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Cells use genetic switches to shift between alternate stable gene expression states, e.g., to adapt
to new environments or to follow a developmental pathway. Conceptually, these stable phenotypes
can be considered as attractive states on an epigenetic landscape with phenotypic changes being
transitions between states. Measuring these transitions is challenging because they are both very rare
in the absence of appropriate signals and very fast. As such, it has proven difficult to experimentally
map the epigenetic landscapes that are widely believed to underly developmental networks. Here,
we introduce a new nonequilibrium perturbation method to help reconstruct a regulatory network’s
epigenetic landscape. We derive the mathematical theory needed and then use the method on
simulated data to reconstruct the landscapes. Our results show that with a relatively small number
of perturbation experiments it is possible to recover an accurate representation of the true epigenetic
landscape. We propose that our theory provides a general method by which epigenetic landscapes
can be studied. Finally, our theory suggests that the total perturbation impulse required to induce
a switch between metastable states is a fundamental quantity in developmental dynamics.

A. Introduction

The presence of many overlapping feedback-based cir-
cuits within a cell’s regulatory network has been theo-
rized to give rise to a cellular epigenetic landscape (also
called a phenotype landscape) with many metastable
states [1, 2]. Fluctuations in the cell’s state due to molec-
ular noise [3–15] randomly drive the cell along this epige-
netic landscape bounded by the so-called quasi-potential
barriers separating the metastable states [16–18]. Most of
the time the system dwells in the vicinity of one of these
metastable states undergoing small random excursions
about it. Occasionally, however, a rare, large fluctuation
can move the system from one basin of attraction (of a
metastable state) to another [19–32].

The stability of these phenotypic states, quantified by
the mean first passage time (MFPT) or mean switching
time (MST) to transition from one state to another solely
via fluctuations, is typically very long to ensure stable
phenotypes [33], and yet cells must transition quickly and
deterministically once the proper signal is received [34–
37]. Such noise-driven switches, using positive and nega-
tive feedback loops, regulate diverse decision-making pro-
cesses including persistence [38, 39], bet-hedging [40, 41],
gradient decoding [42, 43], differentiation [44], phage in-
fection [45], and resource sensing [46–48].

In developmental processes, the regulatory network
guides a developing cell through a series of transitions
by moving from one metastable state to another along
the quasi-potential landscape [49–51]. Stochastic fluctu-
ations have been observed to be involved in several de-
velopmental processes [52] and developmental transitions
may involve quick passage through a number of interme-
diate states [53]. Indeed, cellular reprogramming under
strong perturbations follows a barrier crossing process
along a one-dimensional order parameter [54].

Using signals to guide a cell’s state artificially along an
epigenetic landscape could open new avenues to treating

disease using induced pluripotent stem cells and must
also underlie natural differentiation processes [55, 56]. A
theory to describe the work required to transition a cell
between metastable states would be valuable in develop-
ing detailed models of differentiation networks, and de-
signing differentiation protocols. Yet, reconstructing the
cellular epigenetic landscape of a real biological pheno-
type from steady-state experimental data is usually im-
possible due to the extreme rareness of the transitions.

Here, we describe a new approach for studying cellu-
lar decision landscapes using perturbations. The idea is
similar in principle to single-molecule force spectroscopy
studies of protein-folding landscapes, allowing one to
extract transition information from force-spectroscopy
pulling experiments [57, 58]. By pulling a macromolecule
or molecular complex at a sufficient force, rare transi-
tions in single molecules such as ligand-receptor dissoci-
ation [59], unfolding of a protein [60], or unzipping of nu-
cleic acids [61] can be experimentally observed. The au-
thors in Refs. [57, 58] have devised a theoretical method,
in the framework of the Kramers theory, that allows
translating the distribution of rupture forces that can be
measured experimentally, into the force-dependent life-
time of the system. In our case, starting with a cellu-
lar regulatory network, we apply an external “force” or
“pulling” to perturb the network in the direction of the
desired change. Here, pulling can represent, e.g., adding
a time-dependent force to the protein’s expression rate,
such that the system is pushed closer to the switching
barrier and can switch with an increased probability. At
this point, the statistics of the response of the system,
i.e. the statistics of switching events in the presence of
such pulling force, are then used to infer the topology of
the landscape, which allows evaluating the lifetime of the
various metastable states.

To compute the response of the system to exter-
nal pulling, we employ a semi-classical approach in the
spirit of the Wentzel–Kramers–Brillouin (WKB) the-
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ory [27, 31, 62–66] in order to treat the underlying chem-
ical master equation describing the stochastic dynamics
of the regulatory network. This formalism allows us to
transform the master equation into a set of Hamilton
equations which can be dealt with analytically or numer-
ically. We then solve these equations under a prescribed
external perturbation with given magnitude and duration
and compute the change in the switching probability due
to the external pulling. Finally, we use our semiclassi-
cal solution in a maximum likelihood framework to infer
the model’s parameters, which allows reconstructing the
epigenetic landscape of the network.

We present our method on two prototypical model sys-
tems: a one-dimensional (1D) system of a self-regulating
gene, and a two-dimensional (2D) system of mRNA-
protein positive feedback loop. We then discuss how our
model can be generalized to higher-dimensional systems.

B. Switching in the absence of an external
perturbation

Our starting point is an effective 1D model for the
dynamics of the protein of interest. It is assumed that
the protein is expressed and degraded according to the
following set of birth-death reactions

n
Λn−−→ n+ 1, n

Mn−−→ n− 1, (1)

where Λn and Mn are the expression and degradation
rates, respectively, and n is the protein copy number.

Neglecting intrinsic noise, the mean number of proteins
n̄ satisfies the following deterministic rate equation

˙̄n = Λn̄ −Mn̄. (2)

We are interested in a scenario where this rate equation
has (at least) three fixed points: n1 < n2 < n3, where
n1 and n3 are stable fixed points corresponding to the
low and high phenotypes, while n2 is an intermediate
unstable fixed point. One model system that exhibits
this property is a protein that positively regulates itself
– a self-regulating gene (SRG). While our analysis below
is done for generic Λn andMn, in all our simulations we
have chosen the birth and death rates to satisfy

λ(q) = α0 + (1− α0)
qh

qh + βh
, µ(q) = q. (3)

Here λ(q) = Λn/N and µ(q) = Mn/N are rescaled ex-
pression and degradation rates, q = n/N is the protein
density, while N is the typical system size, assumed to be
large, which represents the typical protein copy number
in the high state. Furthermore, α0 is the rescaled base-
line expression rate, h is the Hill exponent, and β is the
midpoint of the Hill function. Fig. S1 shows an example
of rate equation (2) using rates (3) when the system has
three fixed points.

Once intrinsic noise is accounted for, these stable fixed
points become metastable, and noise-induced switching

between n1 and n3 or vice versa, occurs. To account
for intrinsic noise, we write down the so-called chemical
master equation describing the dynamics of Pn(t) – the
probability to find n proteins at time t:

Ṗn = Λn−1Pn−1 +Mn+1Pn+1 − (Λn +Mn)Pn. (4)

Let us first consider the case of switching in the absence
of external perturbations. Here, one can find an exact ex-
pression for the mean switching time (MST), by comput-
ing the mean time it takes the system to cross the unsta-
ble boundary starting from a state with n proteins [67].
Yet, since the resulting expression is highly cumbersome,
throughout the text we instead use the WKB method [62]
to compute the MST, or switching probability.

To set the stage for the WKB method, let us assume
without loss of generality that the system starts in the
vicinity of the low stable fixed point n1. Assuming the
typical system’s size is large, N � 1, the resulting MST
is expected to be exponentially long, see below. In this
case, prior to switching the system enters a long-lived
metastable state which is centered about n1. Indeed,
starting from any initial condition n0 < n2, after a
short O(1) relaxation time, the dynamics of the prob-
ability distribution function can be shown to satisfy the
metastability ansatz: P (n ≤ n2, t) ' π(n)e−t/τ , while∑
n>n2

P (n) = 1 − e−t/τ [62–66, 68, 69]. Here, τ is

the MST, π(n) is called the quasi-stationary distribution
(QSD), which determines the shape of the metastable
state, and it is evident that the probability to be at
n > n2 is negligibly small at times t� τ .

We now plug this ansatz into master equation (4),
and neglect the exponentially small term proportional to
τ−1 (see below). Employing the WKB ansatz π(n) ≡
π(q) ∼ exp[−NS(q)] on the resulting quasistationary
master equation, where S(q) is the action function, yields
a stationary Hamilton-Jacobi equation H(q, ∂qS) = 0,
with the Hamiltonian being

H0(q, p) = (ep − 1)
[
λ(q)− e−pµ(q)

]
. (5)

Here p = ∂qS is called the momentum in analogy to
classical mechanics, while the subscript 0 stands for the
unperturbed case. To find the optimal path to switch –
the path the system takes with an overwhelmingly large
probability during a switching event [70, 71] – we need to
find a nontrivial heteroclinic trajectory, p0(q), connecting
the saddles (q, p) = (q1, 0) and (q2, 0), where q1 = n1/N
and q2 = n2/N [62–66]. Equating H0 = 0 yields

p0(q) = ln [µ(q)/λ(q)] . (6)

Thus, the action function is found by integrating: S(q) =∫
p(q′)dq′. The MST between the low and high states can

be shown to satisfy in the leading order [62, 64, 65, 69]

τlow→high ∼ eNS
lh
0 (7)

where Slh0 = S(q2) − S(q1) =
∫ q2
q1

ln[µ(q)/λ(q)]dq, is the

switching barrier between the low and high states, in
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the absence of an external force. Similarly, τhigh→low ∼
eNS

hl
0 , where Shl0 = S(q2)− S(q3) =

∫ q2
q3

ln[µ(q)/λ(q)]dq,

is the switching barrier between the high and low states.
For N � 1, these MSTs are indeed exponentially large
thus validating our a-priori metastability assumption (see
Fig. S2). Note that, in the unperturbed case, the pre-
factor of τ can be accurately found as well [65, 72].

In the following, rather than the MST, we will be in-
terested in computing P lh and Phl – the switching prob-
abilities over some time t � τ starting from the low
to high and high to low states, respectively. For exam-
ple, starting from the vicinity of n1, P lh is determined
by the fraction of stochastic realizations of process (1)
that cross n2 in a given time t out of the total num-
ber of realizations. Using the metastability ansatz, and
demanding that the total probability be unity, we have
P lh =

∑
n>n2

P (n, t) ' 1 − e−t/τ ' t/τ , where the last

approximation holds for t � τ ; that is, P lh is exponen-
tially small at t � τ . As a result, in the absence of
external force, and using a similar argument for the cal-
culation of Phl, the switching probabilities up to some
arbitrary time t� τ satisfy in the leading order

P lh ∼ τ−1
low→high ∼ e−NS

lh
0 , Phl ∼ τ−1

high→low ∼ e−NS
hl
0 , (8)

where logarithmic corrections depending on the arbitrary
time t and the pre-factor entering τ have been omitted.

C. Switching in the presence of an external
perturbation

Low-to-high switch. Let us begin by studying the case
of low to high switch in the presence of an external per-
turbation. To do so, we add an external time-dependent
force to the protein’s expression rate, Λn → Λn + φ(t),
where φ(t) is applied for a finite duration T such that

φ(t) =

{
0 t < 0 or t > T,

F 0 < t < T.
(9)

As shown in Fig. S3, the result of this perturbation is
that the system is pushed nearer to the switching bar-
rier and with some increased probability can then switch
to the high state. The switching probability depends on
both the force F and duration T of the perturbation.
Note that, in general, the system does not need to relax
to a new quasi-stationary distribution during the pertur-
bation. We now compute the dependence of the change
in the low to high switching barrier Slh on F and T .

Given the time-dependent protocol φ(t) [Eq. (9)] for
the change in the protein’s expression rate, one can per-
form a similar WKB analysis as done above in the unper-
turbed case. This yields two distinct Hamiltonians: the
unperturbed Hamiltonian (5) before and after the exter-
nal perturbation has been applied, and the Hamiltonian
during the perturbation with an elevated expression rate:

Hp(q, p) = (ep − 1)
[
λ(q) + F − e−pµ(q)

]
, (10)
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Figure 1. Calculation of the optimal switching path for
the self-regulating gene. (a) Illustration of the optimal
paths to switching without (black) and with (blue) pertur-
bation. The path segments are labeled as pre-perturbation
(pre), perturbation (pert), and post-perturbation (post), see
text. The top path shows low to high switching and the bot-
tom path shows high to low. The yellow areas give the de-
crease in the momentum barriers due to the perturbation. In
the low to high switch we have taken F = 0.15 and Ep = 0.01
such that T = 1.1, whereas for the high to low we have taken
F = 0.2 and Ep = 0.005 such that T = 2.06. The other
parameters are α0 = 0.2, β = 0.562 and h = 4. (b) Plot of
T−

∫
1/q̇ dq [see equation (12)] vs Ep for the low to high switch

under three different values of the perturbation strength F :
0.15 (blue), 0.20 (orange), 0.25 (green). Also shown are (c)
momentum p vs coordinate q and (d) the change in action
∆S vs perturbation time T for the same three F values.

where the subscript p stands for the perturbed case.
Each of the two Hamiltonians is an integral of motion
on the corresponding time interval. Here, the optimal
switching path [qop(t), qop(t)] starts at the saddle point
(q, p) = (q1, 0) well before the perturbation has been ap-
plied, and ends at the saddle point (q, p) = (q2, 0), well
after the perturbation has been applied. It can be found
by matching three separate trajectory segments: the pre-
perturbation, perturbation, and post-perturbation seg-
ments (see Fig. 1a) [73–75].

The matching conditions at times t = 0 and t = T
are provided by the continuity of the functions q(t) and
p(t) [76]. The pre- and post-perturbation segments must
have a zero energy, E = 0, so they are parts of the orig-
inal zero-energy trajectory, p0(q), see Eq. (6). Yet, for
the perturbation segment, the energy E = Ep is nonzero
and a-priori unknown. It parameterizes the intersection
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points qp1 and qp2 between the unperturbed zero-energy
line p0(q) [Eq. (6)] and the perturbed path, pp(q) [73–
75]. The latter is the solution of Hp(q, p) = Ep, yielding:

pp(q) = ln
{[
B +

√
B2 − 4AC

]
/(2A)

}
, (11)

where A, B and C are functions of q and satisfy A =
λ(q) + F , B = λ(q) + F + µ(q) + Ep, and C = µ(q).

To determine the energy Ep, we demand that the du-
ration of the perturbation be T [73–75]. Thus, we have:

T =

∫ T

0

dt =

∫ qp2 (Ep)

qp1 (Ep)

dq

q̇[q, pp(q, Ep)]
, (12)

where qp1,2(Ep) are the intersection points between the

unperturbed p0(q) and perturbed pp(q) trajectories, and
q̇(q, p) = dq/dt is given by Hamilton’s equation q̇ =
∂Hp/∂p = [λ(q) + F ]ep − µ(q)e−p. Therefore, plugging
pp(q) from Eq. (11) into q̇, Eq. (12) becomes:

T =

∫ qp2 (Ep)

qp1 (Ep)

(
B2 − 4AC

)−1/2
dq, (13)

where A, B and C are given below Eq. (11). Fi-
nally, using the fact that the action satisfies S =∫∞
−∞{pop(t)q̇op(t)−H[qop(t), pop(t), t]}dt [77, 78], and re-

calling that dS = (∂S/∂t)dt+(∂S/∂q)dq, we arrive at the
corrected switching barrier from the low to high states:

Slh = Slh0 −
∫ qp2 (Ep)

qp1 (Ep)

[p0(q)− pp(q, Ep)] dq − EpT, (14)

where Ep = Ep(F, T ) can be found from Eq. (13),
Slh0 =

∫ q2
q1
p0(q)dq is the unperturbed switching barrier

from the low to high states, and we have used the fact

that
∫ T

0
Hpdt = EpT .

Note that, for the birth and death rates of the SRG
model (3), Eq. (13) has no closed form solution. To
study the switching behavior under such perturbation,
we first numerically evaluate the integral equation to find
the matching Ep (see Fig. 1b). Given a numerical value
for Ep, we then use Eq. (14) to calculate the perturbed
action (Fig. 1c-d). Finally, we use Eq. (8) to calculate
the perturbed switching probability P lh.

To check our theory, we compared the theoretical de-
pendence of P lh on F and T against Monte Carlo sim-
ulations [79]. We calculated P lh for a range of F values
for three different perturbation times T . Because we are
trying to develop a theory that is directly relatable to
biological experiments, the F values were limited such
that P lh > 1 × 10−6. Detecting a cell phenotype with a
frequency of one per million cells is at the limit of feasibil-
ity using flow cytometry techniques. We also limited the
comparison to P lh < 1 × 10−2, below which the switch-
ing barrier Slh starts to become low enough such that
the WKB approximation is invalidated [65]. Figure 2a,
shows excellent agreement between theory and numerics.
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Figure 2. Change in the switching probability with
perturbation. (a) Change in switching probability vs per-
turbation strength F for the low to high switch. Symbols and
lines give numerical and theoretical values, respectively. A
constant prefactor of 0.15 was used with the theory. Data are
shown for three values of the perturbation time T : 0.5 (blue
×), 0.75 (orange ◦), 1.0 (green 4). (b) Change in switch-
ing probability vs perturbation strength for the high to low
switch with perturbation times 0.75 (blue ×), 1.0 (orange ◦),
and 1.5 (green 4), and a prefactor of 0.2. (c+d) Switching
probabilities in the β vs h plane for the low to high switch (c)
and the high to low switch (d).

Finally, our result for the switching probability in
the aftermath of an external perturbation [Eq. (14)]
can be simplified in three particular limits: (i) close to
the bifurcation limit, where the low and intermediate
fixed points merge and the switching barrier vanishes,
(ii) for weak external force, F � 1, and (iii) in the
case of h → ∞, i.e, a very steep regulatory function.
Close to the bifurcation limit, we find that Slh depends
only on the impulse of the perturbation, FT , see
Discussion and Appendix A; in the case of weak force,
we show that the increase in the switching probability
is exponential in F , see Appendix B, while in the
limit of h → ∞, where the expression rate is given
by a heaviside step function, we find an explicit ex-
pression for Slh as function of F and T , see Appendix C.

High-to-low switch. We now turn to the case of
switching from the high to low states in the presence
of an external perturbation. Here, switching can be
driven, e.g., by increasing the protein’s degradation rate,
µ(n) → µ(n)[1 + φ(t)], where φ(t) is given by Eq. (9),
which yields the perturbed Hamiltonian

Hp(q, p) = (ep − 1)
[
λ(q)− e−pµ(q)(1 + F )

]
. (15)

As a result, the intersection points qp2 and qp3 are now
determined by equating p0(q) from Eq. (6) with the per-
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turbed path pp(q), given by Eq. (11), with A = λ(q),
B = λ(q) + µ(q)(1 + F ) + Ep, and C = µ(q)(1 + F ).

To find Ep, we use Eq. (15) to write Hamilton’s equa-
tion q̇ = ∂Hp/∂p = λ(q)ep − µ(q)(1 + F )e−p. Replacing
the lower integration limit of Eq. (12) by qp3(Ep), we find

T =

∫ qp3 (Ep)

qp2 (Ep)

(
B2 − 4AC

)−1/2
dq, (16)

where A, B and C are given below Eq. (15), and we have
swapped the integration limits such that the integrand is
positive. Finally, the switching barrier from the high to
low states is given by Eq. (14) upon replacing the lower
integration limit by qp3(Ep), and Slh0 by Shl0 .

Fig. 2b shows a comparison of the perturbed high to
low switching probabilities from Monte Carlo simulations
with Phl calculated using the above action along with
Eq. (8). They are again in excellent agreement.

Notably, in all of our calculations we have assumed a
square pulse. Yet, such a pulse is practically impossible
to realize experimentally. Instead, one expects exper-
imental signals to be noisy, and to gradually rise and
drop slowly rather than instantaneously. Nevertheless,
we claim that the exact form of the pulse will not change
the above results qualitatively. For example if instead of
an instantaneous rise and drop, we have a linear rise in
the pulse up to some maximal value, and a linear drop
back to the original value, one can use the same math-
ematical formalism as above. Indeed, in this case the
optimal path will be comprised of five segments rather
than three: a pre- and post-perturbation segment, a per-
turbed segment, and two segments with intermediate val-
ues of force corresponding to the average force value in
the regimes of linear increase and decrease of the pulse.

D. Inference of the epigenetic landscape

We now proceed to our main idea which is to use our
theoretical formalism to infer the epigenetic landscape
of a regulatory network, given experimental data of the
network’s response to external perturbations. The goal
is to find the set of parameters for the regulatory net-
work that best recapitulate the observed responses. We
first set out to determine the feasibility of inferring the
parameters from the perturbation data.

For the SRG, two key parameters that control the
shape of the landscape are β, which influences the barrier
position, and h, which influences the landscape steepness.
We desired to know to what extent these two parame-
ters could be independently distinguished using only the
switching probability. To this end, we used our theory
to calculate the dependence of P lh and Phl on β and
h. As can be seen in Fig. 2c+d, when switching either
from low to high or from high to low, β and h can be
changed simultaneously to maintain the same switching
probability. This corresponds, e.g., to moving the bar-
rier position closer to the starting state while increasing

the height of the barrier. Yet, by considering switching in
both directions simultaneously, both β and h are uniquely
constrained, and there is only one pair (β,h) consistent
with both the low to high and high to low pulling.

To perform parameter inference we adopted a maxi-
mum likelihood approach. To generate synthetic experi-
mental data we performed Monte Carlo simulations of the
stochastic process (1), and measured for various values of
F and T the number of realizations k, out of m total real-
izations, that switched phenotypes after some designated
time. For all of our simulations we used m = 1 × 106.
Given the switching probability P for each realization,
and assuming that the sequence of “experiments” or nu-
merical realizations is independent and identically dis-
tributed, the probability P (k) that exactly k realizations
out of m switch is given by a binomial distribution

P (k) =

(
m

k

)
Pk(1− P)m−k. (17)

The likelihood of parameters θ producing the observed
data k given all of the various experimental F and T
conditions is then given by the product of all P (k) values

L(θ|k) =
∏
{Ti,Fj}

Pθ(ki,j) =
∏
i,j

(
m

ki,j

)
Pki,jθ (1−Pθ)m−ki,j , (18)

where i and j denote the indices of the current values
of T and F , and ki,j denotes the number of realizations
that switched given that T = Ti and F = Fj . Note that,
the likelihood function in Eq. (18) includes both low to
high and high to low pulling experiments.

Importantly, the probability of success P is given by
Eq. (8); as we have shown, it depends, in addition to T
and F , on the parameters θ defining the birth and death
rates. By maximizing the likelihood function L, we find
the most probable parameter set for the birth and death
rates Λn and Mn, given the perturbation data.

We used the synthetic data set shown in Fig. 2a+b
along with Eq. (18) to infer the maximum likelihood
estimate (MLE) for the three model parameters N , β,
and h. We assume that α0 can be obtained directly
from experimental measurement of the ratio of the sta-
ble fixed points. Again, we used only F and T values
with 1× 10−6 < P < 1× 10−2, which amounted to ∼35
experimental conditions combined from both switching
directions. Fig. 3 and Fig. S8 show the likelihood dis-
tribution resulting from the inference. The MLE was
N = 1554, β = 0.5718, and h = 3.492, which was in
excellent agreement with the true parameter values of
N = 1500, β = 0.5715, and h = 3.5.

Because the WKB is a logarithmic theory, there is a
preexponent in Eq. (8) that must be estimated in or-
der to compute the absolute value of P. Typically, in a
WKB theory this prefactor is obtained from fitting the
functional dependence of the theory to the data. Here,
we took the approach of obtaining the prefactor for both
P lh and Phl directly from the likelihood estimation. We
maximized likelihood over a range of prefactors and then
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Figure 3. Log-likelihood function for inference of
model parameters. (top) The likelihood in the N vs α0

plane where other parameters are fixed to their MLE. (bot-
tom) The same for the β vs h plane. The white × symbols
show the MLE and the white ◦ symbols show the true param-
eter values. The likelihood function is computed based on the
data presented in Fig. 2.

used the set with the highest likelihood for all remaining
calculations (see Fig. S4). Comparison of the theory with
optimized prefactors and parameters to the true param-
eters shows that the optimization leads to a moderate
increase in likelihood while maintaining the excellent fits
to T and F (see Fig. S12a+b).

Finally, we used the MLE parameters to reconstruct
the stationary probability density function (PDF) that
corresponds to the epigenetic landscape. Fig. 4a+b
shows a comparison of the inferred and true PDFs, which
we calculated for a given set of parameters using an en-
hanced sampling technique [80]. The agreement is again
excellent and shows that by using only ∼35 perturbation
data points we are able to successfully reconstruct the
epigenetic landscape of the model.

To further test our ability to use the theory to infer
the network’s PDF, we tested several other SRG pa-
rameters sets with increasing switching barrier heights
(see Figs. S4–S12). Fig. 4c+d shows that for h = 3.65
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Figure 4. Comparison of actual and inferred probabil-
ity distributions for the self-regulating gene. (a) The
actual (solid blue) and inferred (dashed orange) PDFs for the
low state, where X denotes the protein copy number. (b)
The same for the high state. The model parameters were
N = 1500, α0 = 0.2, β = 0.5715 and h = 3.5 (a+b) and
h = 3.65 (c+d).

a greater discrepancy appears between the inferred and
actual landscapes, with ∼5% error in the height of the
switching barrier. As the switching barrier continues
to increase so does the estimated error (Fig. S13). For
h = 4.0 the error is ∼10% of the barrier height. How-
ever, at this value of h the MST is ∼ 1017. At these
very long switching times, emanating from the large
landscape steepness, additional perturbation points with
P < 1× 10−6 may be necessary to accurately infer land-
scapes with a smaller error margin.

E. One-state mRNA-protein model

The unperturbed case. Above, we used the SRG as
a basis to infer the landscape of a 1D switch. To see
how our method can be generalized to higher-dimensional
systems, we now repeat the calculations done above for
a 2D system: the one-state mRNA-protein model with
positive feedback that displays bistability. We explicitly
account for mRNA noise which has been shown to greatly
affect the switching properties in genetic circuits [27].

We consider a one-state gene-expression model where
transcription depends on the protein copy number via
positive feedback. The deterministic rate equation de-
scribing the dynamics of the average numbers of mRNA
and proteins, respectively denoted by m̄ and n̄, satisfies:

˙̄m = Λn̄/b− γm̄ ; ˙̄n = γbm̄− n̄. (19)

Here, γ � 1 is the mRNA degradation rate (relevant e.g.
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for bacterial systems [15]), γb is the protein translation
rate, such that b is the burst size (the number of proteins
created from a single instance of mRNA) and all rates are
rescaled by the protein’s degradation rate or cell division
rate. Furthermore, Λn̄ is a sigmoid-like function that
ensures bistability (see Fig. S14). By choosing the mRNA
transcription rate to be Λn̄/b, we made sure that the fixed
points of the protein satisfy Λn̄ = n̄, which coincide with
those of Eq. (2) for the SRG, upon choosing Mn̄ = n̄.

To find the switching probability we write down the
master equation describing the dynamics of Pm,n – the
probability to find m mRNA molecules and n proteins:

Ṗm,n=[Λn/b](Pm−1,n−Pm,n)+γbm(Pm,n−1−Pm,n)

+γ[(m+1)Pm+1,n−mPm,n] + (n+ 1)Pm,n+1−nPm,n.(20)

Following the SRG calculations above, we use the
metastable ansatz Pm,n = πm,ne

−t/τ in Eq. (20), and
employ the WKB approximation, πm,n = π(x, y) =

e−NS(x,y). Here S(x, y) is the action, N � 1 is the typi-
cal protein copy number at the high state, and x = m/N
and y = n/N are the mRNA and protein concentrations,
respectively. This yields a stationary Hamilton-Jacobi
equation H(x, y, ∂xS, ∂yS) = 0 with Hamiltonian [69, 81]

H=y(e−py−1)+γbx(epy−1)+γx(e−px−1)+
λ(y)

b
(epx−1),

(21)
where px = ∂xS and py = ∂yS are the mRNA and protein
associated momenta, respectively, and λ(y) = Λ(y)/N .

The switching path from the low to high states (or vice
versa) corresponds to a heteroclinic trajectory of Hamil-
tonian (21) connecting the saddle points (x, y, px, py) =
(ylow/(γb), ylow, 0, 0) and (yhigh/(γb), yhigh, 0, 0) in the
4D phase space; it can be found by solving the Hamil-
ton equations ẋ = ∂pxH, ẏ = ∂pyH, ṗx = −∂xH, and
ṗy = −∂yH, which read

ẋ = [λ(y)/b]epx−γxe−px , ṗx = γb(1−epy )+γ(1−e−px),

ẏ = γbxepy−ye−py , ṗy = 1−e−py +[λ′(y)/b](1−epx).(22)

While a numerical solution can be found for any set of
parameters, in order to make analytical progress we con-
sider the limit where the mRNA lifetime is short com-
pared to that of the protein, γ � 1, which holds in bac-
teria. In this limit, the mRNA concentration and mo-
mentum, x(t) and px(t), instantaneously equilibrate to
some (slowly varying) functions of y and py [82]. Putting
ẋ = ṗx = 0 in the first two of Eqs. (22), we obtain
e−px = b(1−epy )+1 and x = [λ(y)/(γb)]/[b(1−epy )+1]2.
Using these relations in Hamiltonian (21) we arrive at a
reduced Hamiltonian for y and py only. Denoting y ≡ q
and py ≡ p, the effective 1D Hamiltonian reads [69, 81]

H0 = q(e−p − 1)− λ(q)
1− ep

b(1− ep) + 1
, (23)

where the subscript 0 denotes the unperturbed case. This
Hamiltonian effectively accounts for the fact that the
proteins are produced in geometrically distributed bursts

with mean b, which in turn asymptotically accounts for
the mRNA noise when γ � 1. This Hamiltonian is our
starting point for treating this system under external per-
turbation, and serves as the unperturbed Hamiltonian,
similarly as Hamiltonian (5). Note that, as done for the
SRG model above, using this unperturbed Hamiltonian
[Eq. (23)], one can find the unperturbed action which
yields the PDF, Pm,n, and MST, in the absence of exter-
nal perturbation, see Fig. S15+S16.

The perturbed case. We now repeat the calculations done
for the SRG in the perturbed case. Note that, here in-
stead of perturbing the protein’s expression and degra-
dation rates, we perturb those of the mRNA. While both
cases can be studied theoretically, we desired to study
the impact of transcriptional perturbations as being more
closely aligned with existing experimental techniques.

We start by perturbing the mRNA’s transcription rate
Λn → Λn + φ(t), where φ(t) is given by Eq. (9). As
before, the optimal path is made of three segments: an
unperturbed segment before the onset of perturbation, a
perturbed segment while the perturbation is applied, and
an unperturbed segment after the perturbation has ter-
minated. The unperturbed segment is found by equating
Hamiltonian (23) to zero

p0(q) = ln{[(b+ 1)q]/[bq + λ(q)]}. (24)

The perturbed segment can be found by using Hamilto-
nian (23) with the perturbed transcription rate

Hp(q, p) = q(e−p − 1)− [λ(q) + F ]
1− ep

b(1− ep) + 1
, (25)

and equating it to Ep; here the subscript p stands for
perturbation. The resulting perturbed segment reads

pp(q) = ln
{[
B +

√
B2 − 4AC

]
/(2A)

}
, (26)

where A = λ(q) +F + b(Ep + q), B = Ep(b+ 1) + λ(q) +
F +q(1+2b), and C = (1+b)q. To determine the energy
Ep, we use Eq. (12) with q̇ found from Hamiltonian (25).
By doing so, condition (12) becomes:

T =

∫ qp2 (Ep)

qp1 (Ep)

2A+ b
(
2A−B −

√
B2 − 4AC

)
2A
√
B2 − 4AC

dq. (27)

Finally, the action is given by Eq. (14) with Ep from
Eq. (27), while Slh0 =

∫ q2
q1
p0(q)dq is the unperturbed ac-

tion from the low to high states.
Next, we perturb the degradation rate of the mRNA

such that γm becomes γ(1+F )m. As a result, after some
algebra the perturbed Hamiltonian becomes

Hp(q, p) = q(e−p − 1)− λ(q)
1− ep

b(1− ep) + 1 + F
. (28)

Equating Hp(q, p) = Ep, the perturbed segment yields

pp(q) = ln
{[
B −

√
B2 − 4AC

]
/(2A)

}
, (29)
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Figure 5. Perturbation effect on the mRNA-protein
model. (a) Change in switching probability vs perturbation
strength F for the low to high switch with b = 4. Symbols
and lines give numerical and theoretical values, respectively.
Theoretical values were calculated using the maximum like-
lihood parameter estimates. Data are shown for five values
of the perturbation time T : 0.35 (blue ×), 0.5 (orange ◦),
0.75 (green 4), 1.0 (red 5), 2.0 (purple +). (b) Change in
switching probability vs F for the high to low switch with
T = 1.0 (blue ×), 1.5 (orange ◦), 2.25 (green 4), 3.0 (red 5),
4.5 (purple +). (c+d) As above except for b = 3.

where A = λ(q) + b(Ep + q), B = Ep(1 + b+F ) + λ(q) +
q(1 + 2b + F ), and C = q(1 + b + F ). To determine the
energy Ep, we use Eq. (12) with q̇ found from Hamilto-
nian (28). By doing so, condition (12) becomes:

T =

∫ qp3 (Ep)

qp2 (Ep)

2A(1 + F ) + b
(
2A−B +

√
B2 − 4AC

)
2A
√
B2 − 4AC

dq,

(30)
where we have swapped the integration limits such that
the integrand is positive. Finally, the action is given by
Eq. (14) with Ep from Eq. (30), while Shl0 =

∫ q2
q3
p0(q)dq

is the unperturbed action from the high to low states.
To test the mRNA-protein model, we again ran sets

of Monte Carlo simulations to calculate the dependence
of P lh and Phl on F for five values of T with b = 4.
We then performed MLE estimation from these data, see
Fig. S18+S23. Fig. 5a+b shows an excellent agreement
between the simulations and theory with the MLE pa-
rameters. Likewise, the reconstructed PDFs shown in
Fig. 6a+b are in good agreement with the actual PDFs.

Finally, we wanted to study the impact of increasing
the barrier height while maintaining the position of the
fixed points. To this end, we varied b in a range of 1–5
(Fig. S17-S28). For parameter sets with longer switching
times the low F region is not well sampled (Fig. 5c+d),
which leads to an increased error in the predicted switch-
ing barrier (Fig. 6c+d). With b = 1 and a switching time
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Figure 6. Comparison of actual and inferred proba-
bility distributions for the mRNA-protein model. (a)
The actual (solid blue) and inferred (dashed orange) PDFs
for the low state with b = 4. (b) The same for the high state.
(c+d) The same as (a+b) except for b = 3.

of 1×1020 the relative error in the barrier height is ∼20%.
As with the SRG, these errors could be reduced by in-
cluding lower probability events in the MLE.

F. Discussion

1. Generic models

We would now like to apply our methodology to ar-
bitrarily complex networks, not only the simple models
discussed above. A good example in this realm is the ge-
netic toggle switch where two proteins negatively regulate
each other using additional transcription factors [83–85].
While a generalization to higher-dimensional systems is
highly nontrivial, in what follows we will attempt to lay
the theoretical grounds for such a generalization.

Let us consider a gene-regulatory network with
M species, n = (nA, nB , . . . , nM ), describing e.g.,
M different proteins that regulate each other, where
nA, nB , . . . , nM denote the copy numbers of the various
proteins A, B, . . . , M . It is our aim to find an effective
landscape for the protein of interest, say A. In general,
the production of A is regulated by all other proteins
including A, while the degradation takes the usual form:

nA
φ(nA,nB ,...,nM )−−−−−−−−−−−→ nA + 1, nA

nA−−→ nA − 1, (31)

where φ(nA, nB , . . . , nM ) is a function of all proteins or
transcription factors in the circuit including A. We seek
to infer an effective birth or production rate φ̃(nA), which
is a 1D projection of the M-dimensional production rate
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φ(nA, nB , . . . , nM ). This will allow to effectively describe
the dynamics of protein A, and to infer the same marginal
PDF of A obtained in the M-dimensional case. Moreover,
this will allow one to find the quasi-potential landscape
of A and the relative stability of its phenotypes.

Previously, when the regulatory network was known,
we have used the master equation to account for demo-
graphic noise. Here, since we have an effective birth-
death process for A, and the relation between the drift
and diffusion is a-priori unknown, we will instead describe
the stochastic dynamics of A by a Langevin equation:

q̇ = f(q) +
√
D(q)/Nη(t). (32)

Here, q = nA/N is the density of A, and N is its typ-
ical copy number in the high state. Moreover, f(q) =

φ̃(nA)/N − q and D(q) are the effective drift and diffu-
sion functions, see below, while η(t) is a delta-correlated
normal random variable with mean 0 and variance 1/dt.

In Eq. (32) both f(q) and D(q) are unknown and
need to be found from perturbation experiments as done
above. As we are interested in bistable systems, f(q) has
to be (at least) a cubic polynomial, to give rise to three
fixed points at the deterministic level. We will assume for
concreteness that the production rate is given by a Hill
function such that: f(q) = α0 +(1−α0)qh/(qh+βh)−q.
Naturally, other functional forms for f(q) are possible as
long as they yield three fixed points.

Choosing a diffusion function is more intricate. In gen-
eral, when a master equation is approximated by the
van-Kampen system size expansion, one finds that the
diffusion function D(q) entering the resulting Fokker-
Planck (or Langevin) equation, satisfies D(q) = λ(q) +
µ(q) [67, 69], where λ(q) and µ(q) are the birth and death
rates, respectively. Since a bistable system is obtained
when f(q) = λ(q) − µ(q) is (at least) a cubic polyno-
mial, we argue that taking D(q) as a cubic polynomial
D(q) = D0+D1q+D2q

2+D3q
3 should suffice to describe

the effective noise in generic systems. In simpler cases,
see below, a lower-order polynomial may also suffice.

For example, applying the van-Kampen system size ex-
pansion on the SRG model, master equation (4) becomes

∂P (q, t)

∂t
= − ∂

∂q
[f(q)P (q, t)] +

1

2N

∂2

∂q2
[D(q)P (q, t)],(33)

where f(q) and D(q) are defined above, and λ(q) and
µ(q) are defined in Eq. (3). The zero-current, stationary
solution of this Fokker-Planck equation reads [67, 69]

P (n) ' A exp

[
N

∫
q

2f(q)

D(q)
dq

]
, (34)

where to remind the reader, n = Nq is the protein copy
number, and A is a normalization constant, such that∫∞

0
P (n)dn = 1 [86]. Now, let us observe what happens

when we replace D(q) by a simple polynomial. In Fig. 7a
shown is a comparison between the diffusion function,
D(q) = λ(q) + µ(q), and a linear fit, D(q) = 2q. The
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Figure 7. Comparison between the exact and approx-
imated diffusion functions and probability distribu-
tions for the SRG model. (a) The diffusion function ob-
tained from a van-Kampen system size expansion (red line)
as a function of q = n/N , compared with its linear fit (blue
line). (b) The PDF given by Eq. (34) (red line) as a function
of n compared with the approximated PDF (blue line) com-
puted with the linear diffusion function. Here, parameters
were α0 = 0.1, β = 0.5, h = 3 and N = 100, such that the
fixed points satisfy q1 ' 0.11, q2 ' 0.39 and q3 ' 0.85.

fact that the curves agree well is not surprising, as in the
vicinity of the fixed points, λ(q) = µ(q) = q, and thus
D(q) ' 2q. In Fig. 7b we compare the PDF, given by
Eq. (34), with the approximated PDF, obtained by sub-
stituting D(q) = 2q in Eq. (34). As one can see, even a
linear approximation of D(q) yields a decent agreement
between the PDFs. As explained above, for generic sys-
tems we argue that a cubic polynomial should suffice in
order to accurately capture the switching landscape.

Now, as done above, we propose to use perturbation
experiments to infer the effective 1D drift and diffusion
functions, using the MLE. To do so, we can either add a
temporary perturbation of magnitude F and duration T
to the production rate of A, or increase its degradation
rate by a factor of (1 + F ) as before. The problem is
that if we apply a force in an experiment, involving all
proteins A, B, . . . , M , it is not at all clear how this
force is projected onto the 1D space we are interested
in. To continue, we can denote by F the 1D projection
of the force F applied in the M-dimensional space, such
that F = ψ(F ), where ψ is some unknown function. In
simple cases, for which the projection of the switching
trajectory from a M-dimensional to a 1D space does not
include multiple crossings of the switching barrier, we
expect the function ψ to be monotone increasing with
F and unique. However, for generic systems this is not
the case, and finding ψ is expected to be more involved,
requiring a significant theoretical and numerical effort.

Assuming for a moment that the effective 1D force is
known, we can continue as in the simple cases discussed
above. Using the WKB ansatz π(q) ∼ e−NS(q) in the
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(stationary version of the) Fokker-Planck equation (33),
to leading order in N � 1 one arrives at a Hamilton-
Jacobi equation with an unperturbed Hamiltonian:

H0(q, p) = p [f(q) + pD(q)/2] , (35)

where p = dS/dq is the conjugate momentum. As a
result, the unperturbed optimal path, p0(q), satisfies
p0(x) = −2f(q)/D(q), which allows finding the action
barrier as before, both from the low to high, and from
the high to low states, see text below Eq. (6).

At this point, we can repeat the calculations done
above in the perturbed case, by taking λ(q)→ λ(q) +F ,
and µ(q) → µ(q)(1 + F). This allows finding the per-
turbed action barrier, both from the low to high, and
high to low states, which then allows one, using multiple
switching experiments and the MLE, to extract the pa-
rameters defining f(q) and D(q). However, we have not
yet determined how the effective 1D force F depends on
the original pulling force F , and thus, applying this the-
ory to realistic experiments remains far from being triv-
ial. A possible way to study this functional dependence is
to look at 1D projections of deterministic trajectories of
the full M-dimensional system upon applying a constant
force for a finite duration. Here, understanding, e.g., the
influence of the perturbation on the relaxation dynamics
near a fixed point, or other dynamical properties, may
allow one to get insight on how F depends on F . Yet,
we leave this task to a future publication.

2. Dependence of switching probability on impulse

In physical terms FT represents the total impulse we
apply to the system, which is equal to the force exerted
on a particle multiplied by the duration of the force. In
a mechanical system, when a constant force F is applied
on a particle for a duration T in the direction of the par-
ticle’s momentum, in the absence of dissipation or heat
production, the particle’s momentum is increased by FT .
This increase is independent on F or T separately; that
is, applying a small force for a long duration is equivalent
to applying a large force for a short duration.

This relationship is exactly what we observe for small
impulses in our system. Fig. 8 shows the change in the
switching barrier e.g. between the low and high states,
∆S ≡ Slh − Slh0 as a function of total impulse FT . One
can see that for low FT the change in the switching bar-
rier depends linearly on the product FT and not on F
or T separately. However, as the impulse increases the
change in switching barrier is no longer a unique func-
tion of FT . As the impulse duration T is increased (high
FT with low F ) not all of the impulse results in a re-
duction in the switching barrier. This discrepancy indi-
cates that there is some sort of dissipation or uncontrolled
heat/entropy production in the system.

In contrast, when the system is near bifurcation we
do expect the change in action to be a unique function
of FT . In Appendix A we derive a simple analytical
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Figure 8. Dependence of change in the switching bar-
rier on impulse. Distribution of the perturbed switching
barrier ∆S = Slh − Slh

0 versus the total applied impulse F T
for the SRG model. Each symbol represents a perturbation
with a different F , which is given by the color. The solid line
shows the bifurcation theory given in Eq. (43).

expression for the dependence of the switching barrier
on FT close to the bifurcation limit. As can be seen in
Fig. S29, the effect of the perturbation depends only on
the product FT in this case.

Even though the switching barrier is a unique func-
tion of FT close to bifurcation, see Eq. (43), we can see
that the change in switching barrier is linear with FT
only at low impulse. Defining the efficiency of inducing
a switch by the change in the switching barrier divided
by the impulse, ∆S/(FT ), from Eq. (43) we see that
the efficiency decreases with FT . That is, the process
of inducing a switch becomes less efficient as FT is in-
creased, while efficiency is maximized for weak impulses
with vanishingly-small dissipation.

3. Role of perturbation energy Ep

What is the physical meaning of the perturbation en-
ergy Ep which appears throughout our derivation? Math-
ematically, it is determined by a complicated function of
the force F and its duration T . However, looking at the
result close to bifurcation (see Appendix A), the energy
Ep can be written as Ep = E0[1− (FT )2/4], where E0 is
the maximal value of Ep which is obtained as F and/or
T vanish. Plugging this result into Eq. (43), and sub-

stituting FT = 2
√

1− Ep/E0, we find that for small

impulses ∆S/S0 ∼
√
E0 − Ep. This indicates that, in

analogy to quantum mechanics, given a quasi-potential
landscape S(q), E0 − Ep can be viewed as the “energy
excess” the particle receives to cross the switching barrier
of height E0. As a result, for Ep = E0, the switching bar-
rier remains unchanged (corresponding to F = 0 and/or
T = 0), while for Ep = 0, the energy excess is maxi-
mal corresponding to the absence of a switching barrier,
leading to instantaneous switching.
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G. Conclusion

Here, we have introduced a new theory for describing
the effect of nonequilibrium perturbations on biological
regulatory networks with metastable states, i.e., epige-
netic networks. Our theory can be used to infer the epige-
netic landscape of a regulatory network by fitting a model
using a series of perturbations of varying strength. The
shape of the landscape is mapped out and reconstructed
from the perturbation responses. The data needed for
the fitting are purposely chosen to be reasonable biolog-
ical observables.

The principle of such an experiment would be to apply
a genetic or biochemical perturbation to the network,
such as by introducing an inducible gene using trans-
fection and/or silencing expression using siRNA. A re-
sponse is measured as a function of the strength and du-
ration of the perturbation. Unlike other theories that
relate switching dynamics to fluctuations along the epi-
genetic landscape, our theory does not require detailed
time-lapse imaging to collect data. One simply needs
to record the fraction of cells that switch phenotypes at
some time in the future after the perturbation. Such data
can be quickly collected for millions of cells using flow
cytometry. Using the response data the parameters of a
regulatory model can be inferred and the epigenetic land-
scape numerically reconstructed. Our method, therefore,
has great potential to be used to help decipher complex
biological developmental trajectories.

Our theory also provides insights into the fundamen-
tal physics of how various signals induce state transitions
in cells. As more complex cellular reprogramming is un-
dertaken, it will become increasingly important to model
how cells can be induced to make transitions between
states. The impulse that we identified in our theory is one
way to measure the work required to change phenotypic
states. Further theoretical advances will be required to
extend our understanding of important developmental
techniques such as creation of induced pluripotent stem
cells and cell reprogramming and differentiation.
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Appendix A: Bifurcation Limit

In this section we show how the results derived for the
SRG can be drastically simplified close to the bifurcation
limit, where the stable and unstable fixed points merge.

Without loss of generality, our analysis below will focus
on the low to high switch, namely from q1 to q3, where
the analysis of the high to low switch is identical.

Let us denote by ε ≡ (q2 − q1)/2 � 1, such that 2ε is
the distance between the two fixed points. Let us also
denote by qm = (q1 + q2)/2 the mid point between the
stable and unstable fixed points. As a result, we can
write q1 = qm − ε and q2 = qm + ε. It has been shown
in previous works that in problems of switching between
metastable states, close to bifurcation the momentum p
scales as ε2 [65, 66]. As a result, it is convenient to rescale
the coordinate and momentum as follows:

q̃ = (q − qm)/ε, p̃ = p/ε2, (36)

where q̃, p̃ are O(1). Note, that the fixed points in the
rescaled coordinate become q̃1 = −1 and q̃2 = 1.

We further denote R(q) = λ(q)−µ(q), such that in the
absence of external forcing the mean-field rate equation
becomes q̇ = R(q). Since R(q) can be approximated by
a parabola in the regime q1 < q < q2, we have: R(q) '
(R/2)(q − q1)(q − q2) ' (R/2)ε2(q̃2 − 1), where R ≡
R′′(qm) is a positive constant. Therefore, at the midpoint
R(q = qm) = −(R/2)ε2 is negative, and R′(qm) = 0,
since the parabola has a minimum at q = qm. Using
these results, and denoting by D ≡ λ(qm) + µ(qm), we
now expand the time-dependent Hamiltonian up toO(ε4)
in the vicinity of q = qm and p = 0. This results in

H(p, q, t) ' p̃φ(t)ε2 + p̃

{
p̃

2
[D + φ(t)] +

R
2

(
q̃2 − 1

)}
ε4,

(37)
where we have expanded e±p ' 1 ± ε2p̃ + (ε4/2)p̃2, and
have also expanded λ(q) and µ(q) around q = qm, up to
second order in ε.

In the absence of external force, φ(t) = 0, the unper-
turbed optimal path satisfies H = 0, which yields the
unperturbed trajectory

p̃0(q) = R(1− q̃2)/D. (38)

In the presence of an external force, φ(t) = F , the per-
turbed Hamiltonian becomes in the leading order

Hp = p̃F ε2, (39)

independent of q̃. Thus, equating Hp = Ep yields the
perturbed optimal path, which becomes constant here

p̃(q) = Ep/(Fε
2) = Ẽp/F, (40)

where we have defined the rescaled energy Ẽp = Ep/ε
2.

Equating the non-perturbed and the perturbed optimal
paths, Eqs. (38) and (40), we find the intersection points

q̃p1,2 to be q̃p1 = −q̃p2 = −[1− ẼpD/(FR)]1/2.
Let us now find the rescaled energy given the duration

of the external perturbation T . Using Eqs. (12) and (39),
and the fact that q̇ = ∂Hp/∂p = F , we have

T =
1

F

∫ qp2 (Ep)

qp1 (Ep)

dq =
2ε

F
q̃p2 , (41)
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from which we can extract Ep as a function of T :

Ẽp = (FR)/D
[
1−

(
FT̃/2

)2
]
, (42)

where T̃ = T/ε. Note, that the result is valid as long

as T̃ ≤ 2/F , which means that T ≤ 2ε/F . The is be-
cause when the system is close to bifurcation, a very
small force, F ∼ ε is sufficient to cause a deterministic
switch. Therefore, if F ∼ ε, we have T = O(1). Also note
that, by using Eq. (42), the intersection points become

q̃p1,2 = ∓FT̃/2; here, at the maximal value of T̃ = 2/F

we obtain Ep = 0, since q̃p1,2 = q1,2 = ∓1 coincide with
the unperturbed fixed points q1,2.

Having found the perturbation energy, the correction
to the switching barrier is given by Eq. (14). Trans-
forming to the rescaled coordinate and momentum, using
Eqs. (38), (40) and (42), and using the definition of T̃ ,
we finally have

Slh = Slh0

{
1− 3FT̃

4

[
1− (FT̃ )2

12

]}
, (43)

where Slh0 = 4Rε3/(3D), and the result is valid as long

as FT̃ < 2. Fig. S29 shows a comparison of Eq. (43) and
the full theory when the system is near bifurcation. Note,
that as T̃ approaches 2/F , action (43) approaches zero,
which invalidates the WKB theory. The latter is valid
as long as NS � 1, which limits the duration and/or
magnitude of the external force.

Appendix B: Weak noise limit

In this section we derive the switching barrier under a
weak external perturbation. Here, one must have a long
perturbation duration; otherwise the effect is negligible.
We will henceforth assume for simplicity that Ep = 0,
corresponding to a long perturbation duration, see below.

When Ep = 0, the perturbed and unperturbed optimal
paths for switching intersect at q1 and q2, such that qp1,2 =
q1,2. Therefore, putting Ep = 0 and expanding in F � 1,
the perturbed optimal path (11) becomes

pp(q) ' ln [µ(q)/λ(q)]− F/λ(q) = p0(q)− F/λ(q). (44)

As a result, using Eq. (14), and the fact that Ep ' 0, the
correction to the switching barrier in the case of weak
force, drastically simplifies and becomes

Slh = Slh0 − F
∫ q2

q1

dq

λ(q)
. (45)

Note, that in this case, the duration of the external
perturbation is simply given by T =

∫ q2
q1
dq/q̇, where

q̇ = λ(q)− µ(q) is the unperturbed rate equation.

Appendix C: Heaviside Step Function

In this section we consider the case of a production
rate with a very large Hill exponent in Eq. (3). In the
limit h→∞ the translation rate becomes a step function

λ(q) = α0 + (1− α0)Θ(q − β) (46)

where α0 = a0/N , β = n0/N and Θ(z) is a heaviside step
function. In this case, the mean-field rate equation has
three fixed points: q1 = α0, q2 = β and q3 = 1, where q1

and q3 are stable, while q2 is unstable.

Let us begin by computing the correction to the switch-
ing barrier from the low to high states. Here the un-
perturbed switching barrier satisfies Slh0 = α0 − β +
β ln(β/α0) [31]. Going along the same lines as above,
we can compute the unperturbed and perturbed optimal
paths for switching using Eqs. (6) and (11), as well as
the intersection points between these paths, which sat-
isfy qp1 = (Ep + F )/α0/F and qp2 = β. In this case,
one can explicitly find Ep using the expression for q̇ and
Eq. (13). The result is

Ep(F, T ) =
Fβ

eT (F + α0)− F
− e−TF. (47)

Using this result and Eq. (14), the correction to the
switching barrier from the low to high states is:

Slh=Slh0 +F (1−e−T )+β
{
T−ln

[
eT (1+F/α0)−F/α0

]}
.

(48)

We now move to compute the correction to the switch-
ing barrier from the high to low states. Here the un-
perturbed switching barrier satisfies Shl0 = 1−β+β lnβ.
Going along the same lines as above, we can compute the
unperturbed and perturbed optimal paths for switching
using Eqs. (6) and (11) as well as the intersection points
between these paths, which satisfy qp3 = 1 − Ep/F and
qp2 = β. In this case, one can also explicitly find Ep
using the expression for q̇ and Eq. (12) with the lower
integration limit replaced by qp3(Ep). The result is

Ep(F, T ) =
F
[
e−(F+1)TF + 1− (F + 1)β

]
e(F+1)T + F

. (49)

Using this result and Eq. (14), the correction to the
switching barrier from the high to low states is:

Shl = Slh0 + (F + 1)Tβ +

+
F

F + 1
[e−(F+1)T − 1] + β ln

[
F + 1

e(F+1)T + F

]
.(50)
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