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Abstract

A discrete and periodic complex Ginzburg-Landau equation, coupled to a mean

equation, is systematically derived from a driven and dissipative lattice oscillator

model, close to the onset of a supercritical Andronov-Hopf bifurcation. The oscil-

lator model is inspired by recent experiments exploring active vibrations of quasi-

one-dimensional lattices of self-propelled millimetric droplets bouncing on a vertically

vibrating fluid bath. Our systematic derivation provides a direct link between the

constitutive properties of the lattice system and the coefficients of the resultant ampli-

tude equations, paving the way to compare the emergent nonlinear dynamics—namely

the onset and formation of discrete dark solitons, breathers, and traveling waves—

against experiments. The framework presented herein is expected to be applicable to

a wider class of oscillators characterized by the presence of a dynamic coupling poten-

tial between particles. More broadly, our results point to deeper connections between

nonlinear oscillators and the physics of active and driven matter.
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1 Introduction

With origins in the macroscopic theory of superconductivity [1, 2, 3, 4], the celebrated com-

plex Ginzburg-Landau equation (CGLE) [5, 6] is a generic model describing the dynamics of

spatially extended, dissipative systems near an Andronov-Hopf bifurcation. In contrast to

the complex, high-dimensional microscopic equations regulating a particular physical system,

amplitude equations [7, 8] such as the CGLE are typically cast in terms of only a few macro-

scopic variables, or order parameters [9, 10, 11, 12, 13]. In general, the form of such effective

models may be posited on phenomenological grounds, their structure determined through a

combination of linear stability and symmetry arguments [7]. This universal approach can,

however, obfuscate the connection between the coefficients of the amplitude equation and the

physical parameters of the system under study. Exemplified by the theory of hydrodynamic

stability [14, 15, 16, 17], a more robust approach sacrifices derivational simplicity in favor

of obtaining the amplitude equation(s) directly from the underlying microscopic equations

of the system, typically continuous nonlinear partial differential equations [18]. In contrast,

for systems that are fundamentally discrete, amplitude equations are typically posed as dis-

cretized versions of their continuous counterparts [19, 20, 21, 22, 23], seldom derived in a

systematic manner from the original governing equations.

We herein present a rigorous framework to systematically derive a fundamentally dis-

crete and periodic complex Ginzburg-Landau equation (dpCGLE), coupled to a discrete

and periodic mean equation, for a driven and dissipative nonlinear oscillator, close to the

onset of a supercritical Andronov-Hopf bifurcation. The oscillator model is inspired by re-

cent experiments exploring the active vibrations of a hydrodynamic lattice of self-propelled

millimetric droplets bouncing on a vertically vibrating fluid bath [24, 25]. The coefficients

appearing in our dpCGLE are directly related to the constitutive properties of the physical

lattice system, paving the way to compare the emergent nonlinear dynamics of the ampli-

tude equations—namely the onset and formation of discrete dark solitons, breathers, and

traveling waves—against experiments. Although we present the case of the hydrodynamic

lattice, we propose that the framework presented herein is applicable to a wider class of

oscillators characterized by the presence of a dynamic coupling potential between particles.
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On a fundamental level, our results suggest deeper connections between nonlinear oscillators

and the physics of active and driven matter [12, 26, 27].

1.1 The hydrodynamic active lattice

This study is motivated by experiments of quasi-one-dimensional lattices of millimetric

droplets, bouncing synchronously and periodically on the surface of a vertically vibrating

fluid bath and confined to an annular channel [24]; see Figure 1. (For a broader perspective

of the physics of bouncing droplets, see [28, 29, 30, 31] and references therein.) Upon succes-

sive impacts, each droplet excites a field of standing waves whose decay time, TM , increases

with the vertical acceleration of the bath and diverges at the Faraday threshold [32, 33].

The superposition of the wave fields generated by each droplet forms the global lattice wave

field, which acts as an inter-droplet potential, mediating the spatiotemporal coupling of the

lattice. This wave-mediated coupling represents a distinguishing feature of this new class

of coupled oscillator: the waves produced at each droplet impact give rise to an effective

self-generated, dynamic coupling potential between droplets, one that evolves continuously

with the droplet motion [34].

For sufficiently weak vibrational forcing, the droplets exhibit stationary bouncing in a

circular, equispaced lattice. Above a critical vertical acceleration of the bath (or, alter-

natively, critical decay time, TM), the droplets destabilize to small lateral perturbations,

oscillating about their equilibrium position (see Figures 1b and 1c). Physically, these oscil-

lations emerge due to the competition between droplet self-propulsion—arising through the

propulsive force enacted on each droplet by the local slope of the lattice wave field—and

wave-mediated, nonlocal coupling between droplets. Oscillations of the lattice are further

offset by dissipative effects due to drag. That self-propulsion is achieved and sustained by the

continual exchange of energy of the droplet with its environment—in this case, the vibrating

bath—renders this hydrodynamic lattice a novel example of an inanimate active system. We

note, however, that inertial effects [35, 36, 37, 38, 39] play a significant role in the droplet

system, through both the finite mass of the droplets and the underdamped Faraday waves

excited on each impact with the bath. These effects contrast with prevailing model systems

of active and driven matter, such as bacterial or colloidal suspensions, where the particle
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dynamics and their environment are typically overdamped [40].

As shown in experiments [24], oscillations of the lattice follow the onset of either a su-

percritical or subcritical Andronov-Hopf bifurcation, depending primarily on the proximity

of neighboring droplets. Our focus here is on the supercritical case, for which periodic,

small-amplitude, out-of-phase oscillations, initially uniform over all droplets, arise beyond

a critical decay time of the waves. (When the bifurcation is subcritical, the dynamics is

profoundly different: in experiments, the system approaches a distant attractor character-

ized by a self-sustaining, nonlinear solitary-like wave [24].) The dependence of the form

of these bifurcations on the parameters of the lattice system, and the ensuing dynamics of

the uniform, periodic state, was recently characterized via a weakly nonlinear analysis of a

mathematical model describing the droplet lattice [25]. Upon further increase of the vibra-

tional forcing, this periodic state can itself destabilize, leading to spatial modulations of the

droplet oscillation amplitude, a phenomenon not captured by the analysis presented in [25].

To explore and rationalize the onset and resultant dynamics of these spatial modulations,

we here present a generalized weakly nonlinear theory of the lattice, in the vicinity of the

supercritical Andronov-Hopf bifurcation. We proceed in §§1.2–1.4 to briefly summarize the

results of [25] as they pertain to our derivation of the governing amplitude equations pre-

sented herein; the results of our new generalized weakly nonlinear theory are summarized in

§1.5.

1.2 Lattice model

The principal assumption underpinning the hydrodynamic lattice model [25] is that the hor-

izontal motion of each of the N droplets in the lattice may be averaged over one bouncing

period, which we denote TF . This averaging, or stroboscopic approximation [41], eliminates

the droplets’ synchronous vertical motion from consideration. To further simplify matters,

we assume that the droplets lie on a circle of constant radius, R, which, in experiments,

is determined by the inner and outer radii of the annular channel. Combining this mo-

tion with the stroboscopic approximation yields the following equation of motion for the

circumferential position, xn(t), of each droplet in the lattice [25]:
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Figure 1: (a) Overhead perspective of a chain of 40 equispaced, millimetric droplets of silicone

oil, confined to an annular channel and surrounded by a shallow layer of fluid. The reflected

color in the channel emphasizes the deformation of the fluid surface as droplets impact the

bath and excite subcritical Faraday waves. (b) A subset of droplet polar positions obtained

from experiments for a lattice consisting of 20 droplets [24]. Each droplet undergoes out-

of-phase oscillations with respect to its neighbor, following a supercritical Andronov-Hopf

bifurcation [25]. (c) The instantaneous positions of all 20 droplets in the lattice for the same

experiment as (b). The net result of the instability is the out-of-phase oscillations of two

decahedral sub-lattices, colored red and blue.
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mẍn + D̄ẋn = −mg∂h
∂x

(xn, t). (1a)

Dots denote differentiation with respect to time, t, and the space variable, x ∈ [0, L = 2πR],

is directed along the circumference of the circle on which the droplets lie. According to

equation (1a), the time-averaged motion of each droplet of mass m is thus governed by

a balance between inertia, a linear drag with drag coefficient D̄, and the time-averaged

propulsive wave force enacted on each droplet by the local slope of the lattice wave field,

h(x, t), at position x = xn. By periodicity, h(x, t) = h(x + L, t). The remaining parameter,

g, is acceleration due to gravity. It is to be understood that h(x, t) is the stroboscopic

global lattice wave field—the time-averaged superposition of wave fields generated by each

individual droplet in the lattice—projected onto the circle.

A distinguishing feature of the hydrodynamic lattice is that the propulsive wave force

enacted on each droplet depends explicitly on the prior trajectory of every droplet in the

lattice [25, 32, 33, 41]. The time-dependent evolution of the lattice wave field, h, may be

described by

∂h

∂t
+

1

TM
h =

1

TF

N∑
m=1

H(x− xm), (1b)

where the wave kernel,H(x), is the quasistatic wave field generated by stationary bouncing of

each individual droplet, time-averaged over TF and projected onto the circle [25]. Prompted

by the fundamental aspects of the fluid system [24], our theory requires only that H(x)

be even, sufficiently smooth, and periodic with H(x) = H(x + L), exhibiting (i) variations

over a characteristic wavelength λW � L and (ii) exponential spatial decay localized about

x = 0, with lengthscale ld � L; see Figure 2(b) and §4 for a prototypical example. It is

worth emphasizing here that the work in [25] shows that the droplet lattice spacing, L/N , for

lattices which undergo a supercritical Andronov-Hopf bifurcation is on the same scale as λW

(see §1.4 and Figure 2(c)). This, in turn, is the root cause that forces the need for a discrete

Ginzburg-Landau equation. In summary, equation (1b) represents a balance between the

rate-of-change of h, wave dissipation over the time scale TM , and the superposition of waves

generated about the instantaneous position of each droplet in the lattice.
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The dynamical system (1) is non-dimensionalized via the scalings

t =
m

D̄
t̂ = t0t̂, x = λW x̂, h =

λ2W
gt20

ĥ = h0ĥ, H =
h0TF
t0
Ĥ.

Upon dropping the carets, we arrive at the dimensionless lattice system [25]

ẍn + ẋn = −∂h
∂x

(xn, t), (2a)

∂h

∂t
+ νh =

N∑
m=1

H(x− xm), (2b)

where ν = t0/TM is the dimensionless dissipation rate of the wave field. Recalling that the

decay time, TM , may be regarded as a proxy for the vertical vibrational acceleration of the

bath [32, 33], ν plays the role of a control, or bifurcation, parameter in the dimensionless

system (2). While ν is convenient for algebraic manipulations, we will interpret our results

in terms of the dimensionless memory parameter, M = 1/ν, where the influence of prior

droplet dynamics increases with M . For future reference, we provide a list of the salient

dimensionless parameters related to the lattice model (2) in Table 1.

1.3 Linear stability of the equispaced lattice

The critical value of M above which the wave force promotes sustained self-propulsion of

the droplets, and hence oscillations of the lattice, is determined from the linear stability of

the lattice system (2). We summarize the key results; full details are presented in [25].

Coinciding with experiments [24], we consider the stability of a static, equispaced lattice

with droplet positions xn = nδ and corresponding free-surface elevation h = ν−1
∑N

m=1H(x−

mδ), where δ = 2πr0/N is the droplet arc-length separation along the circle of dimensionless

radius r0 = R/λW . The droplet positions are subject to small perturbations of the form

xn(t) = nδ + η [A exp(iknα + λkt) + c.c.] , η � 1, (3)

with a concomitant perturbation to the wave field, h. Here α = 2π/N is the angular spacing

of the droplets, A is a complex amplitude, i is the imaginary unit, and c.c. denotes complex

conjugation of the preceding term. The eigenvalues, λk, for each integer wavenumber, k,

satisfy the dispersion relation Dk(λk; ν) = 0 [25], where

Dk(λk; ν) = λ2k + λk +
c0
ν
− ck
λk + ν

(4)
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Parameter Definition

Lattice model (2)

xn droplet positions

N number of droplets

h stroboscopic lattice wave field

H single-droplet, quasistatic wave kernel with characteristic

wavelength λW , decay length ld, and amplitude A

α = 2π/N ; δ = αR/λW = αr0 droplet angular separation; droplet arc-length separation

l = ld/λW dimensionless spatial decay length of wave kernel

ν; M = 1/ν dissipation rate of wave field; memory parameter

ε =
√
νc − ν; νc = 1/Mc perturbation parameter; instability threshold for super-

critical Andronov-Hopf bifurcation

kc; ωc critical wavenumber; angular frequency at supercritical

Andronov-Hopf bifurcation

Amplitude equations (8)

µ = α/ε; µc bifurcation parameter for amplitude equations; threshold

for onset of spatial modulations

An; Bn nth droplet oscillation amplitude; rotational drift

cg; σi; γi; Di group velocity parameter; growth coefficients; coupling co-

efficients; diffusion coefficients

Table 1: List of salient parameters in the lattice model (2), amplitude equations (8), and

stability analysis thereof.
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and the real constants ck are defined as

ck =
N∑
n=1

cos(knα)H′′(nδ).

By symmetry considerations, we need only consider discrete wavenumbers in the interval

k ∈ [0, N ], where N = bN/2c and b·c denotes the floor function.

The equispaced lattice may destabilize via two distinct mechanisms, depending primarily

on the droplet separation, δ [25]: (i) a so-called geometric instability, independent of the

memory parameter, M , brought on by geometrical frustration of the lattice wave field; or

(ii) an oscillatory instability, where, for some wavenumber kc, the real part of a pair of

complex-conjugate eigenvalues transitions from negative to positive as M increases through

a critical value Mc = 1/νc. We focus our attention in this paper on case (ii), which arises

when ck ≤ c0 for all k [25]. We note, however, that a fundamental property of the lattice

system is its rotational invariance, characterized by the neutrally stable eigenvalue λ0 = 0.

As we shall see in §1.5, this invariance gives rise to a discrete and periodic mean equation

coupled to our dpCGLE, resulting in a system describing the rotational drift of the lattice

superimposed on the collective droplet oscillations. In Figure 2(a), we present an oscillatory

instability arising for N = 20 droplets: as the control parameter, M , is increased, a single

wavenumber kc = N/2 first satisfies Re(λkc) = 0 for some critical value of M = Mc, with

Im(λkc) = ±ωc and ωc =
√
c0Mc + 1/Mc.

1.4 Weakly nonlinear dynamics of spatially uniform oscillations

In the case of an oscillatory instability, that the system destabilizes to a pair of complex-

conjugate eigenvalues points to an Andronov-Hopf bifurcation [25, 42]. The existence of

an Andronov-Hopf bifurcation was confirmed in [25] by an accompanying weakly nonlinear

stability analysis of the equispaced lattice. The analysis presented in [25] demonstrates that,

in the vicinity of the critical memory (0 < M −Mc � 1), each droplet evolves according to

xn = nδ + [D(T ) +O(ε)] + ε
[
A(T )ei(kcnα+ωct) + c.c.

]
+O(ε2), (5)
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where 0 < ε =
√
νc − ν � 1. The slowly varying complex amplitude, A(T ), a function of

the slow timescale T = ε2t, is governed by a Stuart-Landau equation

dA

dT
= σ1A− σ̄2|A|2A (6a)

with an accompanying equation governing the evolution of the rotational drift, D, of the

lattice, namely
dD

dT
= γ̄3|A|2. (6b)

The origin of this rotational drift may be traced back to the neutrally stable k = 0 mode of

the dispersion relation (4), corresponding to rotational invariance. As alluded to in §1.3, we

will find an analogous equation in the amplitude equations presented in §1.5.

The coefficients σ1, σ̄2 ∈ C, and γ̄3 ∈ R in equations (6) are defined in terms of the

parameters of the lattice system (2) [25], and are related to the coefficients of the amplitude

equations derived here in §1.5. For now, we simply comment that the direction of rota-

tional drift is given by the sign of γ̄3, changing direction when ωc → −ωc. (Prompted by

experimental observations, note that we only consider unidirectional waves in equation (5).)

However, when kc = N/2, it is found that γ̄3 ≡ 0, in which case D = constant, correspond-

ing to an arbitrary shift of the droplet equilibrium positions. Further, consistent with the

instability of the equispaced lattice for ν < νc, we have that Re(σ1) > 0; hence the lattice

undergoes a super- or sub-critical Andronov-Hopf bifurcation for Re(σ̄2) > 0 and Re(σ̄2) < 0,

respectively.

The stability of the equispaced lattice and its complex dependence on the separation

distance, δ, and dimensionless spatial decay length, l = ld/λW , is summarized in Figure

2(c) for the particular case of N = 20 droplets. A crucial feature of the stability analysis

just described is the value of the critical wavenumber, kc [25]. When the Andronov-Hopf

bifurcation is supercritical (green regions), it is typically observed that kc = bN/2c (except

near the boundaries with subcritical Andronov-Hopf bifurcations) [25]. As discussed in

§2.3, we exploit this proximity to kc = N/2 in our asymptotic derivation of the amplitude

equations to capture relevant terms promoted from lower orders that should appear in our

dpCGLE and mean equation.

The analysis presented in [25] accounts for spatially uniform oscillations of the lattice in
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a small window (0 < M −Mc � 1) beyond the supercritical Andronov-Hopf bifurcation.

However, numerical simulations of the hydrodynamic active lattice (2) reveal the onset of a

second bifurcation as the memory parameter, M , is further increased, where the spatially

uniform, small-amplitude oscillations of the droplet positions give way to spatio-temporal

modulations in the droplet oscillation amplitude, arising via a long-wavelength instability

[25]. To capture this second bifurcation, and the ensuing dynamics, the weakly nonlinear

analysis leading to the amplitude equations (6) must be generalized to account for spatial,

as well as temporal, effects.

1.5 The amplitude equations governing the lattice vibrations

Starting from the lattice system (2), we use the asymptotic method of multiple scales [43]

to derive a generalized set of amplitude equations, accounting for both spatial and temporal

modulations of the droplet oscillation amplitude and rotational drift. Specifically, we show

that each droplet position evolves according to

xn = nδ + ε
[
An(T )ei(kcnα+ωct) + c.c.+Bn(T )

]
+O(ε2), (7)

where An is the slowly varying complex amplitude of the nth droplet in the lattice, Bn is

the rotational drift, and T = ε2t is the slow time scale. We emphasize that, in contrast

to equation (5), the complex amplitude, An, and rotational drift, Bn, now depend on the

droplet number, n. Moreover, spatial periodicity of the lattice implies that An and Bn are

defined as periodic sequences, specifically An = An+N and Bn = Bn+N for all n.

As is typical in the method of multiple scales, eliminating secular terms at successive

orders of ε yields a coupled system of equations for An and Bn, resulting in a dpCGLE

coupled to a discrete and periodic mean equation:

dAn
dT

+ µ2cg∇An = σ1An − σ2|An|2An + µγ1An∇Bn + µ2D1∆An, (8a)

dBn

dT
= µ2D2∆Bn + 2µRe [γ2An∇A∗n] + µγ3|An|2. (8b)

Our analysis leads us to define the control parameter, µ, appearing in the amplitude equations

(8), defined by

µ =
α

ε
=

2π

N
√
νc − ν

.
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Figure 2: (a) Behavior of the real part of the eigenvalues, λk, of the equispaced lattice

(computed from (4)) in the case of a supercritical Andronov-Hopf bifurcation for N = 20

droplets. At a critical memory, M = Mc, a single non-zero, integer wavenumber kc = 10

first satisfies Re(λkc) = 0. The solid curves joining the discrete values of Re(λk) for each

integer k are used as visual guides. (b) The prototypical wave-field kernel, H(x), used in

numerical simulations presented herein (see §4 for details). (c) Regime diagram summarizing

the stability of an equispaced lattice of N = 20 droplets as the parameters l and δ are varied

independently [24, 25], as derived from (4) and (6). We delineate regimes of super- and

sub-critical Andronov-Hopf bifurcations, as well as geometric frustration of the equispaced

lattice [25]. The diamond indicates the parameter values used in (a) and (b), specifically

δ = l = 1.6.

Our theory is valid for µ = O(1) or, equivalently, for the dominant balance α ∼ ε� 1. (We

note that this condition requires that N be sufficiently large.) Table 1 provides a reference

list of coefficients appearing in the amplitude equations (8).

Central to the amplitude equations (8) are the first and second-order difference opera-

tors, ∇ and ∆, which may be regarded as the discrete counterparts of spatial derivatives.
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As detailed in §2.2, these difference operators are defined in terms of the discrete Fourier

transform (DFT). Specifically, for a periodic sequence Fn = Fn+N for all n, we first define

the DFT [44]

Fξ[Fn] =
N−1∑
n=0

Fne−inξα for ξ = 0, . . . , N − 1, (9a)

and its inverse

F−1
n [F̂ξ] =

1

N

N−1∑
ξ=0

F̂ξe
inξα for n = 0, . . . , N − 1, (9b)

where we denote F̂ξ = Fξ[Fn]. We then define the difference operators, ∇ and ∆, in terms

of their Fourier symbols, ∇̂ξ and ∆̂ξ, so that Fξ[∇Fn] = ∇̂ξF̂ξ and Fξ[∆Fn] = ∆̂ξF̂ξ, or,

equivalently,

∇Fn =
N∑
m=1

FmF−1
n−m[∇̂ξ] and ∆Fn =

N∑
m=1

FmF−1
n−m[∆̂ξ].

Finally, the periodic Fourier symbols, ∇̂ξ and ∆̂ξ (satisfying ∇̂ξ = ∇̂ξ+N and ∆̂ξ = ∆̂ξ+N),

are derived in §2.2 and are defined ∇̂ξ = iξ for |ξ| < N/2 and ∆̂ξ = −ξ2 for |ξ| ≤ N/2. We

define ∇̂N/2 = 0 so that the associated difference operator, ∇, is real when N is even [44].

We pause to emphasize a few aspects of the system (8). With regards to the coefficients,

the group velocity parameter, cg, growth coefficients, σi (i = 1, 2), coupling coefficients,

γi (i = 1, 2, 3), and the diffusion coefficients, Di (i = 1, 2), are determined as part of the

multiple scales analysis and are directly related to the physical parameters of the lattice

system (2) (see Appendix A for their algebraic forms). Notably, D2 > 0 and γ3 are both

real, while the remaining parameters are all complex with Re(σ1) > 0 and Re(D1) > 0.

Next, we highlight a key assumption involved in deriving the amplitude equations (8)

that was not present in deriving the spatially uniform Stuart-Landau and drift equations

(6): namely that α � 1, which is required for the concept of slow variation of An and Bn

with n. A keen eye will note that equations (8) do not immediately reduce to equations

(6) when solutions independent of n are considered. However, consistency between (8) and

(6) is achieved in the limit α → 0 when spatial variations are absent, since we find that

σ2 = σ̄2 + O(α). Further, as discussed in Appendix A, γ̄3 = αγ3 = O(α) when kc . bN/2c,

and hence the drift, D, appearing in the expansion (5) is promoted to O(ε) when α ∼ ε� 1;

consequently, D is replaced by εBn in the expansion (7).
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Finally, we note that, in our system, discreteness originates at the level of the underlying

microscopic equations (2), and thus is a connate characteristic of the resultant amplitude

equations (8). This fundamental discreteness is in contrast with discrete versions of the

CGLE motivated by a direct discretization of the continuous CGLE using standard finite

difference operators [20, 21, 22, 23]. Similarly, periodicity arises from the periodicity of

the lattice, rather than being later imposed through periodic boundary conditions [45, 46].

Interestingly, the system (8) is the discrete and periodic analogue of the amplitude equations

describing a host of disparate physical phenomena presented elsewhere [47, 48, 49, 50].

1.6 Outline

This paper is organized as follows. For the interested reader, in §2 we provide further details

of the multiple scales procedure involved in deriving the amplitude equations (8) from the

lattice model (2). We then proceed to analyze the successive bifurcations of the amplitude

equations (8) in §3, rationalizing the onset of the second bifurcation leading to a long-

wavelength instability of time-periodic oscillations of the lattice. Numerical solutions of the

amplitude equations (8) beyond the second bifurcation are presented in §4, demonstrating

their rich dynamical behavior in the form of traveling waves, dark solitons and dark breathers,

prompting future comparison with experiments. A review of our results is presented in §5,

along with a discussion of future directions.

2 Mechanics of the weakly nonlinear analysis

The weakly nonlinear analysis leading to the derivation of the amplitude equations (8) as-

sumes slowly varying spatial and temporal modulations of the oscillation amplitude and

rotational drift of each droplet. For a supercritical Andronov-Hopf bifurcation, stable, small-

amplitude oscillations arise when ν is only slightly below the critical threshold, νc (corre-

sponding to M slightly above Mc); specifically we consider 0 < ε =
√
νc − ν � 1 and small

perturbations from the equispaced lattice configuration xn = nδ and h = ν−1c
∑N

m=1H(x −

14



mδ). We then pose the following asymptotic multiple-scales expansions

xn ∼ nδ +
∞∑
i=1

εix(i)n (t, T ), h ∼ 1

νc

N∑
m=1

H(x−mδ) +
∞∑
i=1

εih(i)(x, t, T ), (10)

where the slow time-scale is T = ε2t.

As described fully in Appendix A, inserting (10) into the lattice system (2) leads to

a hierarchy of problems for x
(i)
n and h(i) at successive orders of ε. A series of solvability

conditions must then be satisfied at each order of ε to guarantee the suppression of secular

terms that would otherwise lead to unbounded solutions and a violation of the multiple-

scales ansatz (10). Satisfying the solvability condition arising at O(ε3) leads to the amplitude

equations (8). Before arriving there, however, there are several aspects of the current problem

that complicate the weakly nonlinear, multiple-scales analysis of the lattice system (2). Our

derivation falls into three stages: (i) we first solve for the wave-field perturbations, h(i),

allowing us to project the wave force onto the droplet trajectories, x
(i)
n ; (ii) we next exploit

the spatial decay of the wave kernel, H, and the assumed slowly varying spatial effects to

develop an asymptotic approximation of the nonlocal inter-droplet coupling; (iii) finally, we

consider the limit of weak asymmetry when the number of droplets is large (equivalently,

when kc departs slightly from N/2). We elaborate on these three key ideas below.

2.1 Solving for the wave field

Our first point of interest is at O(ε), where the lattice equations (2) yield

∂2x
(1)
n

∂t2
+
∂x

(1)
n

∂t
= −x

(1)
n

νc

N∑
m=1

H′′((n−m)δ)− ∂h(1)

∂x

∣∣∣∣
x=nδ

, (11a)

∂h(1)

∂t
+ νch

(1) = −
N∑
m=1

x(1)m H′(x−mδ). (11b)

At this stage in conventional multiple-scales analyses of nonlinear oscillators [42, 43], one

is typically interested in solving for the perturbed oscillator position, x
(1)
n , alone. In the

present case, however, we must also contend with equation (11b) governing the free-surface

perturbation, h(1). In order to project the dynamics entirely onto the droplet trajectories,

x
(1)
n , our first key idea is to use the form of (11b) to define the auxiliary variables, Xn,
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satisfying [25]
∂Xn

∂t
+ νcXn = x(1)n . (12)

A particular solution of (11b) is then

h(1) = −
N∑
m=1

XmH′(x−mδ). (13)

We neglect the homogeneous solution of (11b), which decays exponentially on the fast time-

scale, t [25]. Now that h(1) is expressed in terms of the auxiliary variables, Xn, through

equation (13), the linear system (11) may be recast as a dynamical system for x
(1)
n and Xn.

Specifically, substituting (13) into (11a) yields Lnx(1) = 0, where x(1) =
(
x
(1)
1 , . . . , x

(1)
N

)
and

the linear operator, Ln, is defined as

Lnx(1) =
∂2x

(1)
n

∂t2
+
∂x

(1)
n

∂t
+

N∑
m=1

(
x
(1)
n

νc
−Xm

)
H′′(δ(n−m)). (14)

Informed by the ansatz (3), we now seek a solution to Lnx(1) = 0 of the form

x(1)n = An(T )ei(kcnα+ωct) + c.c.+Bn(T ), Xn =
An(T )

νc + iωc
ei(kcnα+ωct) + c.c.+

1

νc
Bn(T ), (15)

where we recall that the critical wavenumber of instability, kc, and angular frequency, ωc, are

determined from linear theory (§1.3). We note that the presence of the subscript n in both

the complex amplitude, An, and mean, Bn, generalizes the spatially uniform expansion (5)

considered in prior work [25], which leads to the derivation of the Stuart-Landau equation

(6a) and the drift equation (6b). By inserting (15) into (14), we find that

Lnx(1) =

{
eiφn

νc + iωc

N∑
m=1

(An − An−m)e−ikcmαH′′(mδ)

}
+ c.c.

+
1

νc

N∑
m=1

(Bn −Bn−m)H ′′(mδ), (16)

where φn = kcnα + ωct. We note that, en route to obtaining (16), we first write An−m =

(An−m − An) + An and then simplify the resultant expression using the properties of the

dispersion relation, namely Dkc(λkc ; νc) = D0(0; νc) = 0.
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2.2 Approximating discrete convolutions

We now arrive at the second key idea, which lies at the heart of our analysis: approximating

the discrete convolutions arising in equation (16). When An and Bn are spatially uniform

(i.e. independent of n), the right-hand side of (16) is identically zero. To allow for spatial

variations, we approximately satisfy (16) at this order by considering the leading-order terms

of an asymptotic expansion of each discrete convolution in terms of α� 1, where α = 2π/N

is the angular spacing parameter. We then assume a distinguished limit between the relative

sizes of α and ε; specifically, we consider α ∼ ε and thus define α = µε, where µ = O(1) is

the control parameter appearing in the amplitude equations (8).

Motivated by the discrete convolutions appearing in (16), we proceed to derive an asymp-

totic expansion for the convolution

In =
N∑
m=1

Fn−mGm

in terms of the small parameter α � 1, where Fn = Fn+N and Gn = Gn+N are given

periodic sequences. For the active lattice under consideration, Fn plays the role of the

complex amplitude, An, or the drift, Bn, while Gn plays the role of H′′(nδ), or similarly

for higher-order derivatives of H. We therefore suppose that Fn is slowly varying in n,

resulting in its DFT, F̂ξ, being localized around ξ = 0. We consider here the regime where

the exponential decay length of the wave kernel, H, is comparable to the droplet separation

distance, so δ ∼ l. As a consequence, Gn may be assumed to be localized around n = 0,

resulting in Ĝξ being slowly varying in ξ.

By the convolution theorem, it follows that Îξ ≡ Fξ[In] satisfies Îξ = F̂ξĜξ. As F̂ξ is

localized around ξ = 0, we aim to expand Ĝξ about ξ = 0 with ξ = O(1). We first recast

the DFT (9a) as

Ĝξ =
∑
n∈I

Gne−inξα for ξ ∈ I,

where the set I is defined I = {−1
2
N, . . . , 1

2
N−1} for N even and I = {−1

2
(N−1), . . . , 1

2
(N−

1)} for N odd. We then Taylor expand

e−inξα ∼ 1− inαξ − 1

2
n2α2ξ2 +O(α3),
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valid for n, ξ = O(1). By exploiting the assumed exponential localization of Gn around

n = 0, we obtain

Ĝξ ∼
∑
n∈I

Gn

[
1− inαξ − 1

2
n2α2ξ2

]
+O(α3),

valid for ξ = O(1), incurring only exponentially small errors when including terms with

n 6= O(1) in the sum. It then follows that

Îξ ∼ F̂ξ
∑
n∈I

Gn − α(iξF̂ξ)
∑
n∈I

nGn + α2(−ξ2F̂ξ)
∑
n∈I

n2

2
Gn +O(α3) (17)

for ξ ∈ I, where we again incur only exponentially small errors when ξ 6= O(1) due to the

exponential localization of F̂ξ around ξ = 0.

By applying the inverse DFT (9b) to equation (17), we obtain the asymptotic expansion

In ∼ Fn

N∑
m=1

Gm − α∇Fn
N∑
m=1

amGm + α2∆Fn

N∑
m=1

bmGm +O(α3), (18)

where the difference operators, ∇ and ∆, are defined in §1.5. Finally, the weights an and

bn are periodic in n (so an = an+N and bn = bn+N) and are defined as an = n for |n| < 1
2
N

and bn = 1
2
n2 for |n| ≤ 1

2
N . We define aN/2 = 0 to avoid bias arising in the sum

∑
n∈I nGn

when N is even, since one could equally include n = −N/2 or n = +N/2 in the set I.

Setting aN/2 = 0 incurs only exponentially small errors in the sum
∑N

m=1 amGm due to the

exponential localization of Gm around m = 0. We note that, under these definitions, an is

an odd sequence in n, while bn is an even sequence in n.

Applying the asymptotic expansion (18) to the convolutions in (16) yields the sought-after

approximation

Lnx(1) +

{
−α∇Aneiφn

νc + iωc

N∑
m=1

ame−ikcmαH′′(mδ) + α2∆Aneiφn

νc + iωc

N∑
m=1

bme−ikcmαH′′(mδ)

}
+ c.c.

+ α2∆Bn

νc

N∑
m=1

bmH′′(mδ) = O(α3). (19)

We note that there is not a ∇Bn term in (19) as the symmetry of the wave kernel, H,

and the oddness of the sequence, an, determines that its coefficient vanishes, specifically∑N
m=1 amH′′(mδ) = 0. Recalling our assumption that α ∼ ε, terms of O(αn) in equation

(19) are consequently promoted to O(εn+1), appearing as secular terms (either those constant
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in t or proportional to eiφn) on the right-hand side of the expansion of equation (2a). Thus,

the ∆An and ∆Bn terms in equation (19) are destined to become the diffusion-like terms in

the amplitude equations (8).

2.3 The limit of weak asymmetry

Finally, our third key idea exploits the observed correspondence between kc . bN/2c and the

emergence of a supercritical Andronov-Hopf bifurcation (see Figure 2(a)). We first define

χ = N/2−kc, where we typically find that χ = 0 or χ = 1/2, and then observe that αχ� 1

for χ = O(1) and α� 1. Then, by recalling that α = 2π/N , we use the form kc = N/2− χ

to recast the ∇An coefficient in (19) as

α

νc + iωc

N∑
m=1

ame−ikcmαH′′(mδ) =
iα

νc + iωc

N∑
m=1

am(−1)m sin(mαχ)H′′(mδ),

which is an even function of α for χ > 0, and vanishes for χ = 0. In the former case, this

coefficient is expected to be of size O(α2) as α → 0, which may be verified numerically.

Further, we are prompted to define the O(1) complex group velocity parameter

ĉg =
1

α

N∑
m=1

ame−ikcmαH′′(mδ)
νc + iωc

,

which vanishes when kc = N/2. The parameter ĉg is divided by a further coefficient to yield

the cg in (8); see Appendix A for clarification. (Note that Re(cg) plays the role of a true

group velocity, while Im(cg) is related to the asymmetric growth rate of perturbations to kc.)

Since we consider α ∼ ε, we then acknowledge that the term α2ĉg∇An in (19) appears as a

secular term at O(ε3), ultimately resulting in the advective term in our dpCGLE (8a). In

this final step, equation (19) reduces to Lnx(1) = O(ε3), verifying our ansatz for x
(1)
n .

2.4 Summary

As shown in Appendix A, a combination of the foregoing three key ideas is used to system-

atically derive the amplitude equations (8) from the lattice system (2). The time derivatives

and the nonlinear coupling terms in (8) are obtained by eliminating higher-order secular

terms, both those that are promoted from O(ε2) and others that appear at O(ε3). We now
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proceed to analyze the stability of the amplitude equations (8), elucidating the second bifur-

cation leading to spatiotemporal modulations of the droplet oscillation amplitude and drift

as the control parameter, µ, is decreased from infinity (corresponding to ν < νc).

3 Stability of periodic oscillations

As discussed in §1.4, we are concerned with the stability of the hydrodynamic lattice be-

yond the threshold of the supercritical Andronov-Hopf bifurcation, specifically for ν < νc,

or equivalently, for µ < ∞. In this section, we elucidate the mechanism leading to a mod-

ulational instability of the spatially uniform solution of the amplitude equations (8). The

onset of spatial amplitude modulations in the canonical complex Ginzburg-Landau equation

is the eponymous Benjamin-Feir-Newell (BFN) instability, after its discovery in describing

the instability of periodic surface gravity (Stokes) waves [51, 52]. As we shall see, in our

system, this instability takes a slightly different form due to the coupling of the complex

amplitude, An, with the mean, Bn. In what follows, we conduct a linear stability of the am-

plitude equations (8), the computations for which are standard [6], but lengthy. We therefore

highlight only the key features here.

3.1 Linear stability

A supercritical Andronov-Hopf bifurcation arising in the limit α� 1 corresponds to Re(σ2) >

0. In this case, there exists a spatially uniform solution to (8) of the form

A(0)
n (T ) = ρ exp(iΩT ) and B(0)

n (T ) = µγ3ρ
2T + constant, (20)

where the modulus and angular frequency of the complex amplitude are

ρ =
√

Re(σ1)/Re(σ2) and Ω = Im(σ1σ
∗
2)/Re(σ2).

We now consider small perturbations about the spatially uniform state (20) of the form

An(T ) = A(0)
n (T )(1 + An(T )), Bn(T ) = B(0)

n (T ) +Bn(T ),

where 0 < |An| ∼ |Bn| � 1. Substituting this ansatz into (8) and neglecting terms of

quadratic order and higher, we obtain a linear system governing the perturbations An and
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Bn, supplemented by an additional equation for A
∗
n . The resulting linear system may then be

diagonalized by applying a DFT in n (see equation (9a)). Specifically, we define Âξ = Fξ[An],

B̂ξ = Fξ[Bn] and Ĉξ = Fξ[A
∗
n], where ξ = 0, . . . , N−1. Under this transformation, we obtain

dÂξ

dT
= Mξ(µ)Âξ, (21)

where Âξ = (Âξ, B̂ξ, Ĉξ)
T and

Mξ(µ) =


−µ2cg∇̂ξ − ρ2σ2 + µ2D1∆̂ξ µγ1∇̂ξ −ρ2σ2

µρ2(γ∗2∇̂ξ + γ3) µ2D2∆̂ξ µρ2(γ2∇̂ξ + γ3)

−ρ2σ∗2 µγ∗1∇̂ξ −µ2c∗g∇̂ξ − ρ2σ∗2 + µ2D∗1∆̂ξ

 . (22)

We recall that ∇̂ξ and ∆̂ξ are the Fourier symbols of the difference operators ∇ and ∆,

respectively, as defined in §1.5.

The eigenvalues, Λ
(j)
ξ (for j = 1, 2, 3), of Mξ(µ) determine the stability of the spatially

uniform state (20), where the dependence of Λ
(j)
ξ on µ is presented in Figure 3. The onset of

instability is determined by the eigenvalue (or one of a pair of complex-conjugate eigenvalues)

of Mξ(µ) with maximal real part; we denote this eigenvalue as Λξ(µ) for each ξ. At a given

value of µ > 0, the perturbed system (21) is neutrally stable if Re(Λξ(µ)) ≤ 0 for all ξ, and

unstable otherwise. We first note, however, that the rotational and temporal invariance of

the spatially uniform state (20) implies that Λ0 = 0 has multiplicity two. The remaining

eigenvalue for ξ = 0 is −2Re(σ1) < 0, corresponding to a stable perturbation from the

spatially uniform state for all µ > 0. Hence, if an instability to the spatially uniform state

arises, then it is for ξ > 0, corresponding to the emergence of a nontrivial spatial pattern.

Numerically we observe that, for any ξ > 0, there is an unstable range of µ (for which

Re(Λξ(µ)) > 0) of the form 0 < µ < µξ for some µξ > 0. It follows that the spatially uniform

state is stable for µ & µξ. We note that the eigenvalues computed for µ� 1 arise in a regime

inconsistent with our µ = O(1) assumption (see §1.5), so we consider only µ = O(1) when

determining the instability threshold, µξ (see Figure 3(a) for reference). In the µ = O(1)

regime of interest, the spatially uniform state is therefore unstable to perturbations for

µ < µc = maxξ µξ.
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Figure 3: The linear stability of the periodic state for N = 36 (left) and N = 37 (right). (a)

The case ξ = 1. The real part of the eigenvalues Λ
(j)
1 for j = 1, 2, 3 as a function of µ. The

transition from stable (grey shading) to unstable as µ decreases determines the instability

threshold for ξ = 1 (red circle). For N = 37, instability is predicted by the amplitude

equations (8) for µ � 1, a regime inconsistent with the µ = O(1) assumption. (b) The

instability threshold, µξ, for each integer wavenumber, ξ, for ξ ≤ N/2. The long-wave mode,

ξ = 1 (red circle), is the first to destabilize as µ is decreased.

3.2 The onset of spatial amplitude modulations

A crucial feature of the system (8) is the coupling of the complex amplitude, An, with the

mean, Bn, which acts to drive the instability of the spatially uniform state (20). We observe

that variations in Bn act as a source term in the amplitude, An, thus promoting spatial

variations in An. For large µ, the diffusion term in (8a) counteracts the growth of spatial

variations of An, but this smoothing effect may become subdominant to the source term when

µ is sufficiently small. Likewise, a similar competition between diffusion and the excitation

of spatial variations in Bn, driven by variations in An, is apparent in equation (8b). As

a consequence, this coupling provides a positive feedback loop for the emergence of spatial

variations, whereas a BFN-like mechanism instead relies on sufficiently small dissipation [52].
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In fact, a true BFN instability only arises in the system (8) when the coupling coefficients,

γi, and the group velocity parameter, cg, vanish. A necessary condition for instability in this

artificial case is Re(σ2D
∗
1) < 0 [21]. By numerically computing the eigenvalues of Mξ(µ), we

observe that, similar to the BFN instability, the amplitude equations (8) exhibit a long-wave

instability at ξ = 1 (see Figure 3(b)); hence, in the cases considered here, we have µc = µ1.

Finally, as discussed in Appendix B, we observe good agreement between the value of µc

predicted by the linear stability analysis of §3.1 and by direct numerical simulations of the

lattice equations (2) for α � 1, consistent with the validity of our weakly nonlinear theory

(see §1.5).

4 Numerical solutions

We now explore the nonlinear dynamics predicted by the amplitude equations (8) beyond

the onset of spatial modulations, µ < µc. To proceed, we must select a particular choice for

the wave kernel, H. Motivated by the form of the wave field arising in the bouncing-droplet

system [32], a candidate wave kernel that satisfies the assumed periodicity, exponential decay

and quasi-monochromaticity may be postulated by projecting the form of the dimensionless

radially symmetric wave F (r) = AJ0(2πr)sech(r/l) onto a circle of circumference 2πr0 = Nδ,

where r0 = R/λW [25]. Here J0 is the Bessel function of the first kind with order zero and A

is the dimensionless amplitude of the wave. The resultant algebraic form of the wave kernel

is then taken to be

H(x) = F

(
2r0 sin

x

2r0

)
, (23)

where an example of this wave kernel is given in Figure 2(b). For the numerical results

presented herein, we consider A = 0.1 [25]. We note that the qualitative features of these

results do not depend on the value of A; increasing A simply serves to increase the amplitude

of the wave field accompanying the equispaced lattice, the main consequence of which is a

concomitant decrease in the critical memory, Mc.

As discussed in Appendix C, there is a vast parameter space we could explore with

equations (8) by varying the parameters l, δ, andN . We here consider l = δ = 2.6 and explore

the effect of decreasing µ below µc (equivalently, increasing M) for two adjacent droplet

23



numbers, N = 40 and N = 41. These two cases serve to elucidate the key phenomenology

exhibited by the amplitude equations (8). A deeper exploration of the parameter space is

reserved for future work. Before we present the solutions, we note that the only control

parameter in the amplitude equations (8) is µ, since the coefficients are fixed for a particular

choice of wave kernel (23) and its constituent parameters, specifically l, δ, and N . Thus,

varying µ corresponds to traversing a particular path through parameter space, in contrast

to varying each coefficient in the amplitude equations independently. As we shall see, this

variation in µ gives rise to a series of bifurcations between qualitatively different dynamical

behaviors.

The amplitude equations are evolved using a spectral method over the droplet number,

n, and a fourth-order Runge-Kutta method in time, for which the linear terms are evolved

analytically using an integrating factor (see Appendix D for details) [53]. Initially considering

µ just below the instability threshold, 0 < µc − µ � 1, we evolve the amplitude equations

(8) from the initial condition An = ρ + ζ sin(nα) and Bn = ζ sin(nα) with ζ = 0.05 and

continue the simulations until a periodic state is attained. Thereafter, we decrement µ by

0.02 and initialize the following simulation at the final values obtained in the preceding

simulation. The MATLAB code used to simulate these dynamical states is provided in the

Supplementary Material.

In the case of N = 40 droplets (see Figure 4), close to the onset of spatial modulations at

µ = µc, we first observe a time-independent solution for |An| (panel (i)), which destabilizes

into a periodic, breather-like state (panel (ii)) with slight dips apparent in |An|. These dips

persist as µc − µ is increased (panels (iii) and (iv)), but the solution is instead constant in

time. We note that when N = 40, the group velocity parameter, cg, is identically zero. For

N = 41 droplets and cg 6= 0 (Figure 5), similar dynamical transitions occur, although the

asymmetry of the system instead yields traveling waves (panel (i)) and propagating states.

Notably, we observe parameter regimes for which dark breathers (panel (ii)) and dark solitons

(panels (iii)–(v)) arise, characterized by the sharp dips in the amplitude, |An(T )|, towards

zero, features that are not present when N = 40. All of the aforementioned features arise

over a large range of N , and thus appear to be canonical features of the discrete amplitude

equations (8). We also note that the jumps in the bounds of |An| and Bn are indicative of
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Figure 4: The nonlinear dynamics predicted by the amplitude equations (8) for N = 40

droplets and µ < µc = 0.852. The system parameters here are l = δ = 2.6, yielding

kc = 20 and νc = 1.585. (a) The upper and lower bounds of |An(T )| attained over the entire

simulation. We identify four dynamical regimes, which are denoted by Roman numerals

and divided by the dotted vertical lines. (b) The upper and lower bounds of δBn(T ) =

Bn(T ) − 〈Bn(T )〉 attained over the entire simulation, where angled brackets denote the

average over n. (c) Snapshots of |An| at time T = 1200 for each dynamical regime, where

µc − µ takes values (i) 0.03, (ii) 0.08, (iii) 0.12, and (iv) 0.14. (d) Corresponding space-time

plots of |An(T )| for the same parameter values as (c). The dashed lines correspond to the

snapshot time, T = 1200.
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hysteresis between dynamical states, an effect to be explored in greater detail elsewhere.

Finally, we recall that the difference operators, ∇ and ∆, are derived systematically from

the DFT. In Appendix E, we consider the dynamics predicted by the amplitude equations (8)

when the difference operators are instead replaced by local central finite difference operators.

A stencil of 2p + 1 points therefore gives rise to explicit interaction of a particular droplet

with its p-nearest neighbors. We generally observe qualitatively similar dynamics arising

for p = 1, with apparent convergence to the results computed with the DFT difference

operators as p is successively increased. However, one surprising feature is the emergence of

stable bright solitons for p = 1, a feature not apparent for p > 1 or for the DFT difference

operators. We conclude, therefore, that the dynamics predicted by the amplitude equations

(8) may change profoundly if one considers different couplings between droplets, an effect to

be explored in greater detail elsewhere.

5 Discussion and conclusion

In this paper, we have presented a rigorous mathematical framework to derive a discrete and

periodic set of amplitude equations from a driven and dissipative oscillator model, inspired

by the physics of droplet lattices bouncing on a vibrating fluid bath [24]. Our systematic

derivation provides a direct link between the constitutive properties of the lattice model

(2) (specifically, the wave kernel, H) and the coefficients arising in the amplitude equations

(8). A linear stability analysis of the amplitude equations (8) reveals the importance of

the coupling to the discrete mean equation (8b) in destabilizing the system from a spatially

uniform state, leading to spatial modulations in the droplet oscillation amplitude following

a second bifurcation, similar in spirit to the BFN instability.

Beyond this second bifurcation, numerical solutions of the amplitude equations (8) re-

veal a fascinating family of dynamical behaviors including dark solitons, breather states,

and traveling waves. It remains an open question as to whether such states are robust when

considering the continuous analogue of the amplitude equations (8) [54, 55, 56]. As computa-

tional models of the droplet system advance [57], the predictions of the amplitude equations

may be compared against direct numerical simulations of the droplet dynamics, paving the
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Figure 5: The nonlinear dynamics predicted by the amplitude equations (8) for N = 41

droplets and µ < µc = 0.853. The system parameters here are l = δ = 2.6, yielding

kc = 20 and νc = 1.582. (a) The upper and lower bounds of |An(T )| attained over the entire

simulation. We identify five dynamical regimes, which are denoted by Roman numerals

and divided by the dotted vertical lines. (b) The upper and lower bounds of δBn(T ) =

Bn(T ) − 〈Bn(T )〉 attained over the entire simulation, where angled brackets denote the

average over n. (c) Snapshots of |An| at time T = 1200 for each dynamical regime, where

µc − µ takes values (i) 0.014, (ii) 0.046, (iii) 0.06, (iv) 0.08, and (v) 0.1. (d) Corresponding

spacetime plots of |An(T )| for the same parameter values in (c). The dashed lines correspond

to the snapshot time, T = 1200.
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way for further experimental investigation [24]. In particular, a tantalizing prospect is to

hunt for the emergence of so-called chimera states [58, 59], thought to be ubiquitous in cou-

pled oscillators subject to non-local coupling, but have been shown to exist in only a handful

of experimental systems to date [60, 61, 62, 63].

We conclude with the proposition that the framework used to derive the amplitude equa-

tions (8) applies to a more general class of periodic oscillator models of canonical form

ẍn + ẋn = −∂h
∂x

(xn, t), (24a)

Ph =
N∑
m=1

H(x− xm), (24b)

with the linear operator P = ∂/∂t + ν in equation (2b) serving as a particular example.

The novelty of the model (24) is that the inter-particle coupling potential, h, is dynamic,

continuously evolving with the particle motion, rather than being fixed in space or with

respect to the particles. Other potential choices of P are numerous, and could lead to an

even richer family of dynamics. For a particular choice of P , if the bifurcation leading to

instability of the oscillator is of supercritical Andronov-Hopf type, then one should expect

a complex Ginzburg-Landau equation in the vicinity of the bifurcation point. However,

the precise form of the amplitude equations will change depending on the type of primary

bifurcation that arises and the inherent symmetries of the system [5, 7]. Such an investigation

may lead to further theoretical insights into the dynamics and pattern-forming behavior of

active particles in complex environments [35, 64].
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Appendix A Derivation of the Ginzburg-Landau and

mean equations

Further details are here provided of the multiple-scales expansion leading to the complex

Ginzburg-Landau and mean equations (8). The general procedure toward obtaining equa-

tions (8) is to substitute the asymptotic expansions (10) into the lattice equations (2) and

gather successive powers of ε. At each successive order, we suppress resonant terms propor-

tional to eiφn(t) (where φn(t) = kcnα + ωct) or those constant in t. To extract all relevant

terms at each order, we must introduce auxiliary variables to solve for the free surface (see

§2.1), expand convolutions in the manner summarized in §2.2, and consider the limit of weak

asymmetry (§2.3). For notational efficiency, we denote Hm = H(mδ), H′m = H′(mδ), and so

forth.

At leading order we obtain

∂h(0)

∂x

∣∣∣∣
x=nδ

= 0, h(0)(x) =
1

νc

N∑
m=1

H(x−mδ), (25)

reflecting the fact that the free-surface gradient beneath each droplet vanishes in the steady-

state. It may be readily verified that all odd-derivatives of h(0) vanish beneath each droplet

at equilibrium, a fact we will make repeated use of in simplifying the forthcoming terms

arising in our expansion.

The problem at O(ε) has already been discussed in §2 and thus we proceed directly to

O(ε2), remembering that terms from the right-hand side of equation (19) are promoted to

O(ε3) after setting α = µε. The lattice equations at O(ε2) are

∂2x
(2)
n

∂t2
+
∂x

(2)
n

∂t
= −

{
∂h(2)

∂x
+ x(2)n

∂2h(0)

∂x2
+ x(1)n

∂2h(1)

∂x2

} ∣∣∣
x=nδ

, (26)

∂h(2)

∂t
+ νch

(2) = h(0) +
N∑
m=1

{
1

2

(
x(1)m
)2H′′(x−mδ)− x(2)m H′(x−mδ)} . (27)

Following the procedure outlined in §2.1, we solve for h(2) by introducing two further auxiliary

variables, Yn and Zn, satisfying

∂Yn
∂t

+ νcYn =
1

2

(
x(1)n
)2
,

∂Zn
∂t

+ νcZn = x(2)n , (28)
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chosen to match the coefficients of the wave kernel on the right-hand side of (27). Hence, a

particular solution of (27) is

h(2) =
1

νc
h(0) +

N∑
m=1

{YmH′′(x−mδ)− ZmH′(x−mδ)} . (29)

By substituting the form of x
(1)
n , given by equation (15), into the first equation of (28), we

obtain the particular solution

Yn =
1

νc

[
|An|2 +

1

2
B2
n

]
+Bn

[
An

νc + iωc
eiφn + c.c.

]
+

1

2

[
A2
n

νc + 2iωc
e2iφn + c.c.

]
. (30)

Substituting (29) and (30) into (26), and then using (25), yields

Lnx(2) =
[
Bn + {Aneiφn + c.c.}

][ 1

νc

N∑
m=1

Bn−mH′′′m +

{
eiφn

N∑
m=1

An−me−ikcmα

νc + iωc
H′′′m + c.c.

}]

− 1

νc

N∑
m=1

[
1

2
B2
n−m + |An−m|2

]
H′′′m −

[
eiφn

N∑
m=1

An−mBn−m

νc + iωc
e−ikcmαH′′′m + c.c.

]

− 1

2

[
e2iφn

N∑
m=1

A2
n−me−2ikcmαH′′′m
νc + 2iωc

+ c.c.

]
. (31)

Analogous to §2.2, we now use the asymptotic expansion (18) to express convolutions on

the right-hand side of (31) in powers of α. After some arduous algebra, we reduce (31) to

the highly simplified form

Lnx(2) = 2Re

[ N∑
m=1

e−ikcmαH′′′m
νc + iωc

]
|An|2 + α

[
γ̂1e

iφnAn∇Bn + c.c.
]

+ 2αRe
[
γ̂2An∇A∗n

]
+
[
ĉ1A

2
ne2iφn + c.c.

]
+ α

[
ĉ2e

2iφnAn∇An + c.c.
]

+O(α2), (32)

where the complex coefficients are defined as

γ̂1 =
N∑
m=1

(
e−ikcmα

νc + iωc
− 1

νc

)
amH′′′m, γ̂2 =

N∑
m=1

(
1

νc
− eikcmα

νc − iωc

)
amH′′′m,

ĉ1 =
N∑
m=1

[
e−ikcmα

νc + iωc
− e−2ikcmα

2(νc + 2iωc)

]
H′′′m, ĉ2 =

N∑
m=1

(
e−2ikcmα

νc + 2iωc
− e−ikcmα

νc + iωc

)
amH′′′m. (33)

To apply the weak-asymmetry approximation developed in §2.3 to the coefficient of |An|2

on the right-hand side of equation (32), we first note that

2Re

[ N∑
m=1

e−ikcmαH′′′m
νc + iωc

]
= 2Re

[
i

νc + iωc

] N∑
m=1

(−1)m sin(mαχ)H′′′m,
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where χ = N/2 − kc. By a similar argument to which the group velocity was promoted

to O(ε3) in §2.3, the coefficient of |An|2 has size O(α) for α � 1 and χ = O(1), so the

corresponding term in (32) should likewise appear at O(ε3). We thus write

2Re

[ N∑
m=1

e−ikcmαH′′′m
νc + iωc

]
|An|2 = αγ̂3|An|2,

where the O(1) real coefficient γ̂3 is defined as

γ̂3 =
2

α
Re

[ N∑
m=1

e−ikcmαH′′′m
νc + iωc

]
. (34)

In a similar spirit, we deduce that the coefficient ĉ1 is size O(α) when χ > 0 and zero

otherwise. Therefore the non-secular terms in (32) (those that are proportional to e2iφn) are

both of size O(α) and so should actually appear at O(ε3). However, as these terms will still

be non-secular at that order, they play no role in the derived amplitude equations for An

and Bn. We conclude that all the inhomogeneities in (32) (each of which is of size O(α))

should instead appear at O(ε3). Hence, at O(ε2), we have Lnx(2) = 0, which is identical to

the problem for x(1). Akin to the solution ansatz at O(ε), we therefore pose

x(2)n = En(T ) +
[
Cn(T )eiφn + c.c.

]
, Zn =

1

νc
En(T ) +

[
Cn(T )

νc + iωc
eiφn + c.c.

]
,

which, when applying the asymptotic expansion of the convolution (see §2.2), satisfies the

inhomogeneous problem to leading order. The O(α2) terms that arise out of the expansion

of this convolution appear at O(ε4), which is beyond the order presented in this calculation.

At O(ε3), the lattice equations (2) yield a system for x
(3)
n and h(3), namely

∂2x
(3)
n

∂t2
+
∂x

(3)
n

∂t
+ x(3)n

∂2h(0)

∂x2

∣∣∣∣
x=nδ

= −

[
2
∂2x

(1)
n

∂t∂T
+
∂x

(1)
n

∂T

]

−
[
∂h(3)

∂x
+ x(1)n

∂2h(2)

∂x2
+

1

2

(
x(1)n
)2∂3h(1)

∂x3
+ x(2)n

∂2h(1)

∂x2
+

1

6

(
x(1)n
)3∂4h(0)

∂x4

] ∣∣∣
x=nδ

(35)

and

∂h(3)

∂t
+ νch

(3) = −
[
∂h(1)

∂T
− h(1)

]
+

N∑
m=1

{
x(1)m x(2)m H′′(x−mδ)− x(3)m H′(x−mδ)−

1

6

(
x(1)m
)3H′′′(x−mδ)}. (36)
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Appended to the right-hand side of (35) will be the terms promoted from both O(ε) and

O(ε2). We follow an identical procedure to our analysis at O(ε) and O(ε2). First we introduce

three auxiliary variables (§2.1), one for each of the three inhomogeneities in curly brackets on

the right-hand side of equation (36), and then solve for h(3). We then substitute this solution

into (35), along with the droplet positions and wave field terms computed from lower orders,

and then apply the slowly varying approximation (§2.2) to reduce discrete convolutions to

an asymptotic expansion in powers of α. This procedure gives rise to a system of the form

Lnx(3) = RHS, where the right-hand side (RHS) is composed of terms that are constant

in t, terms with coefficients e±iφn(t), and non-secular terms (whose form can be ignored at

this stage). For a bounded solution, we require that the constant and eiφn secular terms

have vanishing coefficients, which yields the following evolution equations for the complex

amplitude, An, and the real drift, Bn:

σ̂0
dAn
dT

+µ2ĉg∇An = σ̂1An − σ̂2|An|2An + µγ̂1An∇Bn + µ2D̂1∆An, (37a)

b̂0
dBn

dT
= µ2D̂2∆Bn + 2µRe

[
γ̂2An∇A∗n

]
+µγ̂3|An|2, (37b)

where µ = α/ε and we have neglected terms whose coefficients are of size O(α) at O(ε3)

(§2.3). We note that we cannot determine the higher-order corrections (Cn and En) with-

out proceeding to O(ε4) and higher. However, a satisfactory approximation is obtained by

considering An and Bn alone, which form a closed system.

Recalling that Dk(λ; ν) is the dispersion relation (4), the coefficients (other than the γ̂i

defined in equations (33) and (34)) appearing in (37a) are as follows:

σ̂0 =
∂Dkc
∂λ

(iωc; νc), σ̂1 =
∂Dkc
∂ν

(iωc; νc),

σ̂2 =
3

2νc

N∑
m=1

H′′′′m −
N∑
m=1

H′′′′m Re

[
e−ikcmα

νc + iωc

]
+

1

2

N∑
m=1

e−2ikcmαH′′′′m
νc + 2iωc

−
N∑
m=1

H′′′′m e−ikcmα

νc + iωc
,

D̂1 =
1

νc + iωc

N∑
m=1

bme−ikcmαH′′m,

while those that appear in (37b) are

b̂0 =
∂D0

∂λ
(0; νc) = 1 +

1

ν2c

N∑
m=1

H′′m, D̂2 =
1

νc

N∑
m=1

bmH′′m.
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Upon dividing (37a) by σ̂0 and (37b) by b̂0, we arrive at equations (8), where (cg, σ1, σ2, γ1, D1) =

(ĉg, σ̂1, σ̂2, γ̂1, D̂1)/σ̂0 and (D2, γ2, γ3) = (D̂2, γ̂2, γ̂3)/b̂0.

Appendix B The onset of spatial modulations

We here consider the predicted value of the instability threshold, µc, at which the periodic

lattice destabilizes and spatial modulations emerge (µ < µc). We compare the values of

µc obtained by directly simulating the lattice equations (2), and those computed using the

linear stability analysis of the derived amplitude equations in §3. The lattice equations are

simulated using the spectral code presented in [25]. We initialized the system with µ > µc

(for which the spatially uniform state is stable) and successively decremented µ, starting

each simulation from the final values of the system variables (xn, ẋn, h) attained with the

previous value of µ. The value of µc was then estimated by the threshold at which spatial

modulations emerged in our simulations, with a typical error estimated to be ±0.01.

The results of this study are presented in Table 2 for A = 0.1, δ = 1.6 and l = 1.6.

As the number of droplets, N , is increased, the agreement between the numerical (lattice

simulations) and theoretical (linear stability analysis) results improves, consistent with the

validity of our weakly nonlinear theory, α = 2π/N � 1. Similar convergence between theory

and simulations was also verified for N odd.

N 30 40 50 60 70

Num. (±0.01) 1.28 1.16 1.15 1.19 1.21

Theor. 0.85 0.98 1.10 1.18 1.23

α = 2π/N 0.21 0.16 0.13 0.10 0.09

Table 2: Comparison between the numerical (Num.) and theoretical (Theor.) predictions

of the instability threshold, µc, computed with the difference operators, ∇ and ∆, derived

from the DFT.
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Appendix C Dependence of µc on changes to the wave

field and lattice parameters

In this section, we explore the dependence of µc on the inter-droplet spacing, δ, and spatial

decay length, l, of the wave kernel, H, defined by equation (23). As presented in Figure

6, the dependence of the onset of spatial modulations on the system parameters, l and

δ, can be quite intricate. Near the boundaries between super- and sub-critical Andronov-

Hopf bifurcations (where geometric and subcritical Andronov-Hopf instabilities arise in the

white regions in Figure 6), µc can be very large—a feature that appears to be correlated

with kc departing from N/2—inconsistent with the µ = O(1) assumption under which the

amplitude equations (8) were derived. Away from these boundaries, we observe regions in

which µc = O(1); indeed, simulation of the lattice system (2) reveals favorable agreement of

the numerical and theoretical instability threshold. (This agreement improves as α = 2π/N

becomes smaller, consistent with our assumptions; see Appendix B.) Near the middle of

each ‘band’ in which supercritical Andronov-Hopf bifurcations arise, we observe that µc = 0,

corresponding to the prediction of unconditional stability of the spatially uniform solution

(20). Finally, we remark that µc = O(1) is most apparent for l ∼ δ, a regime consistent with

the validity of our asymptotic expansion of convolutions (see §2.2).

Appendix D Numerical implementation

To evolve the amplitude equations (8), we apply the DFT, Fξ, to each equation, and then

introduce an integrating factor to integrate the linear components exactly [53]. Specifically,

we denote Âξ = Fξ[An] and B̂ξ = Fξ[Bn] for ξ = 0, . . . , N−1 (see equation (9a) for details).

By applying the DFT to the amplitude equations (8), we obtain

dÂξ
dT

+MξÂk = Fξ

[
µγ1An∇Bn − σ2|An|2An

]
, (38a)

dB̂ξ

dT
+NξB̂ξ = Fξ

[
2µRe [γ2An∇A∗n] + µγ3|An|2

]
, (38b)

where

Mξ = µ2cg∇̂ξ − σ1 − µ2D1∆̂ξ and Nξ = −µ2D2∆̂ξ.
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Figure 6: The onset of spatial modulations for N = 40 droplets, as predicted by the linear

stability analysis of the amplitude equations (8) (see §3) for the wave kernel defined in equa-

tion (23). (a) When the initial instability of the equidistant lattice arises via a supercritical

Andronov-Hopf bifurcation, we color-code each value of the spacing parameter, δ, and the

decay length, l, by min(µc, 2), where spatial instabilities arise for µ < µc. Our theory is valid

when µc = O(1). When µc = 0, the periodic state is predicted to be unconditionally stable.

Large values of µc (i.e. those exceeding the plotting threshold of 2) arise near the boundary

between super- and sub-critical Andronov-Hopf bifurcations. (b) The corresponding value

of kc, as predicted by the linear stability analysis summarized in §1.3, demonstrating the

correlation between large µc and kc < N/2.

We recall that ∇̂ξ and ∆̂ξ are the Fourier symbols of the difference operators ∇ and ∆,

respectively (see §1.5). To account for the stiffness manifest in the operators Mξ and Nξ,

we introduce an integrating factor. When evolving from time T = Tn to T = Tn+1, we recast
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(38) as

d

dT

(
Âξe

Mξ(T−Tn)
)

= Fξ

[
µγ1An∇Bn − σ2|An|2An

]
eMξ(T−Tn), (39a)

d

dT

(
B̂ξe

Nξ(T−Tn)
)

= Fξ

[
2µRe [γ2An∇A∗n] + µγ3|An|2

]
eNξ(T−Tn), (39b)

and then evolve the variables Âξe
Mξ(T−Tn) and B̂ξe

Nξ(T−Tn) using a fourth-order Runge-

Kutta method. For the numerical results presented in §4, we consider the fixed time step

Tn+1 − Tn = 0.02. MATLAB code implementing this numerical scheme is provided in the

Supplementary Material.

Appendix E Alternative difference stencils

We consider here how the dynamics predicted by the amplitude equations (8) depend on the

form of the difference operators, ∇ and ∆. In §2.2, we derived ∇ and ∆ using the discrete

Fourier transform (DFT); here we consider the dynamics arising when ∇ and ∆ are replaced

with symmetric first- and second-order finite difference stencils for p-nearest neighbors (see

§E.2).

E.1 Dependence on the number of nearest neighbors

In the following series of tests, we define the wave kernel using l = 2.6, δ = 2.6 and A =

0.1 (see §4). We then fix the distance from the onset of spatial modulations (the BFN-

like instability), µc − µ, and simulate the system until a periodic state is obtained. In

all cases considered, we initialize from a small perturbation about the spatially uniform

state (see §3.1), namely An(0) = ρ + 0.05 sin(αn) and Bn(0) = 0.05 sin(αn). Finally, we

measure characteristic properties of the long-time dynamics, comparing the measured values

for different values of p and the difference operators derived from the DFT.

In Figure 7, we present the dynamics of a dark breather arising for N = 40 droplets

with µc − µ = 0.08. We here characterize the dynamics in terms of the breather period, Pp.

We note that the change in the period is much smaller when p is increased from 2 to 3, as

compared to when p is increased from 1 to 2. In particular, we observe that Pp approaches

the period, PDFT, computed using the DFT difference operators.
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Figure 7: Evolution of the complex amplitude, |An(T )|, over the slow time scale, T , for a

dark breather arising for N = 40 droplets with µc − µ = 0.08. We compute the period, Pp,

for p-nearest neighbors and compare the results to the period, PDFT, computed using the

difference operators derived from the DFT. The corresponding parameter values are listed

in §E.1. The differences between P2, P3 and PDFT are on the order of the numerical time

step, 0.02, forming a lower bound for the precision of the computation of the period.

Likewise, in Figure 8, we present the dynamics of a dark soliton arising for N = 41

droplets with µc−µ = 0.06. Specifically, we measure the asymptotic wave speed, Cp, defined

as the reciprocal of the time between which the integer argminn|An(T )| changes. In other

words, when taking an integer to be the unit of length, the slope apparent in each panel of

Figure 8 is 1/Cp. We note that the wave speed approximately halves as p is increased from

1 to 2, but is almost identical for p equal to 2 or 3. Again, Cp approaches the speed, CDFT,

computed for the difference operators derived using the DFT.

Finally, we note that µc also depends weakly on p, as is evident from the linear stability

analysis outlined in §3.1. For the case of N = 40 droplets with the foregoing parameters, we

compute the following values: µc = 0.85066 for p = 1; µc = 0.85179 for p = 2; µc = 0.85180

for p = 3; and µc = 0.85180 for the DFT difference operators. For the case of N = 41

droplets, we likewise compute: µc = 0.85153 for p = 1; µc = 0.85279 for p = 2; µc = 0.85280

for p = 3; and µc = 0.85280 for the DFT difference operators. In both cases, we observe

convergence in the value of µc as p is increased, towards that computed using the DFT

difference operators.
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Figure 8: Evolution of the complex amplitude, |An(T )|, over the slow time scale, T , for a

dark soliton arising for N = 41 droplets with µc − µ = 0.06. We compute the wave speed,

Cp, for p-nearest neighbors and compare the results to the wave speed, CDFT, computed

using the difference operators derived from the DFT. The corresponding parameter values

are listed in §E.1.

E.2 Finite difference stencils

For a sequence, Fn, with Fn = Fn+N and α = 2π/N , we proceed to define the difference

operators, ∇ and ∆, for p-nearest neighbor interactions, and the respective Fourier symbols,

∇̂ξ and ∆̂ξ.

For p = 1, we define

∇Fn =
1

2α

(
Fn+1 − Fn−1

)
and

∆Fn =
1

α2

(
Fn+1 − 2Fn + Fn−1

)
.

The corresponding Fourier symbols are

∇̂ξ =
i sin(ξα)

α

and

∆̂ξ =
2(cos(ξα)− 1)

α2
,

respectively.

For p = 2, we define

∇Fn =
1

α

(
1

12
Fn−2 −

2

3
Fn−1 +

2

3
Fn+1 −

1

12
Fn+2

)
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and

∆Fn =
1

α2

(
− 1

12
Fn−2 +

4

3
Fn−1 −

5

2
Fn +

4

3
Fn+1 −

1

12
Fn+2

)
.

The corresponding Fourier symbols are

∇̂ξ =
i

α

(
4

3
sin(ξα)− 1

6
sin(2ξα)

)
and

∆̂ξ =
1

α2

(
− 5

2
+

8

3
cos(ξα)− 1

6
cos(2ξα)

)
,

respectively.

For p = 3, we define

∇Fn =
1

α

(
− 1

60
Fn−3 +

3

20
Fn−2 −

3

4
Fn−1 +

3

4
Fn+1 −

3

20
Fn+2 +

1

60
Fn+3

)
and

∆Fn =
1

α2

(
1

90
Fn−3 −

3

20
Fn−2 +

3

2
Fn−1 −

49

18
Fn +

3

2
Fn+1 −

3

20
Fn+2 +

1

90
Fn+3

)
.

The corresponding Fourier symbols are

∇̂ξ =
i

α

(
3

2
sin(ξα)− 3

10
sin(2ξα) +

1

30
sin(3ξα)

)
and

∆̂ξ =
1

α2

(
− 49

18
+ 3 cos(ξα)− 3

10
cos(2ξα) +

1

45
cos(3ξα)

)
,

respectively.

The difference stencils for p > 3 may be found elsewhere [65].
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ticles. Nature Communications, 9(1):1–9, 2018.

42



[37] M. Leoni, M. Paoluzzi, S. Eldeen, A. Estrada, L. Nguyen, M. Alexandrescu, K. Sherb,

and W. W. Ahmed. Surfing and crawling macroscopic active particles under strong

confinement: Inertial dynamics. Physical Review Research, 2(4):043299, 2020.
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