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Resonances in particle transmission through a 1D finite lattice are studied in the presence of a finite
number of impurities. Although this is a one-dimensional system that is classically integrable and
has no chaos, studying the statistical properties of the spectrum such as the level spacing distribution
and the spectral rigidity shows the same statistics as the one obtained for chaotic systems. Using
a dimensionless parameter that reflects the degree of state localization, we demonstrate how the
transition from Poisson level statistics to the Wigner-Dyson is affected by state localization. The
resonance positions are calculated using both the Wigner-Smith time-delay and a Siegert state
method, which are in good agreement. Our results show the dependence of the level statistics on
the localization length as it evolves from a Poisson distribution to Wigner-Dyson.

I. INTRODUCTION

In 1984, Bohigas, Giannoni and Schmit stated the cel-
ebrated (BGS) conjecture[1] that describes the statistical
properties of chaotic spectra. This conjecture states that
a quantum system whose classical analogue is chaotic will
have an energy level spectrum that obeys Wigner-Dyson
statistics characteristic of the Gaussian Orthogonal En-
semble (GOE) of Random Matrix Theory (RMT).While
GOE level statistics have been confirmed for many clas-
sically chaotic systems, GOE statistics has also been
found in the bound level spectrum of systems that dis-
play no classical chaos.[2–4]. The present study extends
the analysis to the resonance spectrum in a simple 1D
system, by documenting that an Anderson localization-
type model Wigner-Dyson GOE energy level statistics in
some parameter ranges. Such result shows that the level
repulsion, as is implied by GOE level statistics, is not
exclusively limited to chaotic systems. In other words,
the converse of the BGS conjecture (i.e., the statement
that observation of GOE level statistics would imply that
the corresponding Newtonian system exhibits chaos) is
not true. The study in this article serves as a coun-
terexample. Classical chaos is a consequence of the non-
linearity of the Newtonian equations of motion, while
Schrödinger’s equation is linear and strictly speaking has
no chaos. Nevertheless, quantum signatures of chaos can
arise and are exhibited by the statistical properties of the
quantum energy level spectra, such as the level spacing
distribution and the spectral rigidity (SR) [1, 5].

The spectrum of random matrices was first studied by
Wigner in 1951 [6–8], who demonstrated the existence of
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a few universal classes based on the symmetry imposed
on such matrices. In the present study, the two classes
considered are the gaussian orthogonal ensemble (GOE)
and the Poisson distribution.

The claimed connection between chaos and RMT is
the essence of the BGS conjecture, which relates the
spectral properties of quantum systems whose classical
Hamiltonians are irregular (chaotic) to the GOE class
(for systems that satisfy time-reversal invariance). The
BGS conjecture is formally stated as follows: Spectra of
time-reversal-invariant systems whose classical analogs
are K-systems[9] show the same fluctuation properties
as predicted by GOE [1]. In short, the BGS article
asserts: classical chaos implies quantum GOE. On the
other hand, the quantum spectrum of a classically regu-
lar system in two or more dimensions follows Poissonian
behavior [1, 10, 11], except for systems with oscillator-
like or otherwise very simple spectra.

The goal of the present study is to explore a one-
dimensional quantum system whose classical analog is
regular. Our analysis demonstrates that such systems
have Wigner-Dyson level statistics in some regimes.
Moreover, two limiting cases are discussed: the regular
case that give the known Poisson distribution for classi-
cally integrable systems, and a second case whose quan-
tum spectrum matches the GOE statistics for both the
nearest-neighbor distribution and the spectral rigidity.
The nature of the distributions is shown to hinge on a di-
mensionless parameter that represents the degree of state
localization similarly to the results in [2, 4], thereby ex-
tending the connection between the statistical properties
of the quantum spectrum in such systems and the phe-
nomenon of Anderson localization[12, 13] to include both
bound and resonance states. While RMT formally deals
with discrete spectra only, our study discusses it in the
context of very narrow resonances, which is justifiable
because of their generally extreme narrowness.
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II. INTRODUCING THE MODEL

The model considered in this study is a particle moving
through a one-dimensional lattice with the lattice poten-
tial energy modeled by a sum of delta functions, one per
lattice site. Thus the Hamiltonian is given by:

H =
P 2

2m
+

N/2∑
n=−N/2

αnδ(x− na). (1)

Here N + 1 is the total number of lattice sites, and αn
is the strength of the n-th delta function. In the case of
a perfectly clean periodic but finite lattice that we con-
sider here, all αn are the same and all are negative, but
we will keep the notation general for now because part
of our analysis will be an exploration of the effect of im-
purities. The reason behind choosing the delta function
potential is the fact that an attractive delta function po-
tential admits one bound state, so one can imagine the
system as having one atomic state around each atomic
site, which allows us to treat both the bound states and
scattering dynamics. Modeling the lattice by consider-
ing one atomic state at each site and treating the effect
of site-to-site tunneling as an effective hopping parame-
ter has been studied for years and is referred to as the
tight-binding approximation [12, 13]. One of our goals
is to compare the exact solution with the results of the
tight-binding model. Our results show limitations of this
approximation that become relevant in the context of
transmission through a finite lattice.

In the tight-binding approximation, two things are as-
sumed: First, there exists one atomic state around each
lattice site, and secondly, hopping occurs only between
nearest neighbors [14]. The Hamiltonian in this case is
written as:

H =
∑
i

εia
†
iai +

∑
<i,j>

ti,ja
†
iaj , (2)

where εi is the energy of the atomic state site i and ti,j is
the tunneling amplitude from site j to site i, and the sum
in the second term is taken for nearest-neighbors where
j = i± 1. Both can be calculated from the potential in-
troduced in Eq.1. If the lattice is periodic and all atomic
sites are identical, then this model can be solved analyt-
ically [15]. However, there is much interesting physics to
study when impurities are placed in the lattice, such as
the transport across the lattice. In that case, the period-
icity is broken and there is no general analytical solution.
However, the spectrum can be obtained by writing the
Hamiltonian in a matrix form and diagonalizing it [13].

The tight-binding approximation is useful in many
cases, especially for the N → ∞ limiting case. Most
of the physics of bound states can be studied within this
simple approximation. However, tight-binding has limi-
tations, such as the fact that a set of N negative delta
functions do not necessarily support N bound states.

Even two delta functions in one dimension do not neces-
sarily have two bound states, which can cause difficulties
whenever finite lattices are considered. Secondly, within
tight-binding, one can only study bound states, which
does not allow exploration of the physics of scattering
processes, such as transmission resonances.

The approach used in this paper is to consider a finite
lattice as a finite range potential. Then one column of the
the scattering (S) matrix is obtained for a particle inci-
dent from −∞, i.e. from the left, and the second column
corresponds to a particle incident from +∞, i.e. from the
right, and all desired observables calculated. The reso-
nance positions and widths can be calculated from either
the Wigner-Smith time-delay maxima [16–18] or by im-
posing outgoing-wave Siegert state boundary conditions
[19, 20] and determining eigenvalues of a complex sym-
metric Hamiltonian. A numerical solution is obtained
for lattices with different values of the lattice size and
the lattice constant. A main goal here is to study the
real part of the resonance energy level distribution in the
first energy band. In all calculations, atomic units are
used, i.e. with ~ = a0 = me = Eh = 1.

III. DESCRIPTION OF THE CALCULATIONS

The solution to the time-independent Schrödinger
equation for the Hamiltonian introduced in Eq.1 has the
following form for particles incident from the left:

ψ(x) =

{
eiqx + r(q)e−iqx if x < −Na

2

t(q)eiqx if x > Na
2

(3)

where r and t are the reflection and transmission ampli-
tudes respectively, and q is the momentum of the incident
particle. To obtain both r, and t, the solution inside the
lattice has to be obtained.

In the domain x ∈ [(n − 1
2 )a, (n + 1

2 )a], the general
solution is

Ψn(x) = Ane
iqx +Bne

−iqx ≡ ψ+
n + ψ−n (4)

where q =
√
2mE
~ , and m is the particle mass. After

applying the wave function continuity and derivative dis-
continuity conditions, the solutions in any two adjacent
regions separated by a lattice constant a are related by
the transfer matrix [21] as follows:(

ψ+
n+1

ψ−n+1

)
=

(
eiqa 1+mαn

iq
mαn
iq

−mαn
iq e−iqa 1−mαn

iq

)(
ψ+
n

ψ−n

)
≡ T (αn, q)

(
ψ+
n

ψ−n

) (5)

To obtain the full S-matrix, both transmission (reflec-
tion) amplitudes should also be obtained in the case of
scattering by particles incident from the right, denoting
them as t′(q), and r′(q). In one dimension, the S-matrix
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has the form [22, 23]:

S =

(
t r′

r t′

)
(6)

The dramatic qualitative difference between the peri-
odic and the disordered cases become clear from plots of

the Wigner-Smith time-delay [16], Q = iS dS
†

dE , and the
phase shifts [17].The trace of Q gives the total time-delay.
Fig.1 shows that there are no resonances in the exactly
periodic case with no impurities, and only a simple, reg-
ular oscillation of the total time-delay as a function of
collision energy. On the contrary, when impurities are
present, there are many narrow resonances. Associated
with each resonance is a peak in the time-delay and a
clear rise in the sum of the eigenphaseshift sum by π ra-
dians as a function of energy. The statistical properties of
all the resonances in the first band show chaos signatures
in the system, as is demonstrated next.

The resonances can also be calculated using a differ-
ent method: The Siegert state [20] boundary conditions
allows only outgoing waves, and they take the form:

ψ(x) =

{
Ae−iqx if x < −Na

2

Beiqx if x > Na
2

(7)

With this boundary condition, the Hamiltonian is non-
Hermitian and the spectrum is complex. Each eigen-
value can be written as Ej = E0j − iΓj/2, where E0j

is the position of the jth resonance, and Γj is the width
[20, 24]. After applying the boundary conditions in Eq.7,
the energies are given by the roots of following equation:

M2,2 = 0 (8)

where M is the total transfer-matrix given by M(q) =∏N
n=1 T (αn, q).

Since the Hamiltonian in Eq.1 is one-dimensional and
has no classical chaos [11], the nearest neighbor distri-
bution of the resonances is expected to follow a Poisson
distribution, P (s) = e−s, and no level repulsion is ex-
pected as shown in most of the studied cases [25, 26].
On the other hand, classically chaotic systems are ex-
pected to have GOE statistics, and their level spacing
distribution is expected to follow the Wigner-Dyson dis-

tribution [7], P (s) = π
2 se
−πs24 . The one key difference

between the two distributions is that in chaotic systems,
there is strong level repulsion [27], leading to a vanish-
ing of the nearest-neighbor level distribution in the limit
of zero spacing; on the other hand, this feature is not
mentioned in the BGS conjecture to arise in classically
regular systems. The BGS conjecture only connects clas-
sically non-integrable systems with GOE statistics in the
quantum spectrum. Both distributions can be written
more compactly in a convenient form as different limit-
ing cases of the following:

P β(s) = A(β)(
πs

2
)βe−(π

2β/16)s2−[B(β)−(πβ/4)]s (9)

Figure 1. (a) The blue curve is the total time-delay, and the
green (red) curves are the even (odd)-parity phase shifts for
the periodic case with αn = −1.5 for all sites, a = 0.8, and
m = 1. (b) The blue curve is the total time-delay, the red
and the green curves are the eigenphase shifts for a lattice
with impurities where αn = −1.5 for 90% of the atoms and
αn = −1.9 for the rest. The same mass and lattice constant as
in the periodic case are used. (c) The transmission probability
and the total time-delay are plotted versus the collision energy
where αn = −1.5 for 95% of the atoms and αn = −1.9 for
the rest. The gray and the orange curves are the transmission
coefficient and the total time-delay respectively.
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where β = 0(1) corresponds to the Poisson (Wigner-
Dyson) distribution.A(β), and B(β) are fixed by the con-
ditions

∫∞
0
P β(s)ds =

∫∞
0
sP β(s)ds = 1. β is the Izrailev

parameter [28] that reflects the degree of chaos. Equa-
tion.9 is not the only function that can be used. For
example one can use the Brody distribution [29], but it
was shown by Izrailev in [28] that the Izrailev parameter
is related to the state localization. Following Wigner’s
early studies of RMT[6, 7], extensive efforts have gen-
eralized the statistical properties of both Hermitian and
non-Hermitian systems [8, 30–34].

IV. RESULTS AND DISCUSSION

In this section we present the main results and ad-
dress conclusions about the statistical distribution of the
system. A discussion about the bound state spectrum
is also shown to limit the validity of the tight-binding
model, notably for finite lattices.

A. The Level Statistics

The results obtained from both the time-delay anal-
ysis and Eq.8 agree, and they show that the character
of the nearest neighbor spacing (NNS) distribution de-
pends strongly on the extent to which the energy eigen-
states are localized. For different lattice parameters, dif-
ferent values of β are found to fit Equation.9, for dif-
ferent values of localization length. To see the depen-
dence quantitatively, it is convenient to define the di-
mensionless parameter Z = <σx>

L , where < σx > is the
average uncertainty in the position, taken over the do-
main x ∈ [−L2 ,+

L
2 ], averaged over all resonance states

in the first band, and L = Na is the length of the lat-
tice. Evidently, Z represents a statistical measure of how
localized are the resonance energy eigenstates. Table I
shows that the transition in the level statistics between
the Poisson behaviour and the GOE occurs in a way that
is consistent with the claim that the level statistics de-
pend on the state localization. Moreover, some inter-
mediate values of β from fitting the NNS distribution
are also obtained for different lattices with different val-
ues of Z. Values of β > 1 are also obtained as the lo-
calization length increases, which shows even more level
repulsion. The value of β = 2,corresponds to the Guas-
sian Unitary Ensemble (GUE) which describes the class
of n x n Hermitian matrices, is also found as described
in both Fig.2, and Table.I. The level repulsion obtained
in such systems is a result of the state localization and
found to fit the Izrailev distribution for all values of β
including the ensembles of RMT. Here, we draw atten-
tion to the Poisson and the GOE distributions as two
limiting cases. In addition to the nearest-neighbor spac-
ing distribution, the calculation of the spectral rigidity
[5, 35] shows similarly good agreement for the two limit-
ing cases, and each one corresponds to the same statis-

tics consistent with the nearest-neighbour distribution as
shown in Fig.2.The results, shown in both Fig.2, and Ta-
ble.I, are calculated only for resonance states while bound
states are not considered. Hence, our claim of chaotic
behaviour in the spectrum of this classically non-chaotic
system applies only to resonance states because only posi-
tive energy solutions have a nontrivial classical analogue.
A study published in 1991 by Heiss and Kotze [3] has
shown a connection between the distribution of excep-
tional points and particular properties of level spacing
distribution. A similar transition between the Poisso-
nian and the GOE statistics was shown to depend on the
density of the exceptional points [36] of the underlying
Hamiltonian. Here, we consider the dependence on the
localization length in the lattice.

Figure 2. (a) The nearest-neighbor spacing distribution of the
resonances is shown for different values of Z. The blue curve is
the Izrailev distribution for the corresponding fitting parame-
ter β. The red dots show the calculated nearest-neighbor level
distribution obtained from the solution of Eq.8. (b) The spec-
tral rigidity is shown for different values of β. The red dots
are the values of the SR calculated for Z = 0.1251 matching
the GOE curve, while the black dots are those calculated for
Z = 0.0358 matching the Poisson curve

The fractional values of β represent the so called inter-
mediate quantum chaos[28] and they do not correspond
to any of the RMT classes [8], however, the values help
to visualize how the unusual level repulsion emerges in
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Table I. The transition, as measured by β in Eq.9, from the
Poisson to Wigner distribution is presented as a function of
the localization parameter Z = <σx>

L
. The values in this

table are taken for different numbers of impurities, namely
from 2% to 20%.
Z 0.0419 0.0483 0.0987 0.1105 0.1239 0.1397 0.1429 0.1446
β 0.0002 0.3016 0.6049 1.0654 1.2972 1.6773 1.9281 2.7226
χ2
r 0.4506 0.2930 0.1811 0.0942 0.0324 0.6854 0.1861 0.6066

the system.

Classical chaos is absent in one dimension because of
the integrability of Newton’s equations of motion, which
implies that any small change in the initial condition can-
not produce a drastic change in the classical trajectory
of the particle. In other words, the Lyapunov exponent
[10, 11, 37–39] always vanishes in any systems whose
classical Hamiltonian is given by Eq.1 with the replace-
ment of each delta function by a very narrow Gaussian
or any other attractive well. The meaning of the re-
sults in both Table I and Fig.2 is that there exists a one-
dimensional system that is classically regular but which
displays similar signatures to chaotic systems in its quan-
tum spectrum . This surprising result serves as a pow-
erful example of an integrable system whose quantum
spectrum admits similar level statistics to the universal
behaviour of chaotic systems in this remarkably simple
one-dimensional system. This result shows that the BGS
conjecture only gives predictions for non-integrable sys-
tems, but the distinction between chaos and integrabil-
ity cannot be fully explored just by studying the level
spacing of the quantum spectra. Examples of so-called
“quantum chaos” have been studied in detail in more
complex systems such as a Rydberg atom in a mag-
netic field, three-dimensional lattices, and chaotic sys-
tems exhibiting closed orbit signatures[40–43]. But those
systems mentioned are either higher-dimensional or else
many body systems whose classical analogs are irregular.

The Wigner-Dyson distribution has been observed in
other one-dimensional systems [4, 44] whose Hamiltonian
has the same form in Eq.2 with disorder present. We
emphasize that the main differences between the models
presented in [2, 4, 44] and our study are the following:
First, In the present model the randomness introduced
in the system has identical strength but is placed ran-
domly, while in [2, 4, 44] and other studies the random-
ness is usually introduced with a random strength at each
lattice point. Second, While most of the studies of the
transport phenomenon are done for E < 0 the analysis in
this paper is performed for resonant states at E > 0 and
relies on a different method of computing the quantum
level spectrum. Both cases confirm the assertion that the
GOE level statistics can occur in classically integrable
systems; this demonstrates that the spectrum of both
bound and resonance states can exhibit level statistics
that is not always simply Poissonian, even for classically
regular systems.

Another study by Ujfalusi and Varga [45] explores

whether there are any one-dimensional systems whose
statistical spectrum exhibits chaotic signatures. In that
treatment, a Wigner-Dyson distribution for the level
spacing of the energies is assumed and then inverted to
predict the corresponding local potential energy of the
system, which yielded a potential energy function with
many sharp peaks. Their result is consistent with the re-
sults in the present study, in particular for Hamiltonians
with sharp irregular shapes like the delta function. One
can view the treatment in [45] as essentially solving the
inverse problem of quantum chaos in one-dimension.

B. Bound States

In a one-dimensional infinite lattice, all states are lo-
calized in the presence of any percentage of impurities
as shown by Anderson [12, 13]. Anderson localization
has since been studied in many one-dimensional systems
[13, 46], and in most of the cases studied in the liter-
ature, the tight-binding approximation is implemented
with either periodic or vanishing boundary conditions.
Many results in the literature document the lack of dif-
fusion in one dimension. However, in Fig.1, the trans-
mission probability T = cos2(δ1 − δ2) obtained from the
eigenphase shifts and determined by our choice of the
channel functions, is enhanced and approaches unity for
the narrow resonances. The study of how disorder af-
fects the transport has been explored in details, in terms
of quantities like the Wigner-Smith time-delay and the
Thouless conductivity [46–49], deriving there a relation
between the localization length and the disorder. How-
ever, it has usually been assumed that the disorder in
the system is taken from a random distribution, and all
the quantities of interest such as the conductivity or the
localization length are derived based on that assumption.
As was mentioned previously, the strength of the impu-
rities is not taken randomly in our study; only two dif-
ferent kinds of atoms have been assumed to be present,
and the strength of all the impurities has been taken to
be the same, while those impurities are placed randomly
throughout the lattice. This is why the dimensionless
quantity Z introduced in Table I is - more conveniently
- chosen as our measure of the localization.

The scattering solutions obtained from the S-matrix
analysis can also be used to calculate bound states by
searching for the poles of S(E) in the complex energy
plane, and comparing them with the spectrum obtained
from the tight-binding approximation. The Hamiltonian
in Eq.2 admits a number of bound states that is always
equal to the number of lattice points. Stated differently,
the Hilbert space of the particle on the lattice is given
by the direct sum of every single particle Hilbert space
around each lattice point[15]. Consequently, if each at-
tractive delta function admits one bound state, then the
prediction of the tight binding gives a number of bound
states that is equal to the number of lattice points. Fig.3,
shows the difference between the density of states of the
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Figure 3. (a) The density of bound states plotted versus the
energy. The bars show the number of states within an energy
interval, calculated from the tight-binding approximation. (b)
The density of bound states plotted versus the energy. The
bars show the number of states within an energy interval,
obtained from the poles of the S-matrix in the complex en-
ergy plane. (c) The sum of the even and odd phase shifts
versus the logarithm of the energy. The value of the zero en-
ergy eigenphase sum divided by π fixes the number of bound
states and gives the same number of bound states predicted
by Levinson’s theorem, namely 463 states.

bound states between the solution obtained from the S-
matrix and the tight-binding model. Both are calculated
for a periodic lattice with N = 1000. The main difference
is in the number of bound states. As argued above, the
tight-binding gives 1000 bound states. However, there
are only 463 bound states obtained from the S-matrix
treatment, while the rest of eigenstates with bound char-
acter resonances and are only quasi-bound. Moreover,

as is shown in Fig.3, the number of bound states can
be determined by the value of the eigenphase shifts at
zero energy, as is predicted by Levinson’s theorem in one
dimension [50]. After setting the values of both phase
shifts at infinite energy to zero, we have:

δo(0) + δe(0)

π
= (Nb +

1

2
) = (463 +

1

2
) (10)

where Nb is the total number of bound states and that
gives exactly the same number of bound states; This
Levinson’s theorem result is confirmed in our study. This
provides evidence of the internal consistency of the re-
sults shown in this paper.

V. CONCLUSION

In conclusion, we have shown a counterexample to the
converse of the BGS conjecture that states that classi-
cal chaos implies Wigner-Dyson quantum level statistics.
The results of the calculations and the arguments above
provide a clear observation of Wigner-Dyson level statis-
tics in a simple, classically integrable 1D system. The
Wigner-Dyson distribution is thus not exclusive to clas-
sically irregular systems. Moreover, the approach and
the methods of calculations used in this paper are gen-
erally applicable to a lattice with any number of lattice
sites. Although some results such as the density of states
could differ from that of the known models, as shown in
Fig.3, the tight-binding theory results are recovered for
the limit of infinite lattice, or large lattice constant. The
work of Anderson [12] in the 1960s demonstrated that in
one-dimensional disordered lattices there is no transport
in the presence of even the smallest amount of disor-
der that breaks the periodicity of the lattice. Anderson
proved his statement mathematically by considering only
bound states that form a conduction band in the clean
case. As is shown in Table I, however, the signatures of
the GOE level statistics in this system hinge critically
on the quantitative extent of state localization. These
results show the value of considering aspects of such sys-
tems that go beyond the tight-binding approximation,
such as studying the transmission resonances that are
the focus of the present exploration.
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