simi-
lar to those deployed here, have been shown to provide
quantitatively accurate insights on the role of topology in
determining swarm dynamics[60, 64]. Future robotics ex-
periments, similar to [29, 54, 65], will be used to further
test and expand our analysis in these and other scenarios.

IV. ACKNOWLEDGMENTS

JH and IBS were supported by the U.S. Naval
Research Laboratory funding (N0001419WX00055),
the Office of Naval Research (N0001419WX01166) and
(N0001419WX01322), and the Naval Innovative Science
and Engineering. TE was supported through the U.S
Naval Research Laboratory Karles Fellowship.

V. APPENDIX

A. Two-agent milling

In the simple two-agent case, we can calculate when
the red milling region in Fig.1(b) first emerges without
resorting to approximations. When the two agents have
equal parameters, milling consists of a circular-orbit limit
cycle with r(1)(t) = a cos(ωt)x̂ + a sin(ωt)ŷ and r(2)(t) =
−a cos(ωt)x̂ − a sin(ωt)ŷ. Substituting this ansatz into
Eqs.(1-2) gives the following relation for the limit-cycle
amplitude a:

0 =
α

βλa
+
C

l
e−2a/l − e−2a. (10)

The limit-cycle disappears at a SN bifurcation corre-
sponding to a critical amplitude, a∗. Applying the zero-
determinant condition, Eq.(7), results in

0 = −2a∗ +
C
l e
−2a∗/l − e−2a∗

C
l2 e
−2a∗/l − e−2a∗

. (11)

Note that a∗ only depends on C and l, a∗(C, l). Finally,
combining Eqs.(10-11), gives the critical coupling

λmin =
α

βa∗
[
C
l e
−2a∗/l − e−2a∗

] . (12)

For reference in Fig.1(b) λmin = 5.476, which agrees
with the Eq.(12) solution λmin = 5.473, within the reso-
lution of the simulations.

Note that λmin gives a lower bound for the scatter-
mill transitions implied in Fig.1(b) for every ∆y, since
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scattering cannot produce milling if no milling solution
is locally stable.

B. Symmetric collision scaling

In this section we further discuss the derivation and
scaling of Eq.(8). As described in Sec.II B, a stable limit-
cycle exists within the UCDA for two flocks with equal
parameters, α, β, C, l, λ, and N , as long λ>λmin. In this
symmetric case, the limit cycle has amplitude(s) A1 =A2

and relative phase γ=π. Applying Eqs.(6a-6d) results in
the following two relations:

A1ω
2 =

λN

2
Ex(A1, C, l), (13)

A2
1ω

2 = α/β. (14)

Note that the function Ex(A1, C, l) does not depend on
the flock boundary, R, explicitly since R(C, l) is deter-
mined by Eq.(3). Eliminating ω from Eqs.(13-14) gives

2v2

λN
= A1Ex(A1, C, l), (15)

where we have used the velocity for the flocking state
v2 =α/β.

Next, the general saddle-node condition, Eq.(7), re-
duces to setting a single derivative of Eq.(15) equal to
zero,

0 =
∂

∂A1

A1 Ex(A1, C, l). (16)

Solving Eq.(16) for A1 gives the critical amplitude A∗1,
which only depends on C and l, or A∗1(C, l). Finally,
combining Eq.(15), evaluated at the critical point, with
Eq.(16) results in the following expression equivalent to
Eqs.(8-9):

2v2

λminN
= A∗1(C, l)Ex(A∗1(C, l), C, l). (17)

Equation (17) implies that v2
/
λminN is a function

only of the interaction-force constants, C and l, and
hence λmin ∼ v2/N .
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