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Recently we introduced the Generalised Energy-Conserving Dissipative Particle Dynamics method
(GenDPDE) [J. Bonet Avalos, M. Lisal, J. P. Larentzos, A. D. Mackie, and J. K. Brennan, Phys.
Chem. Chem. Phys. 21, 24891 (2019)], which has been formulated for an emerging class of density-
and temperature-dependent coarse-grain models. In the original work, GenDPDE was formulated
to ensure a fundamental link is maintained with the underlying physical system at the higher
resolution scale. In this paper, we revisit the formulation of the GenDPDE method, and re-derive
the particle thermodynamics to ensure consistency at the opposing scale extreme, i.e., between the
local thermodynamics in the mesoscopic systems and the corresponding macroscopic properties. We
demonstrate this consistency by introducing unambiguous, physically-meaningful definitions of the
heat and work, which lead to the formulation of an alternative heat flow model that is analogous
to Fourier’s law of heat conduction. We present further analysis of the internal, unresolved degrees-
of-freedom of the mesoparticles by considering the thermodynamics of an individual mesoparticle
within the GenDPDE framework. Several key outcomes of the analysis include: (i) demonstration
that the choice of the independent variables alters the particle thermodynamic description; (ii)
demonstration that the mesoscopic thermodynamic transformations introduce additional terms of
the order of the size of the local fluctuations, which prevent an unambiguous definition of both the
heat and work; (iii) an emphasis on the importance of the choice of the proper estimators of the
thermodynamic properties that are embedded in the chosen thermodynamic description; and (iv) a
clearly defined path for determining any thermodynamic quantity dressed by the fluctuations. The
further insight provided by this deeper analysis is useful for both readers interested in the GenDPDE
theoretical framework, as well as readers interested in the practical ramifications of the analysis,

namely, the alternative heat flow model.

I. INTRODUCTION

The recently proposed Generalised Energy-Conserving
Dissipative Particle Dynamics (GenDPDE) method [1]
allows for isoenergetic simulations of many-body mod-
els, which are an appealing class of density- and
temperature-dependent coarse-grain models that have re-
cently emerged (e.g., [2-7]). These models have sev-
eral key attributes that allow them to overcome common
coarse-grain model deficiencies, including scaling consis-
tency and transferability. In the GenDPDE method, the
force between mesoparticles is a function of the local
particle density n [8, 9]. GenDPDE allows simulations
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of coarse-grain models for which the density-dependent
force is dependent on the thermodynamic state of the
mesoparticle, particularly, the fluctuating particle tem-
perature #. From that perspective, GenDPDE is unique
because it allows a description of the particle temper-
ature and the local particle density such that they are
entangled in the coarse-grain model through a com-
plete definition of what we refer to as the particle ther-
modynamics. For comparison, it is worth noting that
in the Energy-Conserving Dissipative Particle Dynamics
(DPDE) method [10, 11], such particle thermodynamics
is restricted to a linear relation between the stored inter-
nal energy u and the particle temperature . Moreover,
the force between DPDE particles is a function of the
inter-particle distance only; thus, the force is indepen-
dent of the mesoparticle thermodynamic state.

In the introductory work [1], GenDPDE was formu-
lated to ensure a fundamental link is maintained with
the underlying physical system at the higher resolution
scale. However, a direct link to the macroscale was not es-
tablished, partly due to the following. In the GenDPDE



method, particles are considered as mesoscopic objects, a
priori containing many degrees-of-freedom (DoF), which
are defined through the particle thermodynamics. How-
ever, by construction, the variables defining the particle
state are fluctuating due to the mesoscopic size of the
particles. As such, defining the local thermodynamics
in mesoscopic systems poses several challenges related to
the influence of system fluctuations on the interpretation
of the analogous macroscopic properties. In this work, we
consider the appropriate framework that consistently de-
scribes the mesoparticle with internal (unresolved) DoF
in contact with the environment. Interestingly, we en-
counter uncertainty in the distinction between heat and
work at the mesoparticle level, which does not exist at
the thermodynamic limit.

In this paper, we revisit the formulation of the GenD-
PDE method, and re-derive the mesoparticle thermo-
dynamic transformations to ensure consistency at the
macroscale, i.e., between the local thermodynamics in the
mesoscopic systems and the corresponding macroscopic
properties. We demonstrate that we can establish this
link by introducing unambiguous, physically-meaningful
definitions of the heat and work. These lead to the formu-
lation of an alternative heat flow model that is a meso-
scopic counterpart of Fourier’s law of heat conduction,
and that differs from the heat flow model traditionally
used in DPDE. This insight is useful for both readers in-
terested in the theoretical framework, as well as readers
interested in the practical ramifications of the analysis,
particularly the alternative heat flow model.

While the formulation emulates that of the original
work [1], a deeper analysis of the thermodynamics of
the individual mesoparticle provides new insight into
the mesoscopic thermodynamic transformations. In this
work, we define particle thermodynamics as the formal
relation describing the energy exchange between the un-
resolved DoF within the particle and the resolved DoF,
where we assume a separation of time scales exists be-
tween these DoF [12]. The latter DoF include the parti-
cle volume, internal energy, center-of-mass position and
total momentum for the simple case analyzed here. Un-
like their macroscopic counterparts, these resolved vari-
ables can fluctuate according to the Laws of Statistical
Mechanics due to the reduced size of the particle as a
system. Macroscopic thermodynamics relies on the ther-
modynamic potentials and the transformations between
ensembles, which are defined from the given reservoirs
that maintain constant intensive variables (e.g., the tem-
perature or chemical potentials) or maintain constraints
that fix some extensive variables (e.g., volume or energy
content). These variables will be referred to as control
parameters. Legendre transformations permit changing
from one ensemble to the other without loss of thermo-
dynamic information. Contrastingly, for particle thermo-
dynamics, the thermodynamic information is not embed-
ded in a function under the form of a given thermody-
namic potential, but instead in a distribution. Not only
does the thermodynamic ensemble need to be specified,

but also those variables that independently fluctuate and
those that do not. Therefore, when changing from one
set of independent variables to another within the same
macroscopic ensemble, transformation rules need to be
considered that involve additional terms depending on
the size of the fluctuations. (An interesting sidenote re-
lated to experimental observations of this dependence is
given in [37].)

The formulation of a particle thermodynamic descrip-
tion also affects the dynamic properties of the system
through the relationship between the thermodynamic
forces and the dissipative fluxes. In the model pre-
sented here, the former are differences in the velocities
and in the particle temperatures, which are fluctuating
variables, while the latter correspond to the frictional
forces and the interparticle heat exchange, respectively.
In this formulation, the dynamics of the particle variables
are required to satisfy the principles of non-equilibrium
thermodynamics [13] when fluctuations are absent. In
other words, the fluctuations in these mesoscopic systems
are constructed such that the non-equilibrium thermody-
namic description instantaneously holds at the particle
level with the particle properties derived from s(u,V) or
u(s,V) together with the dynamics of the resolved DoF.

In this work, we introduce a set of ansatzes that al-
low us to cast the dynamic formulation under Onsager’s
non-equilibrium thermodynamics framework [13] at the
particle level, taking into account the dressing effect of
the fluctuations. In this context, linear Langevin equa-
tions [14, 15] can be introduced, based on the appropriate
thermodynamic forces, leading to an ultimately complete
and consistent framework for the simulation of complex
systems.

The paper is organized as the following. In Section II,
we revisit the theoretical framework of the GenDPDE
method, providing an analysis into both the particle ther-
modynamics and dynamics in the context of the unre-
solved DoF of the individual mesoparticle, after which
the equations of motion (EoM) are given in Section II C.
In Section IIT A, we demonstrate the consistency of the
alternative heat flow model, followed by a discussion of
the implications of the analysis of the particle thermody-
namics within the GenDPDE framework. We conclude
by providing a summary of the work along with a brief
discussion of possible novel extensions arising from the
new insight of the mesoparticle thermodynamic trans-
formations within the GenDPDE framework. A list of
symbols and notation used throughout the manuscript is
provided in the Supplemental Material.

II. THEORETICAL FRAMEWORK: FURTHER
ANALYSIS FROM THE PARTICLE
THERMODYNAMICS

In this section, we provide a formulation of the GenD-
PDE method that follows the formulation presented in
the original work [1]. However, a deeper analysis of the



thermodynamics of the unresolved DoF of an individual
mesoparticle reveals insight that allows us to link the
particle thermodynamics with the corresponding macro-
scopic properties. In Section IT A, the theoretical frame-
work of the thermodynamics is formulated by first con-
sidering the particle entropy as the dependent variable,
followed by a formulation using the particle internal en-
ergy as the dependent variable. The analysis of the latter
highlights that the mesoscopic thermodynamic transfor-
mations introduce additional terms of the order of the
size of the local fluctuations, which prevent an unam-
biguous definition of both the mesoscopic heat and work.
To overcome this ambiguity within the GenDPDE frame-
work, in Section II B, we formulate the particle dynamics
by assuming a heat flow model that has a linear relation
between the fluxes and the forces, where this particular
form is consistent with Fourier’s law of heat conduction.
Finally, to conclude Section II, a summary of the EoM
is given at the end of Section IIC, which is intended
for more application-oriented readers with less interest in
the formulation of the GenDPDE theoretical framework.
The numerical discretisation of the EoM is presented in
Appendix A.

A. Thermodynamics of the Mesoparticle
Unresolved Degrees-of-Freedom

1. Entropic Thermodynamic Description

The GenDPDE method was based upon the original
DPDE method, which itself is based on Einstein’s formu-
lation of thermodynamic fluctuations that is an entropy-
centered perspective [10, 16]. Following the formulation
of the entropic form presented in the original GenDPDE
work [1], we define the physical model by assuming that
each particle ¢ (i = 1,...,N; N is the number of par-
ticles) is an individual mesoscopic system comprised of
N physical entities. The mesoscopic system is character-
ized by a Hamiltonian H(#V,pY) with (&V,p") being
a point in the 6/ -dimensional internal phase space of
mesoparticle ¢. (In this section, the statements refer to
the properties related to an individual mesoparticle ;
for notational simplicity, the subscript ¢ is not explicitly
used unless necessary to avoid confusion.) The vectors T¢
and p® with o = 1,..., N are, respectively, the positions
and momenta (both refer to the center-of-mass of the
mesoparticle) of the underlying physical entities embed-
ded into mesoparticle ¢. For our purposes, let us consider
that the resolved mesoparticle variables are the particle
internal energy content u;, the material content A, and
the particle volume V;, together with the position of its
center-of-mass r; and its total momentum p;.

u; is specifically defined as the particle internal energy,
i.e., the energy stored in the non-resolved DoF. Hence,
u; is obtained by subtracting from the total energy of
the mesoparticle: (a) the energy due to the mechanical
DOoF, i.e., the kinetic energy K; = p?/(2m;); and (b) any

potential energy field ¥ related to the particle positions
{r;}¥, (e.g., gravitational or electromagnetic fields) or
any interparticle interactions not associated with changes
in the particle volume and particle temperature.

The volume of a mesoparticle is defined as V = 1/n,
where n is the local particle density, estimated from the
positions of neighboring mesoparticles via a weighting
function w as

N

j=1,j#i

where w;; = w(r;;) is a smooth, monotonically decreas-
ing, non-negative, spherically symmetric weighting func-
tion, vanishing for the particle separation distance r;; >
Ry, and normalised such that 47w fORC”t w(r)r?dr = 1.
Ryt is the cut-off range.

Owing to the relatively small size of the mesoparti-
cle, contributions due to the interfacial area, particle
rotations, or deformations may be considered when ad-
dressing particular physical systems. Here, for simplic-
ity, we consider that any contribution can be reduced
to a function of the particle volume. Although, for ex-
ample, surface contributions may eventually lead to the
non-extensiveness of the particle thermodynamic func-
tions. Also, for the sake of simplicity, we consider only
the case of constant N.

Let us consider mesoparticles at rest, i.e., {p;}¥, =0,
and all the positions {r;}», fixed in space. In equi-
librium, the density-of-states of a thermally isolated
mesoparticle at rest is given by

g(u,V) daiNapN  (2)

]
T NVRN u—Au/2<u<ut+Au/2;V

where, from a thermodynamic perspective, eq. (2) con-
tains all the relevant information. In particular, we can
define the bare entropy [17] as

5(u, V) =kplng(u,V) (3)

where kp is the Boltzmann constant. As such, 5 is the
true entropy of the mesoparticle under isolated condi-
tions, which is defined by fixing the control parameters
u and V. Due to our assumption that there are no ad-
ditional resolved variables other than V and u, § can
be defined in a thermodynamic sense only if the inter-
nal dynamic processes associated with the A physical
entities in the mesoparticle are relaxed to their thermo-
dynamic equilibrium. Therefore, for an isolated meso-
scopic system, no fluctuations are observed in the non-
mechanical resolved variables. Finally, because § has
the classical meaning of entropy, we can assume that
0§8/0uly = 1/6 > 0, ie., the positiveness of the bare
temperature 6 of the mesoscopic system is assumed.
Note that we have changed the nomenclature from our
original work [1] with respect to §, where § here is denoted
as the bare entropy rather than the dressed entropy. The



reader is referred to both the footnote in [38] for further
discussion of this nomenclature change and the list of
symbols provided in the Supplemental Material.

When the mesoscopic system is in contact with a heat
reservoir of temperature 7', the thermodynamic behav-
ior is determined by the ensemble average yielding the
Helmholtz free energy, i.e.,

e~ F/keT) — /dug(u,V) e~ v/ (ks T) (4)

where the control parameters of the ensemble are T' and
V. Analogous to eq. (3), eq. (4) contains all the relevant
information, where given the state of the mesoparticle,
the canonical probability distribution becomes

Poy(u, V) dudV ~g(u, V)e™ *5T) qy gy (5)
[T V)ul/ (k5 T) gy gy

Eq. (5) is the starting point in the classical treatment of
fluctuations [16]. Indeed, the formulation of the DPDE
method is based on eq. (5). In this classical treatment,
the removal of the adiabatic condition for the meso-
scopic particle causes fluctuations in the resolved vari-
ables, weighted by the function s, which is no longer a
measure of the entropy of the system. Because the inde-
pendent variables of eq. (5) are u and V), then without
loss of generality, we have

93
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The variables 1/0 and 7/0 (7 is the bare particle pres-
sure) are defined via eq. (6). These are analogous to
the intensive variables in macroscopic thermodynamics,
which are the natural variables for the entropic thermo-
dynamic description [16]. However, in the fluctuating
system, these variables play the role of estimators of the
macroscopic quantities of the ensemble. For example, in
the canonical ensemble, 1/6 is the proper estimator of

1/T, ie.,
(), futraens o

On the other hand, if the system is coupled to a barostat
of pressure P

<7f> :/dudvipeq(u,V)e*PWU“BT):5 (8)
0/ rp 0 T

In this context, proper refers to the ensemble average,
which gives the corresponding macroscopic quantity. It
is important to realize that (0)r # T and (T)rp # P,
which we demonstrate below. Lastly, because the esti-
mators depend upon the particle thermodynamics, they

are defined for each mesoparticle independently.

2.  Energetic Thermodynamic Description

Analogous to the formulation of the energetic form pre-
sented in the original GenDPDE work [1], rather than
working with (u, V), let us work with (s, V) instead, and
use u as the dependent variable; s is the dressed entropy
defined below. The equilibrium behavior of the system is
still contained in eq. (5), but now is cast under a different
form

P.y(s,V)dsdV ~ 7572V g ds dy (9)

where J is the Jacobian of the transformation, J =
Ou/dsly > 0, and |J| is its determinant. Formally,
J > 0 sets the properties of s that are consistent with
the macroscopic thermodynamic definition. The dressed
entropy is then defined as

s:é—l—kBlngZV (10)

Eq. (10) is a differential equation that links the dressed
entropy with the statistical mechanical information con-
tained in g(u,V). Note that we assume du/0sly > 0
without loss of generality, as the formal solution of eq.
(10) indicates that

1 .
S(U, V) = I{/’B ln g /0 du es(uvv)/kB (11)

is a monotonously increasing function of the particle in-
ternal energy, in agreement with the behavior of the
macroscopic entropy [16].

We can now establish the central equation of our ther-
modynamic formulation:

P.y(s,V)dsdV ~ elTs=usV/(RET) qg gy (12)

Although the physics of the system remains the same, we
can introduce a different, but equivalent thermodynamic
description of the mesoscopic system in the so-called en-
ergetic form [16]:

ou ou
du=—| d —| d 13
v as), B | Y (13)
=0ds — ndV

For the energetic form, eq. (13) defines a new set of
proper estimators of the macroscopic quantities of the
ensemble. The particle temperature 6 is the proper esti-
mator of the (macroscopic) temperature, i.e.,

() = /dsGPeq(s,V) =T (14)

and the particle pressure 7 is the proper estimator of the
(macroscopic) pressure, i.e.,

(m)rp = /ds AV Pey(s, V) e~ PV/(ksT) — p (15)



3. Identification of the Heat and Work: Comparison of the
Entropic and Energetic Thermodynamic Descriptions

We have arrived at a key juncture in the formula-
tion, which requires identifying the heat and work in the
GenDPDE framework. Comparing egs. (6) and (13), and
using the First Law of Thermodynamics, we have

du =0d3 — 7dV
=0ds — rdV (16)
=dq +dW

where ¢ and W are the heat and work, respectively, and
the crossbar notation in the last equality indicates an
inexact differential.

In the original formulation of GenDPDE [1], we
demonstrated that the relationship between the estima-
tors is

_ 9 kg kg \?
0=———~0|(1+—+0—=— 17
(1 é—B) Cv+ (Cv> )

- k:Béa k:BGa <k3>2
F=nd — v+ — 4+ 0= 18
Cy B Cy B Cvy (18)

where « is the thermal expansion coefficient, § is the
isothermal compressibility, and Cy is the constant-
volume heat capacity. (The coefficients «, § and Cy are
given by standard thermodynamic relations, but replaced
with mesoparticle thermodynamic variables.) However,
comparing egs. (16), (17), and (18), it is evident that
both Ad5 # Ods and 7dV # wdV due to the addi-
tional terms introduced by the mesoscopic thermody-
namic transformations. This is a key finding of this work,
which indicates that there is not an unambiguous defini-
tion of both the heat and work exerted on the mesopar-
ticle.

It is important to note that this ambiguity is not re-
lated to either the chosen scale of the thermodynamic
description [18], or to a change in the statistical mechan-
ical ensemble. Rather it is intrinsic to the particle ther-
modynamics being defined through the probability dis-
tributions. Therefore, the thermodynamic description of
the mesoscopic system is completely contained in a ther-
modynamic potential relating the resolved DoF with the
unresolved DoF. However, such a thermodynamic poten-
tial depends not only on the reservoir properties (e.g., the
temperature T or the pressure P), but also on the set of
independently fluctuating variables. If there is a change
in the independent variables, then the mesoscopic ther-
modynamic potential is transformed as a distribution.
The transformation from the original DPDE entropic de-
scription §(u, V) into an energetic description does not
involve the inversion of the function §(u,V) — u(8,V),
but instead 5(u,V) — u(s,V) with s given by eq. (10).
In fluctuating systems, the mesoscopic thermodynamic
parameters are then dressed by the fluctuations permit-
ted by the chosen ensemble. In addition, this influences

the formulation of the dynamic properties since the ther-
modynamic forces will depend on the chosen potentials
and also crucially on the choice of the independently fluc-
tuating variables.

To further elucidate the ambiguous relation between
the definitions of the heat and work at the mesoscopic
and macroscopic levels, consider the following. Consider
the ensemble average of the reversible mechanical work
for a mesoscopic system at constant temperature under
a quasi-static volume change. According to egs. (4), (5)
and (9), the Helmholtz free energy of the system F' can
be expressed by both

F=—kgTh |:/ dse[Ts—u(S,V)]/(kBT)] (19)
=—kgTIn |:/ du e[Tg(u’v)u]/(kBT):|

Considering the first equality in eq. (19), from eq. (13)
the system pressure is related to the estimator w by

oF

P:—W

= (m) (20)

T

Therefore, for a quasi-static reversibly varying volume
(dWC) = —PdY = —(m)dV (21)

where W is the mesoscopic reversible work. Note that
in eq. (21), we used the fact that V is a control parameter
of the ensemble as well as of the state of the particle, i.e.,
it is non-fluctuating. Based on this, it is reasonable to
define the instantaneous W as

AW = —ndy (22)

which is defined in terms of system variables only, and is
independent of the reservoir quantities such as T'. In view
of eq. (21), the ensemble average of eq. (22) effectively is
the macroscopic work. Since eq. (22) is independent of
the macroscopic ensemble used, the expression is taken as
the definition of the mesoscopic reversible work. Alterna-
tively, starting from the First Law of Thermodynamics
and using the definition of the instantaneous work eq.
(22), together with eq. (13), we can write the expression
of the instantaneous reversible heat

dq = du — dW° = 6ds (23)

Eq. (23) also serves as the definition of the instanta-
neous heat transferred into the system irrespective of the
macroscopic ensemble, since it does not depend on reser-
voir variables.

Finally, for comparison, we determine an equivalent
formulation in terms of the entropic parameters. Con-
sidering eq. (8) and the second equality in eq. (19), the
instantaneous W can also be written as

daw® = —1Zqy (24)
0



which satisfies (dW¢) = —PdV. However, it is important
to realize that within this formulation, dW¢ is not de-
fined in terms of particle properties alone, but depends
also on the ensemble temperature 7. Hence, this for-
mulation cannot be directly applied to microcanonical
simulations. Then, considering the First Law of Ther-
modynamics again, we can write

dq = du + T%dv = 0d5 + (Cg - 1) #dY (25)

Although (dq) = (Ad3)y, we cannot identify the instanta-
neous mesoscopic heat as 6ds in a general process due to
the existence of the additional term (7'/0 —1)7dV, whose
average is non-zero.

In summary, we have demonstrated that if the instan-
taneous heat and work are defined in terms of the system
variables only, then this permits the use of the model for
a simulation in any ensemble. This demonstration has
only been possible by using the energetic formulation,
which involves the renormalization of the bare entropy s
into the dressed entropy s, due to the fact that the parti-
cle thermodynamic potentials transform as distributions
rather than as functions. Moreover, the identification of
the mesoscopic heat and work from the energetic formu-
lation is crucial for the construction of an algorithm in
which the processes of particle volume change and heat
exchange are separated. Finally, as described next, the
energetic formulation permits us to define an effective
mesoscopic Hamiltonian, from which all the reversible
dynamics can be derived.

B. Dynamics of Mesoparticles

As a result of the ambiguities discussed above, the con-
struction of a consistent mesoscopic model with arbitrary
particle thermodynamics requires the introduction of ad-
ditional assumptions. These assumptions and considera-
tions are itemized and discussed during the presentation
of the formulation. Note that in the previous sub-section,
we defined the single-particle properties, while in this sec-
tion we analyze a system of N mesoparticles, which re-
quires explicit use of the subscript i in the corresponding
quantities.

1. The interactions between N mesoparticles are de-
fined in terms of the mesoparticle variables only;
namely, the interactions are independent of the
properties that characterize the ensemble, and de-
pendent only on the local properties.

2. The equilibrium probability distribution of an en-
semble of N moving mesoparticles is given by

Peq ({pi}7{ri}’{5i})r (26)

- [t ~Ta ks T)

~ €

where m; is the mass of a mesoparticle, and I' =
(pN,r",s"V) is a point in a 7N-dimensional phase
space. For convenience, we use n;({r;}), instead
of the particle volume V; = 1/n; from this point
onward in the formulation. The link between eq.
(26) and the underlying physical properties is given
by egs. (3) and (4), together with the definition
given in eq. (10). The function

H(pad ) = [+ ustsen)| (21)

7

is the effective Hamiltonian, defining the system
reversible dynamics, with the internal energy wu
given as a function of the mesoparticle coordinates
through n({r;}), and depending parametrically on
the dressed entropy s. The mesoparticle positions
and momenta are referred to as the mechanical (re-
solved) DoF since they are directly associated with
the reversible work and the kinetic energy of the
particle, respectively. Note that it is possible to
add to the Hamiltonian [eq. (27)] and the associ-
ated probability distribution [eq. (26)] a position-
dependent potential energy ¥(r;), which describes,
for example, electrostatic interactions, or to include
a contribution depending solely on the particle po-
sition such as an external gravitational field. How-
ever, here for the sake of simplicity, we do not con-
sider such contributions. By switching dependent
variables from s to u, the distribution in eq. (26) is
equivalent to

Poq ({pi}, {rs}, {ui}) dl (28)

-2 [%Jrui*:’“gi(uwm)} /(kBT)dl;

~ €

which, therefore, can also be used to evaluate the
ensemble averages when needed; I' = (pV, ™V, u!V).

3. The reversible interactions are distinguished from
the irreversible interactions via their behavior un-
der time-reversibility. In other words, the reversible
interactions are even, while the irreversible interac-
tions are odd.

Reversible, Conservative Interactions

Let us begin by formulating the reversible (conserva-
tive) interactions. Implicit in the choice of the indepen-
dent variables, I' = (PN, N uV), and the form of the
Hamiltonian in eq. (27) is the identification of both the
reversible work and the adiabatic condition. As such, the
reversible interactions follow straightforwardly from the
Hamilton EoM:

' op;  m; (29)
Pi =~ 5 ; (arj T on ) (30)



In eq. (30), we have used the translational invariance of
u;, which imposes };du;/0r; = 0. This allows us to
write Ou;/Or; = —3_,; Ou;/Or; when the contribution
due to mesoparticle i 1s separated from the Hamiltonian.
Eqgs. (29) and (30) need to be supplemented by the adi-
abatic condition

5 =0 (31)

The conservative force is derived using eqs. (1) and (13),
ds; =0, and the requirement that the thermodynamic
function of the mesoparticle u(s,n) is both Galilean and
solid-body rotation invariant. These criteria lead to the
conservation of the linear and angular momenta [19, 20],
whereby we can express W< due to the conservative in-
teractions as

8ui
dWC:Zi:;&j Si-drj
ou; ou;
S (T P
i j<i s vls;
1
:izgfg.drijzzfiwf
T JF )

with r;; = r; — r;. From the last equation, we obtain an
expression for the reversible, conservative work exerted
on mesoparticle 7, i.e.,

1
dWf = 5 > £ - dry (33)

J#i

where the conservative force is then given as

3ui
£ - (ar‘ ) (34)
J Sj

where e;; = r;;/r;; is the separation-distance unit vector
with Tij = |I‘1;j|.

Note that defining the force as an adiabatic transfor-
mation is convenient for devising a numerical integration
splitting algorithm [1], where the mechanical motions are
separated from the heat transfer. Moreover, it is impor-
tant to realize we implicitly consider that the internal
DoF of the mesoparticle relax much faster than the re-
solved DoF u and V. As such, we implicitly assume that
there is a clear separation of time scales between the re-
solved and unresolved DoF [12].
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Irreversible, Dissipative Interactions

Next, we formulate the irreversible (dissipative) inter-
actions. Analogous with macroscopic thermodynamics,
for the dissipative interactions, we require an extremum
principle to hold, i.e.,

4. In the absence of fluctuations, the spontaneous dy-
namics of the system is such that

F<0 (35)

where F is the exponent of eq. (26),

F(lpid.frad 15) = 3 | 2+ wslssons) ~ T,

- i

?

(36)

By adding the dissipative force on the right-hand-side of
eq. (30), and by using eq. (16), we obtain

pi = £ +£P (37)
0;8; = G + W
Pi | ]
— - = 38
()
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In eq. (38), we define the irreversible work, Wf”e”, as
the irreversible effect of the motion of the mechanical
DoF converted into the heat. The overall dissipated work
needs to be separated between the mesoscopic system
and the environment. It is important to realize that in
a general mesoscopic model, this splitting follows from
knowledge of the underlying physical processes, which
are outside of the thermodynamic framework. In our
model, due to the fact that the particles are identical, it
is reasonable to assume that the irreversible work done
by the dissipative forces is shared in equal proportions
by both interacting particles, i.e.,

‘g 1 P: DPj
irrev _ =N~ gD (PiPj
iy (- R)

Once we have defined the reversible work [eq. (33)]
and the irreversible work [W/"""dt], we can define the
heat as the energy transferred by means other than those
involving the mechanical DoF. As such, we next define
the irreversible heat exchange between mesoparticles.

The heat flow on mesoparticle 4, ¢;, can be separated
into the heat exchanged with neighboring mesoparticles
J» Gij, and the heat exchanged with the reservoir, @;.
Additionally, to enforce energy conservation, we require
that ¢;; = —¢;;. We can then express the irreversible
heat flow on particle 7 as

4 = Z%‘ + Qi (40)
i

By inserting egs. (39) and (40) into eq. (35), and by
using eqs. (37) and (38), we arrive at

Zs’i >Z% (41)



where we have used the fact that the heat exchanged
between mesoparticles satisfies 3,7, ¢;; = 0. Fur-
ther, by decomposing the left-hand-side of the inequal-
ity in eq. (41) into the internally produced entropy SE” ),
and the entropy due to the interaction with the reser-

voir égres), the entropy production of the mesoparticle
becomes
=80 gl (42)
J#i

As this property should be satisfied for an arbitrary num-
ber of particles, the more stringent condition on each in-
teraction follows

-(V'es)

59 459 >0 (44)

>% (43)

Interestingly, a statement equivalent to eq. (44) can be
found in the theory of non-equilibrium thermodynamics
13, 21].

At this point in the formulation, we could proceed by
considering either eq. (43) or (44). However, the equa-
tions are analogous; therefore, for clarity and ease of pre-
sentation, let us proceed with eq. (44). Substituting eq.
(38) into eq. (44) for each particle, we have

(i) (i) - 1 1
sgj) +S§- ) =4ij (0_ - 0_) (45)
i J
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In the absence of fluctuations, the positiveness of eq. (45)
allows us to identify the thermodynamic forces responsi-
ble for the dissipative processes, where specifically these
forces are proportional to the factors multiplying fi? and
dij, respectively, eqs. (46) and (47) below.

A key ramification of identifying these forces is that

5. The dynamic symmetries, namely Galilean invari-
ance and invariance under solid-body rotations, can
be applied to eq. (45) to enforce the appropriate
conservation laws for the dissipative interactions in
a manner equivalent to those enforced for the con-
servative interactions [19].

We require that eq. (45) is Galilean and solid-body ro-
tation invariant, which ensures that the interactions con-
serve both linear and angular momenta.

Fluxes and Thermodynamic Forces

Next, we define the relationships between the fluxes
and thermodynamic forces. We assume that these rela-
tionships are linear for both the dissipative interactions
and the heat flow [13, 21]:

Pi P;
£ == vijei; - (W - m]7> eij (46)
Gij = — kij (0; — 0;) (47)

where v;; = ywij, kij = kwj, v is the friction co-
efficient, x is the heat conductivity parameter, and w;;
and @;; are weighting functions depending on the dis-
tance between the mesoparticles, which become zero for
r;; larger than the cut-off ranges Rffn and Reyt, respec-
tively. Note that eqgs. (46) and (47) comply with the re-
quirements of dynamic symmetry mentioned above. The
linearity between dissipative fluxes and thermodynamic
forces implies that neither v nor x depend on p or 6 (or

The dissipative forces of eq. (46) have been defined in
the standard form [13, 21]. However, eq. (47) is notably
different from the form of ¢;; in both the original GenD-
PDE [1] method and the DPDE [10] method itself. This
alternative heat flow model is a key result of this work,
where the characteristics are the following. The model:
(1) satisfies eq. (45); (ii) is expressed in terms of the
proper estimators of the macroscopic temperature, i.e.,
in terms of the particle temperatures; and (iii) allows the
GenDPDE method to be formulated in closed form using
the perspective of the dressed entropy s in terms of the
I'-variables only.

Key consequences of the formulation of both eq. (46)
and eq. (47), particularly eq. (47) given in terms of the
proper estimators of T, are that in equilibrium

(£7) =0 (48)

{¢ij) =0 (49)
Satisfying the conditions in eqs. (48) and (49) allow some
inconsistency issues to be avoided. For example, the use
of the naive definition of ¢;; = —k;; (1/6; — 1/6;), rather
than eq. (47), would lead to (¢;;) ~ ki kp(1/Cv,; —
1/Cv;) # 0, where (¢;;) # 0 is the so-called spurious
drift [14] that would unwittingly be compensated for by
the addition of ad hoc terms in the EoM. Moreover, at
equilibrium, to satisfy the conditions in egs. (48) and
(49), the system would move to a (steady-state) distri-
bution different than those postulated in either eqs. (26)
or (5). Note that the heat flow model ¢;; = —r; (1/8; —
1/6;), given in eq. (70) of ref. [1], uses the proper esti-
mator of T, 1/ é, and avoids such issues. However, using
the heat flow model of [1] requires a blending of the bare
and dressed entropies. While this blending does not af-
fect the GenDPDE framework, it causes the computation
of the dissipative interactions in the original GenDPDE
method to be rather complicated and cumbersome.

Lastly, consider the hypothetical heat flow model

Gij = — kij (0; — 0) (50)
instead of the alternative heat flow model of eq. (47).
The difference between the models is a subtle change in

the temperature estimators, which for the hypothetical
heat flow model leads to

(Gij) = — ki (<5i> - <5j>) (51)

1 1
5T »J



For a system of mesoparticles with different heat ca-
pacities, here again the system would produce a spuri-
ous drift. Therefore, if a heat flow model analogous to
Fourier’s law of heat conduction is desired within a linear
Langevin equation, only the alternative heat flow model
of eq. (47) given in terms of the particle temperature is
thermodynamically consistent with the postulated prob-
ability distribution functions given by eqs. (26) and (28).

Random Contributions

The final assumptions in the formulation concern the
random contributions in the EoM.

6. In equilibrium, the spontaneous transitions be-
tween states satisfy the Detailed Balance (DB) con-
dition [14]:

P D)W( = T') = Py(T*)W(IT* — I'*) (52)
with IT'* = eI” and ' = T, where ¢ assigns 1 to

the even variables under time-reversibility, and —1

to the odd variables. The resulting dynamics leaves
the measure in eq. (26) invariant.

7. The effect of the unresolved DoF in terms of the
random contributions is additive, i.e., the dynamic
equations are Langevin-like. The dynamics of the
probability distribution can then be cast under a
Fokker-Planck equation, where only the first and
second moments of the distribution become rel-
evant; see ref. [14]. Furthermore, we consider
Markovian processes only.

C. GenDPDE Equations-of-Motion

In this section, we present the complete set of EoM.
For convenience, we use a discrete form of egs. (29) and
(30), where primed variables refer to the final state at
time ¢ 4 ¢, and non-primed variables to the initial state
at time t; Ot is the timestep. Note that in the discrete
form, the interpretation of the random term is evident;

thus, no Ito-Stratonovich dilemma exists. Considering
terms up to the first order in dt¢:
r, =r; + Pi 51 (53)
m;
p; =pi + (f7 +£) 6t + > opf (54)

J#i
where f¢ = D i fg, P = D iz £, and opf is the
random contribution to the momentum. In ref. [1], we
demonstrated that 5pf§, consistent with the DB condi-
tion, is

oprt = \/kpij (0: + 0;) &ij e 6t/ (55)

where 6pf»§ = —6pﬁ. The normalized Gaussian random
numbers &;; satisfy

<£zg> =0 (56)

(&ij€k1) = (i1 — 010k )0per (57)

where the average is taken over the probability distribu-
tion of &;;. Moreover, the random numbers are correlated
only if they belong to the same time interval.

The EoM for the particle internal energy results from
the energy balance (see eq. (78) of ref. [1]):

1 Pi Pj
i LS (P Pi) oy
v = 2 Z (mz mj> 4 (58)
J#
—z(‘”—) -5 (2 ) ol
J;ﬁz i G N T
R opl 4+ qiot + > dult
j;éz l#1 J#i

where ¢; = Zj 2i Qij and 5u£§ is the random contribu-
tion to the heat associated with the alternative heat flow
model ¢;; of eq. (47). The system dynamics, egs. (53),
(54), and (58), is completed by specifying the properties
of (5u£.

However, before proceeding, let us finalize the com-
plete forms of both the irreversible work done on the
mesoparticle, and the heat exchanged between mesopar-
ticles. By adding the random contributions to eq. (39),
the complete irreversible work becomes

Pi Pj D
— =L ). £26t
Z( mj) “

J#i

—z(p’ )

J#l

irrev __
SWErTer =
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which by definition is identified from the (irreversible) ac-
tion of the mechanical DoF of the system on the energy
balance, eq. (58). Note that the random contributions to
the irreversible work in eq. (59) also include a non-linear
quadratic term [the 3rd term in eq. (59)], which is of or-
der O(6t), and therefore cannot be neglected within the
level of accuracy of our algorithm. Interestingly, when
all the terms on the right-hand side of eq. (59) are av-
eraged with respect to both the equilibrium distribution
and the random momenta, then (W "¢} = 0, which is
the expected behavior for thermal equilibrium.

The remaining terms in the energy balance are asso-

ciated with the heat, such that re-writing eq. (58) as
ul = u; + SWE + SWITTe 4 §¢q;, gives

J#i



where (Sugf can be interpreted as the random heat ex-
changed between neighboring mesoparticles. With the
form of the heat flow established in eq. (47), the ran-
dom energy contribution 5uﬁ is required to ensure that
the particle internal energy properly samples the equilib-
rium probability distribution as the particle internal en-
ergy varies in time. This random energy transfer satisfies
the core concept underlying the Fluctuation-Dissipation
Theorem (FDT).

Lastly, to finalize the complete set of EoM, we specify
the properties of 5u§. In Appendix A, by following ref.

[1], we derive dufl consistent with g;; of eq. (47) as

5’[1,5; = v/ 2kBK/ij0i0j f_ijétl/z (61)

where fij is the normalized Gaussian number with prop-
erties

(&) =0
(&ij&r) = (Bindj1 — 68k )Oner

As before, &;;(t) and &;;(t') are uncorrelated if these do
not belong to the same time interval.

Analogous to the heat flow between mesoparticles, Egs.
(47) and (61), the heat flow between mesoparticle ¢ and
the heat reservoir is Q; = —k;(6; — T) + QF, where the
properties of the random heat flux Qf” are analogous to
eq. (61), and the reservoir temperature is set to 7. For
simplicity, if we ignore the interaction with the reservoir,
then the heat exchange becomes analogous to eq. (59),
ie.,

8gi ==Y kij (0; — 0;)0t + Y oufl (62)

J#i J#i

Egs. (47) and (61) are the key results of this work since
they cast the GenDPDE method [1] under a consistent
framework, depending only on the particle variables con-
nected with the dressed entropy. In comparison, the heat
flow model presented in the original GenDPDE work [1]
is

1 1

i J i

with

5ug =1/ 2k3 Hij gijétl/Q (64)

where the temperature is defined via the entropic formu-
lation instead, i.e., 1/0 = 95/0u. While eq. (63) can be
expressed in terms of 0 via eq. (17), we prefer to employ
the direct link to the proper estimator of T', which is
6. Although eqs. (62) and (63) are physically consistent
and equivalent, as we will demonstrate below, they pro-
duce different forms of the macroscopic heat conductivity
coefficient, particularly with respect to its temperature-
dependence. An advantage of using eq. (62) within the

10

GenDPDE method is that the functional form is analo-
gous to Fourier’s law of heat conduction.

Lastly, in Appendix B, we present the numerical dis-
cretisation of the EoM [egs. (53), (54), and (58)] with the
alternative heat flow model, egs. (62) and (61), which was
determined using the extended Shardlow splitting algo-
rithm (eSSA) [1, 22].

III. RESULTS

In this section, we provide further discussion and
insight into the formulation presented. We begin by
demonstrating the thermodynamic consistency of the al-
ternative heat flow model, followed by a brief compar-
ison to the heat flow model in the original GenDPDE
work [1]. We finish with a discussion of other implica-
tions that arose from the analysis of the mesoparticle
thermodynamic transformations.

A. Alternative Heat Flow Model
1. Consistency of Alternative Heat Flow Model

The thermodynamic consistency of the alternative heat
flow model introduced in this work was verified by ana-
lyzing the particle probability distributions for the van
der Waals equation-of-state (EoS) at an initial system
temperature 7' = 1.5 and system particle density p = 0.5
with p = N/V, where V is the system volume. The
calculation of the probability distributions for the par-
ticle internal energy, particle temperature, particle mo-
menta, and particle local density is detailed in the origi-
nal GenDPDE work, see Sec. 4.3 and Sec. 5.1 in ref. [1].
Fig. 1 shows a comparison of the distributions determined
from the GenDPDE simulation with the alternative heat
flow model against the theoretical distributions obtained
from the general probabilities. Consistent with the origi-
nal GenDPDE work [1], excellent agreement between the
simulated and theoretical distributions was found, indi-
cating consistency of the alternative heat model and cor-
rect sampling of the equilibrium distributions by the in-
tegration algorithm. In addition, we also analyzed the
energy conservation in the GenDPDE simulations with
the alternative heat flow model using the eSSA. We ob-
served excellent energy conservation with the magnitude
of the energy drift consistent with the drift observed in
the original GenDPDE work, see Sec. 5.2.2 in ref. [1].

As a final verification of the alternative heat flow
model, we determined the particle probability distribu-
tions from a simulation of mesoparticles fixed in space.
Under these conditions, the mesoparticles are subject
only to heat exchange modeled by eq. (62) supplemented
with eq. (61). A small constant-volume heat capacity
value was used for the mesoparticle, Cyy = 5kp, with
u = Cy 0, which provides stringent heat exchange condi-
tions due to the non-Gaussian energy probability distri-
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FIG. 1: Equilibrium probability distributions for the van der Waals equation-of-state at initial system temperature 7' = 1.5
and system particle density p = 0.5: (top left) particle internal energy; (bottom left) particle temperature; (top right) particle
momentum; (bottom right) local particle density. Dashed lines are the probability distributions given by Egs. (90), (91), (89),
and (92) in ref. [1], respectively, while solid lines are determined from a GenDPDE simulation with the alternative heat flow
model. Due to each of the particle momenta being nearly identical, the plots for each component are indistinguishable.

bution (see Fig. 2). In this case, the probability distribu-
tion for the particle internal energy fluctuations becomes

P(u) x e/ (kT)y Cv/kp—1 (65)
Note that the exponent of v is Cy /kg —1 and not Cy /kp
as in ref. [10], which is due to Cy = 8u/8§|v =Cy —kg,
where Cy = 0u/00|y; see also eq. (17). A comparison
between the simulation and theoretical distributions is
shown in Fig. 2, where again excellent agreement was
observed, including for the skewness of the distribution.

2. A Brief Discussion Comparing the Original and
Alternative Heat Flow Models

As mentioned previously, the alternative and original
heat flow models are physically consistent and thermo-
dynamically equivalent. However, some underlying dif-
ferences exist between the models, some of which have
already been mentioned as we proceeded with the formu-
lation. For a particular application or future implementa-
tion of the GenDPDE framework, while these differences
may appear subtle, one of the heat flow models may be
better suited for a particular case. As such, the optimal
choice of the model should be carefully assessed to deter-
mine its suitability in an application or implementation.

A key difference between the heat flow models worth
highlighting is the choice of the proper estimators of the
thermodynamic properties. While both models can be
expressed in terms of the proper estimator of the macro-
scopic temperature, their respective forms differ. The
alternative heat flow model of eq. (47) allows the GenD-
PDE framework to be formulated in a closed form using
the dressed entropy s in terms of the I'-variables only,
while the original heat flow model requires a blending
of the bare and dressed entropies [1]. While this blend-
ing does not alter the thermodynamics, the calculation
of the dissipative interactions is more complex, and sub-
sequently more computationally demanding.

Lastly, a possible consequence of proposing an alterna-
tive form for the mesoscopic heat exchange is a change in
the functional form of the macroscopic heat conductivity
coefficient, A\, with respect to the state variables of the
ensemble, which are T' and p in our case. Therefore, we
compare the functional form of A that results from both
heat flow models. When deriving the expression for A,
we only consider the dissipative contribution, Ap, and
ignore the kinetic contribution, Ax. This is a reason-
able assumption because Ak is independent of the heat
flow model, and is primarily related to the interparticle
friction model employed. Further, we consider the ideal
DPD fluid, where conservative interactions are absent.
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FIG. 2: Equilibrium particle internal energy probability distribution from a GenDPDE simulation of mesoparticles fixed in
space using a small constant-volume heat capacity Cv = 5kp, with initial system temperature 7' = 1.5, system particle density

p = 0.5, and heat conductivity parameter x = 1. The theoretical distribution was determined from eq. (65).

flow model may become a disadvantage in mesoscopic
simulations of systems with a weak temperature depen-
dence on A, or for mesoscopic systems with large tem-
perature gradients. A detailed study comparing the nu-
merical behavior of the original and alternative heat flow
models, including the general dependence of the heat con-
ductivity coefficients on T will be addressed elsewhere.

Notably, if £p> ~ 1, then both mechanical contributions
leading to kinetic and potential energy transport scale as
kT < CyT, and are negligible when compared to the
transport due to direct heat exchange between particles.
To begin, we consider the form of Ap for the original
heat flow model eq. (63), and recall that this model is the
same in both the original GenDPDE and DPDE frame-
works. As such, the form of Ap will be equivalent, which

has been derived previously for the DPDE framework [23]
Implications from the Analysis of the

B.
Mesoparticle Thermodynamic Transformations

as
2w R, %k
Ap = el 2 (66)
In addition to the development of the alternative heat
flow model, several consequences and ramifications from
revisiting the formulation of the GenDPDE framework

The derivation of Ap for the alternative heat flow model
is analogous to the derivation given in [23], where the

resulting expression is
2R . p°K
cutP (67)

Ap = —31x

Comparing egs. (66) and (67), the units of « differ, i.e.,
‘energy-temperature’ units versus ‘energy/temperature’
units, respectively. Moreover, it is evident that the orig-
inal and alternative heat flow models result in different
functional forms for Ap with respect to the state vari-
The alternative heat flow model leads to a Ap

ables.

that is independent of the system temperature T, while
Ap o< 1/T? for the original heat flow model. The strong
temperature dependence exhibited by the original heat

have emerged. Next, we summarize those already men-
tioned either here or in the previous work [1], along with
some that were not previously mentioned.

1. The choice of the dependent variable used to formu-
late the GenDPDE method alters the mesoparticle
thermodynamic description. Thermodynamic rela-
tions, rather than being functions, are transformed
into distributions when the choice of the indepen-

dent variables is changed within the same ensem-
ble. This fact also has an impact on the transport
properties because the thermodynamic forces are

defined using Onsager’s perspective.



2. A definitive path for deriving any dressed ther-

modynamic quantity from the corresponding bare
thermodynamic quantity exists. Transformations
to different ensembles and to different sets of inde-
pendent particle variables can be consistently intro-
duced, along with the transformations of the ther-
modynamic forces acting on the system.

. The mesoscopic thermodynamic transformations
introduce additional terms of the order of the size
of the local fluctuations, which prevent an un-
ambiguous definition of both the heat and work.
While there is a preferred choice of the physically-
meaningful definition of the heat and work for the
mesoparticles, the choice becomes irrelevant in the
thermodynamic limit.

. The thermodynamic framework presented here re-
sembles Stochastic Thermodynamics (ST) [18, 24],
which was developed for small systems with sig-
nificant fluctuations. As such, it is interesting to
analyze the definitions of the mesoscopic work and
heat, eqgs. (22) and (23), within the ST framework.
A significant aspect of ST (as well as of Jarzin-
sky’s and Crooks’ theories of irreversible processes
[25, 26]) is that the control parameters drive a fluc-
tuating system from one state to another, which
involves heat and work transfer with the environ-
ment. In our framework, as well as in the canoni-
cal ensemble, the control parameters are T and V.
Hence, from eq. (22), one can isothermally and
reversibly vary the volume of the system, and mea-
sure the average work done. This result is given
in eq. (21), which can be related to an ensemble
average over the property estimator m. The qua-
sistatic nature of the volume variation guarantees
that ensemble averages over 7 are the equilibrium
averages. However, from eq. (23), the analogy to
the work is not obvious since s is neither an esti-
mator of the entropy of the system, nor a control
parameter. From the First Law of Thermodynam-
ics, one can write

(dg) = d{u) — (AW) = d{u) + (r)dV  (68)

The differential symbol d can be taken outside of
the ensemble average for u because u is a state func-
tion, unlike ¢ and W. Next, one can relate the heat
in terms of averages over the estimators, i.e.,

d(uy = 2;?vdT%—€§?TdV (69)
where
oHuy| 1
T v kpT? [(u®) = (w)?]
o{u) 1
T |, =™ g e — @)
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and hence,

(da) = 1 [(0%) = (w)?] dT (70)

1

+ EaT [(um) — (u)(m)] dV

which coincides with T'dS. Moreover, for small fluc-
tuations, kg/Cy < 1, so the first term on the
right-hand-side of eq. (70) gives the classical re-
sult (dg)y ~ Cy(T,V)dT, where Cy = 9u/d0|y is
the constant-volume heat capacity calculated at the
saddle point. In general, corrections of the order of
kp/Cy should be expected. Finally, it is important
to realize that S # (s), since s is not an estimator
of the entropy of the system.

Note that eq. (70) is specific for the canonical en-
semble. For example, for the Gibbs ensemble, one
has

(dWC) = —Pd(V) (71)

_ V) o)

dP]
T
from which an expression analogous to eq. (21) can
be derived. However, (dg) = T'dS. By expanding
S in terms of dT" and dP, one would determine an
equation analogous, but not equal to eq. (70), due
to the change in the control parameters from 7', V
to T', P. Therefore, since there is no estimator of
the entropy of the system, this leads to an expres-
sion for the average heat written in terms of other
system estimators, and such a relationship becomes
ensemble dependent.

. Furthermore, in the ST framework, u(s,V) plays

the role of a Hamiltonian of the potential of mean
force [12], which can be defined if the dynamics
of the unresolved DoF relax much faster than the
dynamics of the resolved DoF. A system having
both bare and dressed entropies requires that the
internal variables, u and V), are always in thermal
equilibrium within the mesoparticle. However, such
an assumption parallels the local equilibrium hy-
pothesis, the basis of the classical theory of non-
equilibrium thermodynamics [13]. Therefore, we
implicitly consider the validity of internal thermal
equilibrium within a GenDPDE application.

. The choice of the proper estimators of the thermo-

dynamic properties that are embedded in the ther-
modynamic description must be considered to rig-
orously connect the particle thermodynamics to the
corresponding macroscopic properties. This crite-
ria is connected with the requirement that equilib-
rium averages of the linear thermodynamic forces
are zero if expressed in terms of the proper es-
timators. These are necessary conditions to for-
mulate Langevin-like equations for the dynamics



with an additive random contribution with zero
mean. Generally, non-linear thermodynamic forces
and spurious drifts can be compensated by addi-
tional contributions in the Langevin equations, re-
sulting in random terms with a non-zero average.
Although conceptually this can be done, we pro-
ceeded in such a way to completely avoid this com-
plexity.

7. The particle thermodynamics may be non-
extensive with respect to the particle material con-
tent. For example, the interfacial contributions of
the mesoscopic objects could represent a significant
fraction of the internal energy content based on the
particle size [27-29].

8. The entanglement of the thermal and mechanical
properties of the system into a state-dependent
Hamiltonian introduces no-go theorems that re-
strict the suitable functional forms of the equations
describing the reversible particle interactions. Ef-
fectively, the existence of the Hamiltonian eq. (27)
embeds the following necessary relation
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n? 0s

(72)

S n

which is analogous to the macroscopic Maxwell re-
lation [16]. In the context of GenDPDE, eq. (72)
indicates that if the forces depend on the temper-
ature 6 (or more properly on s), then the EoS of
the particle should have the appropriate volume-
dependence through n. Hence, the thermal and
mechanical components cannot be independently
proposed, but instead must satisfy eq. (72). More-
over, the existence of the Hamiltonian eq. (27) also
implies that the relation

ofc  Off
8rj o 8r1-

(73)

known as Warren’s no-go theorem for density-
dependent forces [30] is inherently satisfied.

IV. CONCLUSIONS

We revisited the formulation of the GenDPDE method,
and re-derived the particle thermodynamics to ensure
consistency between the local thermodynamics in the
mesoscopic systems and the corresponding macroscopic
properties. We demonstrated this by introducing un-
ambiguous, physically-meaningful definitions of the heat
and work, which lead to the formulation of an alterna-
tive heat flow model that is analogous to Fourier’s law
of heat conduction. We presented further analysis of the
internal, unresolved DoF of the mesoparticles by consid-
ering the thermodynamics of an individual mesoparticle
within the GenDPDE framework. Several key implica-
tions from the analysis were discovered and discussed,
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which are summarized as the following. The mesoscopic
thermodynamic transformations: (1) are altered by the
choice of the dependent variables; (2) introduce addi-
tional terms of the order of the size of the local fluctu-
ations, where these fluctuations differentiate the meso-
scopic and macroscopic descriptions; (3) require that the
particle thermodynamics be considered as a distribution,
rather than a thermodynamic potential; (4) allow for
a definitive path to determine any dressed thermody-
namic quantity from the corresponding bare thermody-
namic quantity; and (5) require proper estimators of the
macroscopic thermodynamic properties. These implica-
tions are critical when considering future extensions or
implementations of the GenDPDE framework.

We also considered fundamental questions regarding
the thermodynamic description of mesoparticles subject
to significant system fluctuations in the context of ST
[18, 24]. Here the novelty with respect to ST is that
the mesoscopic system of the GenDPDE approach is
described via local thermodynamic functions related to
its internal states, in addition to the mechanical DoF.
Compared to the typical structureless systems addressed
within the ST framework [18], our mesoscopic system
can also store internal energy. The scenario is more var-
ied because energy dissipated through irreversible work in
GenDPDE can be shared between the system and the en-
vironment, while in structureless colloids it is completely
absorbed by the environment. Another difference is that
in GenDPDE, we allow direct heat exchange between the
system and the environment, while there is no equiva-
lent for the case of a structureless colloid embedded in a
fluctuating fluid. This analogy will be further explored
elsewhere.

For the alternative heat flow model introduced here,
the analysis allowed us to distinguish between the bare
and dressed entropies § and s, respectively, from which
two estimators of the macroscopic temperature 7" were
derived. We found that compared to the original heat
flow model [1], the alternative heat flow model leads to
a change in the functional form of the macroscopic heat
conductivity coefficient with respect to the state vari-
ables. Furthermore, it allowed us to demonstrate that it
is essential to use these proper estimators of the system
temperature to build the linear Langevin equations [14].
We have also shown that, with the alternative form of the
heat flow model, the macroscopic heat conductivity coef-
ficient is independent of the temperature. (Note that gen-
eral Langevin equations with non-linear heat flow models
require a separate treatment, which is beyond the scope
of this work.)

In summary, the GenDPDE framework developed here
is capable of tackling the dynamics of complex systems
subject to fluctuations within a consistent framework,
which provides a direct connection with the underlying
physics of the system. As such, other scenarios such
as chemical reactions in multi-phase systems can be ad-
dressed [31, 32].



Appendix A: Fluctuation-Dissipation Theorem for
the Alternative Heat Flow Model

The derivation of the FDT follows the derivation in
Appendix B of ref. [1], which uses the discrete form
of the algorithm rather than the stochastic differen-
tial equations. Schematically, the numerical discretisa-
tion algorithm provides a transition from a state point
I = ({pi},{ri},{u:}) at t into a new state point IV =
({pi}, {ri}, {u;}) at t+dt, where the transition is consid-
ered as a discrete stochastic process rather than a con-
tinuous process. The new state point is a function of the
initial state point, system dynamic properties, and the
value taken by the collection of random numbers €;;.
The algorithm can be written as

=7 [f, Q} (A1)
where I is the generic function that specifies the dynam-
ics, and its arguments represent the I'-dependent vari-
ables. The transition also parametrically depends on &t.
The transition probability thus becomes

w(f—1)ot=(s (-1 [00]))
where the subscript (2 indicates that the average is taken
over all realizations of the random force pairs §;;. From

eq. (A2) and the causal nature of the algorithm, it follows
that

/df’W (f 1) 6t:/df’<5 (-0 [P0 ) =1

(A3)

(A2)

The reverse trajectory is defined as I* — I'*, where
[* = ({—p}{r}} {u}}) and D7 = ({=pi}.{r:}, {uwi}).
The sign change depends on the parity under time re-
versal of the variable [14]. Note that the discrete nature
of the algorithm requires that the initial and final state
points also need to be exchanged in the time-reversibility
operation.

The stochastic process described by the algorithm sat-
isfies a master equation with the transition probabilities
given by eq. (A2). Under the condition of sufficiently
small fluctuations, the master equation can be trans-
formed into a Fokker-Plank equation, characterized only
by the first and second moment of the transition proba-

bility W (f — f") [14]. Therefore, to fix the form of the

FDT at the level of the Fokker-Plank equation, we need
to determine only the first and second moments of the
variable in eq. (52).

We start the evaluation of the first moment of the par-
ticle internal energy distribution by using eq. (52). While
for convenience we consider the dressed entropy s as the
independent variable here, equivalently we may also use
the particle internal energy u as the independent vari-
able, since the distributions given in egs. (5) and (9) are
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themselves equivalent. Using the DB condition eq. (52),
we have

/ ddT Pog (T ), W (T — 1)

_ / Pl Po(D) u, W(T* 5 T%)  (A4)

:/df* Poo(T*) u} = (u;)

where eq. (A3) was used for the last equality. The tran-
sition probability eq. (A2), and the use of eq. (58) in
eq. (A4d) give

~ = |1 Pi Pj pPi Pj
/dTPeq(F) 52 (m, - mJ) $€ij Yij€ij - (m -
7 J Q J

J#i
1 .
o > S 0pf - opie + diot+ Y (bufl)e| =0

b I J#i

(A5)

The contribution due to the conservative force is not in-
cluded because it identically vanishes due to the positions
and velocities being uncorrelated in equilibrium. Sim-
ilarly, the [1/23,; (pi/m; — pj/m;) - 6pfi] term van-
ishes since causality indicates that the random momenta
is not correlated with the actual value of the velocity.
Moreover, the first and second terms identically cancel;
see the derivation of the FDT in ref. [20]. Therefore, eq.
(A5) simplifies to

/ 4 Pug(©) [ 6t + S (00l | =0
J#i

(A6)

We can now introduce the explicit expression for the al-
ternative heat flow model, and changing the integration
variables from I' = (p™, vV, u™V) to T' = (pV,rV, sV), we

arrive at

/dFPeq(F) 72%1;]' (9179J)5t+2<5’u£>5 =0
J#i J#i
Since (0;) = (8;) =T , it follows that <5uf§:>g = 0. There-
fore, the alternative heat flow model introduces no spu-
rious energy drift in the EOM that would need to be
compensated by the numerical integration algorithm.
Next, we consider the second moment of the u distri-

bution. Again, using the DB condition eq. (52) together
with eq. (A3), we have

/ AEdE Py (F) ), W (' — T)
_ / A0dT Pog(F) , W(I* — T*) (A7)

:/df* ch(f*)uj uj = (u; uy)

ot



Then using the transition probability eq. (A2), we obtain

/dfP()

1 P; Pk P Pk
X | = — — — | i | = — — ] Ot
Yilg Z <mj my ik m;  my

k#j

+ (i j) (A8)
ki l#a

+ (u; §; + uj ¢;) ot + <5u?5uf>g

+ 3 ZZ (m - > (opfoplhye - (5; = f;ll) 5t

k;éz l#j5
=0
In ref. [20], we have already shown that the sum of the

terms involving momenta identically cancel; therefore, we
are left with

/ dT Pog (T [(ui d; + w5 i) 5t + (Sulsul) g] =0 (A9)

Analogous to the simplification of eq. (A6) when evalu-
ating the first moment, we can substitute the explicit ex-
pression for the alternative heat flow model, and change
the integration variables from I' = (p¥, vV, u™) to I' =
(pY,rN, sV). After which, we arrive at

/ dr P.o(T)

X (-uj Z Kjikek ot — Ug Z Hjlel ot + <6uﬁ6uf>§_> =0
k l

(A10)

where we introduced k;; = — i i and extended the
summation to all the particles, for compactness of the
notation. According to eq. (61), the random energy cor-
relation is

<5“zR5“§%>g = Z Z aipa (Einii) Ot (A11)
ki 1]
Z QG ” ]. — (5”) ot
k#i

Next, to determine the FDT expression for a;;, we
start with eq. (A10), and first consider only the case of
j # 4. Since the integration with respect to momenta
and positions can be straightforwardly performed at the
end, we focus on the integration with respect to u, while
keeping the mesoparticle positions fixed. Furthermore,
because the system is in contact with a heat reservoir of
temperature T', u; of each mesoparticle can vary indepen-
dently because the total energy is not fixed. Therefore,
we can switch to s as the independent variable, and by
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O 5 s /hs—ur/ (ks T)]

Bsk

(L O\ Sl k= (k)]
ke kgl

the first term on the left-hand-side of eq. (A9) becomes

/d51 ... dsy eXrlsr/kp—ur/(kpT)] (ui Z Kjk 0k)
k

= / dsy...dsy BZT[ST/]CB*“r/(kBT)]

0
X lzk: Kk T <1 + kB(’)sk> Uu;

= / dsy...dsy GZT[ST/kBiuT/(kBT)] kBTGL Kji

(A12)

= / dsi...dsy EZT[ST/kBiuT/(kBT)] kBGjHi Kji

In eq. (A12), we considered j # ¢ only, where the last

equality follows from the independence of the integra-

tions on each mesoparticle.
The case when i =

- Zj;ﬁi kg

j is obtained using k;; =

/d51 c.dsy erlsr/kp=ur /(BT | o T9, 1,

— /d81 ...dsy 6ZT[S7'/kBiu"'/(kBT)] kBTgl Z Kji
J#i
(A13)

/d51 cdsy erlor/Fpmun /BTNy N "0,0, 5,
J#i

By combining eqgs. (A11), (A12), and (A13) along with
Kij = Kji, the FDT becomes

a?j = QkB Rij 9,‘9]‘ (A14)
Note that the replacement of T by 6 in eqgs. (A12) and
(A13) was possible because it did not change the values
of the integrals. This replacement allows us to define the
system dynamics in terms of the particle properties only;
however, note that this would not be possible if x;; was
a function of # or w.

Appendix B: Numerical Discretisation Algorithm

The integration of the EoM [egs. (53), (54), and (58)]
with the alternative heat flow model, eq. (62) supple-
mented with eq. (61), was performed using the extended
Shardlow splitting algorithm (eSSA) [1, 22]. The eSSA
separates the integration into reversible and irreversible



terms with the overall solution operator [33], @4, given
as

(b(st ~ wrrev rrev e (bl'I"T‘e'l‘) 0..0 (bZT'Te’U

5t;1,2 6t;1,3 O.. ot;i,j ot;N—2,N
irrev rev
o PsN_1,n © Psy (B1)

The reversible term ®%57” corresponds to

dri=Pist (i=1,..,N)

my;
dp; = £, ot (B2)
1 C
dui = —5 %:Vij . fij (5t
JF#

where f,L-C = Zj;ﬁi fz§7 and Vij = pl/mz — pj/mj.
The reversible term ®3¢V is discretized using the

velocity-Verlet algorithm [34] as
ot c :
pi t—i—; =p; (t)+5fi (t) (i=1,..,N)

J(t+ 2
NP A 1 Gl 1)

m;
wlteg) =u® -5 v 650 (B3)
J#i
evaluate : { £ (t + 5t)}¢]\;1
pi (t + 6t) = p; (t+52t> +%fic (t + 6t) (i=1,..
N
evaluate : Z vij (t+ 0t) - fif (t + ot)
J#i i=1

- %Z"ia‘ (t+6t)-£5 (t+0t)  (i=1,..,N)
J#i
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irTev

Each irreversible term @Y then corresponds to

api~) = £0 bt + bl

dp; 7 = —dp;”’ (B4)
;1 (pipi PPy
d o — — | 7 7 J J
t 2 < ome | 2m,
i R,i—j
+ g7 Ot + du " (B5)
i—j _i—j i=j  i=]
qui-i — _Lq [P e LB P
J 2 Zmi Qmj

— gl ot — dugt

vN)

where the superscript ¢ — j indicates that the variation of
momenta and particle internal energy is considered for a
pair of interacting particles ¢« and j only.

Each irreversible term @g’t’f;’ can also be discretized
A

using the velocity-Verlet algorithm [1, 22] as
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kpvij(0; +0;) &ijei;

St St 5t1/?

Pi (t + 2) =pi(t) - DREAL (t) - eijes; + 5V ki (0 + 6;) &ijei;
St St 5t1/?

P; t+ 5 =Py (t) + E’yijvij (t) c €€ — T

at

ot
i (t+0t) = i<t+> —
pi(t+4t) =p 2 1s

2

5t1/2

ki (0; + 6;5) &ijei;

Yij ot 0
Mgij Vi;6t {V” ( 2 ) 2

ot

+pj(t+5t)-pj(t+5t)
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M;j\/kBvij(0; + 05) &'jeij}
(B6)

6t1/2

Mij\/ ki (0; + 0;) fijeij}

o ot ot Yij
p; (t + dt) = p;, (t+ 2) + 214
51172
-5 kpij(0i +0;) &ijei;
_ o 1 [pi(t+dt)-p; (t+6t)
u; (t+ 0t) = u; (t) 5 [ T

— 0tk (0; —0;) + 5t'/? 2kpri;0:0; f_ij

_m@%m@_m@%m@}

ij 27711' 2mj

pi (1) - pi (t)

+ 0t Kij (01 — 0]) — 6t1/2 2kBHij9i0j gij

where M;; = 1/m; + 1/m;, and the superscript i — j
has been omitted for notation simplicity. Before these
equations are applied to a subsequent pair of particles,
the particle temperatures 6; and ¢; are updated through
the mesoscopic EoS using the updated particle internal
energies.
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