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The site and bond percolation problems are conventionally studied on (hyper)cubic lattices, which
afford straightforward numerical treatments. The recent implementation of efficient simulation algo-
rithms for high-dimensional systems now also facilitates the study of Dn root lattices in n dimension
as well as E8-related lattices. Here, we consider the percolation problem on Dn for n = 3 to 13 and
on E8 relatives for n = 6 to 9. Precise estimates for both site and bond percolation thresholds ob-
tained from invasion percolation simulations are compared with dimensional series expansion based
on lattice animal enumeration for Dn lattices. As expected, the bond percolation threshold rapidly
approaches the Bethe lattice limit as n increases for these high-connectivity lattices. Corrections,
however, exhibit clear yet unexplained trends. Interestingly, the finite-size scaling exponent for
invasion percolation is found to be lattice and percolation-type specific.

I. INTRODUCTION

Percolation being one of the simplest critical phenom-
ena, its models play a particularly important role in sta-
tistical physics [1]. Minimal models—lattice-based ones,
in particular—have indeed long been used to test notions
of universality as well as the applicability of mean-field
and renormalization group predictions to physical sys-
tems. On lattices, two covering fractions p can be defined:
(i) the probability that a vertex is occupied, and (ii) the
probability that an edge between nearest-neighbor ver-
tices is occupied. As p increases, a percolating cluster
forms at a threshold psitec or pbondc , depending on the cov-
ering choice [1]. These thresholds are therefore lattice
specific. Because precise thresholds values are prereq-
uisite for stringently assessing criticality [2–5] yet lack
analytical expressions [6], substantial efforts have been
directed at estimating them through numerical simula-
tions [2, 7–10] and graph-based polynomial methods [11–
14]. The strong dependence of criticality on spatial di-
mension n further motivates expanding these efforts over
an extended range of n [1, 15].

In this context, the invasion percolation algorithm re-
cently introduced by Mertens and Moore to determine
lattice percolation thresholds [2, 16] is particularly inter-
esting. In short, the algorithm directly grows a percolat-
ing cluster, and thus provides both the universal asymp-
totic critical behavior and the lattice-specific finite-size
scaling correction. Most crucially, by avoiding the ex-
plicit construction of a lattice grid, the scheme preserves
a polynomial space complexity as n increases. Thresh-
old values with ten significant digits of precision have
thus been obtained on hypercubic lattices (Zn) up to
n = 13 [2].

Hypercubic lattices, although geometrically straight-
forward, are in some ways not natural systems to study
as dimension increases. In order to better visualize this
effect, recall that lattices can be seen as discretizations
of Euclidean space R

n, in which each lattice site is cen-
tered in a cell in that tessellation. As n increases, the

cubic cells that tile Z
n become increasingly dominated

by the spikiness of their corners. By contrast, the cells
of root lattices, Dn (for n ≥ 3) have smoother features.
In n = 3, for instance, this construction gives rise to the
face-centered cubic lattice (D3 ≡ fcc), whose rhombic do-
decahedron cells are much closer to spheres than cubes
are. A way to quantify this effect is to compare the max-
imal sphere packing fraction of different lattices (with a
sphere centered on every lattice site). In this measure,
Dn packings are 2n/2−1 times denser than their Zn coun-
terparts [17]. Similarly, the eight-dimensional E8 lattice
corresponds to a sphere packing fraction twice that of
D8 (and 16 times that of Z8); E8-related lattices, E6, E7

and Λ9 are also the densest known sphere packings in
their corresponding dimension. This advantage has mo-
tivated the recent consideration of Dn and E8-related pe-
riodic boundary conditions for high-dimensional numeri-
cal simulations [18–20]. For a same computational cost,
these periodic boxes indeed have a larger inscribed radius
than hypercubes and thus present less pronounced finite-
size corrections. Because these lattices provide a more
compact and symmetric tessellation of the space, they
may similarly help suppress obfuscating pre-asymptotic
corrections to percolation criticality [2, 4], which are es-
pecially challenging to handle around the upper critical
dimension, nu = 6. Yet percolation threshold values,
which are prerequisite for any criticality study, have not
been previously reported for these lattices.

In this work, we investigate the two canonical lattice
percolation thresholds on Dn lattice for n = 3 to 13 as
well as on E8-related lattices in n = 6 ∼ 9. We first
describe the high-dimensional lattices considered in Sec-
tion II. In Section III, we derive the series expansion for
both psitec and pbondc on Dn lattices based on lattice ani-
mal enumeration. We then describe the invasion percola-
tion algorithm in Section IV, and analyze the numerical
threshold results in Section V. We briefly conclude in
Section VI.
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II. LATTICE CONSTRUCTION

In this section, we review the construction of the high-
dimensional Dn and E8-related lattices following the de-
scription in Ref. 21. Construction algorithms for these
lattices were developed in 1980s in the context of sig-
nal processing in information theory [17, 21], and have
recently found use in high-dimensional molecular simula-
tions [18–20].
Before describing these lattices, recall that the con-

ventional n-dimensional hypercubic lattices, Zn, are de-
fined as a set of n-dimensional vectors of integer com-
ponents. The nearest-neighbor vectors (a1, a2, ..., an) in
Z
n are (±1, 0n−1). Note that for notational convenience,

(±1, 0, ...) denotes a group of vectors with all index per-
mutations, and 0m denotes m subsequent 0s as vector
components. The number of nearest neighbors (or kiss-
ing number) is thus 2n. Dn (or checkboard) lattices
can be viewed as the subset of Z

n for which the sum
of coordinates is even. The nearest-neighbor vectors are
then (±12, 0n−2), thus resulting in each vertex having
2n(n − 1) nearest neighbors in total. In n = 3, for ex-
ample, the 12 nearest-neighbor vectors for the D3 (fcc)
lattice read

(1, 1, 0), (1,−1, 0), (−1, 1, 0), (−1,−1, 0),
(1, 0, 1), (1, 0,−1), (−1, 0, 1), (−1, 0,−1),
(0, 1, 1), (0, 1,−1), (0,−1, 1), (0,−1,−1).

D3, D4 and D5 lattices are the densest sphere pack-
ings in their respective dimensions. The densest sphere
packings for n = 6 to 9 are E6, E7, E8 and Λ9 lattices,
respectively. In particular, the E8 lattice consists of two

D8 lattice points with offset (12
8
). The nearest-neighbor

vectors of E8 can then be viewed as four groups,


















±(12
8
), 2 vectors,

(12
4
,− 1

2

4
), 70 vectors,

±(12
2
,− 1

2

6
), 56 vectors,

(±12, 06), 112 vectors,

(1)

and thus each vertex has 240 nearest neighbors in total.
The E7 lattice is a cross-section of E8 in n = 7. One of

the choices to generate nearest-neighbor vectors in E7 is
the subset of Eq. (1) with zero sum, which corresponds to
a seven-dimensional hyperplane orthogonal to (18). Each
vertex then has 126 nearest-neighbor vectors,

{

(12
4
,− 1

2

4
), 70 vectors,

(1,−1, 06), 56 vectors.
(2)

The E6 lattice is a cross-section of E7 in n = 6 that
is orthogonal to (1; 06; 1) (with first and the last compo-
nents fixed). The E6 nearest-neighbor vectors are con-
structed by further constraining a1 + a8 = 0 from E7,
namely,











±(12 ;
1
2

3
,− 1

2

3
;− 1

2 ), 40 vectors,

(0; 1,−1, 04; 0), 30 vectors,

±(1; 06;−1), 2 vectors,

(3)

thus giving 72 such vectors.
Infinite numbers of equally dense packing exist in

n = 9 [22], but one of its forms, Λ9, can be constructed
similarly to E8. This construction consists of two D9 lat-
tices, offset by (12 , ...,

1
2 , 0), which results in 272 nearest-

neighbor vectors,



















±(12
8
; 0), 2 vectors,

(12
4
,− 1

2

4
; 0), 70 vectors,

±(12
2
,− 1

2

6
; 0), 56 vectors,

(±12, 07), 144 vectors.

(4)

Equations (1)-(4), after rescaling by a factor two, gener-
ate integer vectors that can be easily implemented using
integer arithmetics.
Because for n = 10 the (presumed) densest sphere

packing is a nonlattice [22], n = 9 offers a natural end to
our consideration of dense sphere packings. We should
note, however, that even for d ≤ 9 other uniform pack-
ings that are equivalently dense to lattice packings can
be obtained. For example, in n = 3 the face-centered
cubic lattice (D3) is intimately related to the hexagonal
closed-packed (hcp) structure. As a result, the two have
site percolation thresholds that are numerically close yet
not identical [23]. Similarly, in n = 5, 6, 7 four (and in
n = 9 a continuum of) related uniform packings can be
constructed [22]. Their pc are expected to differ slightly
from those of the related simple lattices, but their con-
struction is not considered here. Note also that percola-
tion on Dn and E8-related lattices is related to that on
hypercubic lattices with extended-nearest-neighbor con-
nectivity [5, 9, 10]. Some of these constructions are even
equivalent to the lattices considered here (see Table II).

III. SERIES EXPANSION

In this section we derive high-dimensional series ex-
pansions for both site and bond percolation thresholds
on Dn lattices by counting lattice animals embedded on
these lattices [24, 25]. Of all possible approaches for de-
riving such series, this one has thus far achieved the most
extended expansion for hypercubic lattices [25], which
motivates us to consider it here. The method, however,
involves heuristic assumption on lattice animal polyno-
mials and is thus not deemed rigorous. (The first three
terms of the site percolation series for hypercubic lat-
tices have been formally validated through a different
scheme [26].)
For site percolation a site animal of size v is a cluster

of v lattice vertices connected after linking all neighbor-
ing vertex pairs. Similarly, for bond percolation a bond

animal of size e consists of a connected set of e lattice
edges. In both cases, the perimeter t is the number of in-
cident vertices (or edges) for the lattice animal. Because
for a given v (or e), lattice animals with different t exist,
we index them as tv,i (or te,i). We further denote the
number of distinct (not related by translation) site and
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bond animals of perimeter t on a n-dimensional lattice
as gv,i(n) (or ge,i(n)).

A. Site percolation

We first consider the site percolation threshold. Fol-
lowing Mertens et al. [25] we define the polynomial (with
implicit n dependence)

Av(q) =
∑

{tv,i}

gv,iq
tv,i , (5)

in terms of q = 1 − p. In particular, Av(1) ≡ Av gives
the total number of lattice animals of size v in an n-
dimensional lattice. At covering fraction p, the expected
site cluster size on the lattice is

S =
∑

v

v2pv−1Av(1− p) ≡

∞
∑

ℓ=0

bℓ(n)p
ℓ, (6)

where we have expanded S as a power series in p. Be-
cause Av(q) is associated with a factor of pv−1, obtaining
bℓ only requires A1, ..., Aℓ+1, i.e., counting g1,i to gℓ+1,i.
Once these terms are known, psitec can be approximated
by re-summing the terms using a (ℓ− 1, 1) Padé approx-
imant bℓ−1/bℓ (see Ref. 25).
In order to obtain a series expansion, the objective is

to count gv,i in different dimensions, and express gv,i(n)
as a polynomial in n. On hypercubic lattices the com-
putational cost of this enumeration is greatly simplified
by introducing proper dimension to account for the num-
ber of dimensions spanned by a lattice animal [24, 25],
but this approach is not obviously generalizable for Dn

lattices. We instead implement a more generic, brute-
force algorithm [27], which traverses every possible lat-
tice animal via a breadth first search (BFS) of the lattice
vertices. For notational convenience, we also define the
lexicographical relation between two points. In partic-
ular, x > y if the first nonzero coordinate elements in
x− y is greater than zero.
Starting at the origin, we add every nearest-neighbor

site (as described in Section II) to the perimeter set. In
that set, we then choose one site x and add it to the site
animal set according to the following criteria:

1. if x is lexicographically greater than the origin,
(0n);

2. if x was newly added to the perimeter set at the pre-
vious iteration, or if x is lexicographically greater
than all sites in the site animal set.

The first constraint ensures that the origin is the site with
the lexicographically smallest coordinates in the cluster.
The second constraint ensures that a cluster is generated
site-by-site with definitive order. These two conditions
guarantee that a site animal—after properly accounting
for translational invariance—is counted exactly once.

Once a new site is added, the perimeter set is up-
dated with the nearest neighbors of this site. New sites
are then iteratively selected until the pre-assigned size v
is reached. Therefore, by running the algorithm once
with assigned v and n, a series of integer values of
(tv,i(n), gv,i(n)) can be obtained. For example, numeri-
cal enumeration results for v = 3 site animals in n = 2
to 5 are reported in Table I.

TABLE I. Numerical results for site animal enumeration at
v = 3

n 2 3 4 5

{t3,i} 7 8 22 23 24 48 51 52 86 91 92

g3,i 4 2 8 12 30 32 72 108 80 280 260

The next step of the series construction entails obtain-
ing the analytical polynomial forms of all of the t and
g polynomials from their numerical values. Let’s first
consider tv,i(n). Because every site of a Dn lattice has
z = 2n(n − 1) neighbors, the perimeter for a cluster of
size v cannot exceed zv, and hence tv,i(n) ≤ 2n(n− 1)v.
However, this upper bound double counts certain sites,
namely, those multiply-shared as neighbors and that are
part of the cluster. For two neighboring sites, the num-
ber of shared neighbors is of O(n), hence the doubly-
counted sites are of O(n) per cluster site. As a result,
tv,i(n) = 2vn(n − 1) − O(vn), which is quadratic in n.
Therefore, site animals in different dimensions can be re-
lated by a linear fit of t,

tv,i(n) = 2n(n− 1)v + c
(t)
1 n+ c

(t)
0 , (7)

Although results from only two different dimensions are

required to determine the coefficients c
(t)
0 and c

(t)
1 , fit-

ting results for a larger number of dimensions leaves no
residual, which furthers our confidence in this heuristic
scheme.
The polynomial gv,i(n) can also be obtained by solv-

ing a linear system. The (upper bound of the) order
of this polynomial must, however, be determined in ad-
vance. Because the total number of lattice animals is
∼ [2n(n − 1)]v−1, the order of gv,i(n) is also at most

n2(v−1). And because the orientational degeneracy un-
der Dn symmetry requires that gv,i(n) always has roots

n(n− 1), the order is further reduced to n2(v−2). There-
fore, we require the numerical gv,i(n) results for at most
2v − 3 different dimensions, and solve the equation to
obtain coefficients,

gv,i(n)/[n(n− 1)] =

2(v−2)
∑

k=0

c
(g)
k nk. (8)

While the validity of this fitting form has yet to be mathe-
matically demonstrated, the correctness of gv,i polynomi-
als can be empirically tested by checking that the resid-
ual vanishes when fitting the results of a (larger-than-
necessary) number of dimensions.
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In order to illustrate this procedure, we take v = 3
as an example. Inserting the results for n = 3-5 from
Table I into Eq. (7) gives three t polynomials,











t3,1 = 6n(n− 1)− 10n+ 16

t3,2 = 6n(n− 1)− 8n+ 11

t3,3 = 6n(n− 1)− 8n+ 12.

(9)

For each t3,1(n) we take the associated g3,1(n) and solve
for Eq. (8). This also generates three g polynomials,











g3,1(n) = 4
3n(n− 1)(n− 2)

g3,2(n) = 2n(n− 1)(n2 − 5n+ 7)

g3,3(n) = n(n− 1)(4n− 7).

(10)

Note that {g3,1(2), g3,2(2), g3,3(2)} = {0, 4, 2}, which is
consistent with the numerical results. (In particular, in
n = 2 only two distinct t is are reported in Table I, which
is consistent with g3,1(2) = 0.) In general, it is preferable
to solve first for t polynomials, in order to index enumer-
ation results in different dimension, and then solve for
g polynomials, in order to obtain a functional mapping
tv,i(n) 7→ gv,i(n). For example, in v = 3 we obtain three
pairs of (t, g) polynomials in Eqs. (9) and (10).
Evaluating site animals up to n = 15 is then sufficient

to solve Eq. (8) for v ≤ 6. (Because the total number of
site animals, Av ∼ n2(v−1), grows exponentially with v,
results for v > 6 lie beyond current computational reach.)
We thereby identify 12, 36, 83 pairs of (t, g) polynomials
for v = 4, 5, 6, respectively [28], and with tv,i and gv,i for
v ≤ 6, we obtained the first six terms in the expansion
for S [Eq. (6)],

b0 = 1,

b1 = 2n(n− 1),

b2 = 2n(n− 1)(2n2 − 6n+ 7),

b3 = 2n(n− 1)(4n4 − 24n3 + 57n2 − 53n+ 12),

b4 = 2n(n− 1)(8n6 − 72n5 + 272n4 − 552n3 + 804n2

− 1102n+ 857),

b5 = 2n(n− 1)(16n8 − 192n7 + 1004n6 − 3028n5+

6018n4 −
17710

3
n3 − 11851n2 +

284075

6
n− 43202).

(11)
For large ℓ, the Padé approximant bℓ−1/bℓ converges

to pc [25]. However, it is not a priori known to what
accuracy a finite-order approximant should agree with
the actual (unknown) expansion form. What we do know
is that the leading order of that expansion should agree
with the Bethe lattice threshold for a branching tree of
degree z [1],

pc,Bethe =
1

z − 1
≡

1

σ
, (12)

where for Dn lattices z = 2n(n − 1). In the following
we denote 1/σ the Bethe lattice limit of the percolation
threshold.

We observe that the lowest-order approximant b0/b1
already agrees with pc,Bethe at leading order. We also
observe that in general bℓ has a leading order of n2ℓ,
and bℓ−1/bℓ provides an approximation for pc with an
error that vanishes asymptotically as O(n−(ℓ+2)). For
comparison, bℓ ∼ nℓ for a hypercubic lattice and the
approximant b2ℓ/b2ℓ+1 have the same order of error
O(n−(ℓ+2)) [25]. Expanding b4/b5, in particular, gives

psitec =
1

σ
+

1

n3
+

23

8n4
+

17

2n5
+

999

32n6
+O(n−7). (13)

The numerical accuracy of this series is evaluated in
Sec. VB.

B. Bond percolation

For the bond percolation, we similarly define the bond
polynomial

Ae(q) =
∑

{te,i}

ge,iq
te,i , (14)

which gives the expected bond cluster size

S =
∑

e

e2pe−1Ae(1 − p) ≡

∞
∑

ℓ=0

bℓ(n)p
ℓ (15)

as a polynomial in p. The enumeration scheme for
bond animals is essentially the same as for site animals,
with the exception that we now maintain bonds, which
are indexed as the coordinates of the lexicographically
smaller vertex on this bond, in addition to the orienta-
tion index—from 1 to n(n− 1)—of the bond. The bond
animal enumeration is then used to obtain a series of nu-
merical values (te,i(n), ge,i(n)). The perimeter polyno-
mials te,i(n) for bond animal are also quadratic with n,
but the leading prefactor is not fixed. The t polynomial
is thus obtained by fitting t(n) in at least three dimen-
sions. A bond animal of size e includes at most e + 1
sites, hence the order of ge,i(n) is at most n2e, including
roots n(n− 1). This leads to 2e− 1 different dimensions
being required for solving the linear equation for ge,i(n),
similar to Eq. (8),

ge,i(n)/[n(n− 1)] =

2(e−1)
∑

k=0

c
(g)
k nk. (16)

Bond animals can thus be evaluated up to dimension
n = 12 and Eq. (16) can be solved up to e = 5. We
thereby identify 2, 5, 10, 19 pairs of (t, g) polynomials for
e = 2, 3, 4, 5, respectively [28]. Here as well, because
the total number of bond animals, Ae ∼ n2e, grows ex-
ponentially with e, results for e > 5 lie beyond current
computational reach.
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Invoking Eq. (15) we obtain

b0 = n(n− 1),

b1 = 2n(n− 1)(2n2 − 2n− 1),

b2 = 2n(n− 1)(4n4 − 8n3 + 9),

b3 = 2n(n− 1)(8n6 − 24n5 + 12n4

− 8n3 + 27n2 + 131n− 218),

b4 = 2n(n− 1)(16n8 − 64n7 + 64n6 − 48n5

+ 56n4 + 328n3 + 1534n2 − 7778n+ 7499).

(17)

Note that we have bℓ ∼ O(n2ℓ+2) which is two orders
(in n) higher than for site percolation. Note also that
unlike for site percolation, b0/b1 here has yet to converge
to the Bethe lattice limit at leading order. For ℓ ≥ 2,
however, the Padé approximant pbondc ≈ bℓ−1/bℓ has an
error of O(n−(ℓ+3)) one order smaller than for psitec . In
particular, expanding b3/b4 gives

pbondc =
1

σ
+

1

n5
+

81

16n6
+O(n−7). (18)

The accuracy of this series is also evaluated in Sec. VB.

IV. INVASION PERCOLATION

In this section we describe the invasion percolation al-
gorithm by Mertens and Moore [2] (itself derived from
Ref. 29) for an arbitrary lattice structure, and then ana-
lyze its complexity for the considered lattices.
As stated in the introduction, the algorithm grows a

single cluster without explicitly storing the lattice grid.
This strategy requires a moderate memory usage, even in
high dimension, especially compared to the widely used
Hoshen-Kopelman algorithm which maintains a periodic
lattice grid [30]. It is also less computational expensive
than the Leath algorithm, which grows clusters according
to standard percolation statistics, and therefore samples
the whole cluster size distribution [31]. Although inva-
sion percolation and ordinary percolation differ in gen-
eral, they both give the same percolating critical cluster
for the nearest-neighbor site or bond percolation [16].
The method thus provides a direct estimate of the per-
colation threshold. It may also be used to efficiently ex-
tract critical exponents associated with percolating clus-
ter, such as the fractal dimension df and the subdiffusion
exponent dw [1].
In our implementation, two data structures are used:

(i) a set (collection of unique elements) S to maintain
all sites (or bonds) that belong to the cluster as well as
those incident to them; and (ii) a priority queue Q for
the stepwise growth of the cluster. The priority queue
is a sorted data structure that maintains key-value pairs
and keeps the keys sorted. Insertion of a pair has a loga-
rithmic time complexity, and extraction (pop) of the pair
with the smallest key takes a constant time.

For site percolation—starting from the origin—every
neighboring vertex is inserted (following Sec. II) into
S. For each of these new vertices, a random weight
wi ∈ [0, 1) is assigned and the vertex is inserted into
Q with wi as the key. The priority queue then contains
references of all perimeter sites (or bonds) of the current
cluster in S and its size |Q| = t. For the next step, the
vertex of minimum weight inQ is popped, and the cluster
size, N , is incremented. The previous steps are repeated
until the pre-assigned cluster size N = N0 is attained.
The expected set size at a certain N , which we denote
B(N) = 〈|S(N)|〉, is computed by averaging the set size
among independent realizations. For bond percolation,
we start with an arbitrary bond incident to the origin
and otherwise follow the same procedure.
The cluster obtained by invasion percolation simulta-

neously approaches the giant component at pc with the
scaling form [2, 16]

N

B(N)
≈ pc(1− cN−δ) (19)

where δ is the convergence exponent of finite-size scaling
and c is a fitting constant.
For each instance, the space complexity is

n|S|+ |Q| ∼ nN/pc ∼ O(nσN)

where the factor of n accounts for the size of an n-
dimensional vector. For Dn lattice the space complex-
ity is thus O(n3N). Although the space complexity is
larger, by a factor of n, than for Z

n lattices [O(n2N)],
the memory requirement remains moderate for contem-
porary computers. The time complexity depends on the
number of insertions to S which is O(N/pc) ∼ O(n2N),
in addition to the complexity of the insertion to Q which
is at most N × O(n + log |Q|) ≈ O(N logN), and thus
O(N logN) in total. In practice, we can grow clusters up
to N0 = 1.5× 107 in n = 3 and up to 2× 105 in n = 13,
within a memory usage of less than 10 GB. At least 104

independent clusters are obtained for each lattice, with
each realization is usually taking less than a minute on
an AMD Ryzen 3900x processor. Therefore each given
model and dimension costs ∼ 200 h of CPU time.

V. RESULT AND DISCUSSION

In this section we compare the numerical threshold
values obtained from the invasion percolation described
in Sec. IV with the series expansion results obtained in
Sec. III.

A. Numerical thresholds

Table II reports both site and bond percolation thresh-
olds for Dn as well as for E8-related lattices obtained
by fitting the numerical N/B(N) results with Eq. 19.
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TABLE II. Site and bond percolation thresholds on Dn and E8-related lattices along with available reference values

Lattice psitec pbondc Eq. (13) (site) Eq. (18) (bond) Eq. (12) (Bethe lattice)
D3 0.199 236(4) 0.120 169(2) 0.241 243 0.101 969 0.090 909

0.199 235 17(20) [8] 0.120 163 5(10) [7]
D4 0.084 200 1(11) 0.049 519 3(8) 0.086 256 0.045 690 0.043 478

0.084 10(23) [9] 0.049 517(1) [5]
D5 0.043 591 3(6) 0.027 181 3(2) 0.042 959 0.026 285 0.025 641

0.043 1(3) [32] 0.026(2) [32]
D6 0.026 026 74(12) 0.017 415 56(5) 0.025 559 0.017 186 0.016 949

0.025 2(5) [32]
D7 0.017 167 30(5) 0.012 217 868(13) 0.016 932 0.012 151 0.012 048
D8 0.012 153 92(4) 0.009 081 804(6) 0.012 043 0.009 059 0.009 009
D9 0.009 058 70(2) 0.007 028 457(3) 0.009 006 0.007 019 0.006 993
D10 0.007 016 353(9) 0.005 605 579(6) 0.006 990 0.005 602 0.005 587
D11 0.005 597 592(4) 0.004 577 155(3) 0.005 584 0.004 575 0.004 566
D12 0.004 571 339(4) 0.003 808 960(2) 0.004 564 0.003 807 996 0.003 802
D13 0.003 804 565(3) 0.003 219 701 3(14) 0.003 801 0.003 219 176 0.003 215
E6 0.021 940 21(14) 0.014 432 05(8) 0.014 085
E7 0.011 623 06(4) 0.008 083 68(2) 0.008 000
E8 0.005 769 91(2) 0.004 202 07(2) 0.004 184
Λ9 0.004 808 39(2) 0.003 700 865(11) 0.003 690
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FIG. 1. Convergence of N/B(N) to site (diamonds) and bond
(asterisks) percolation thresholds on Dn lattices in n = 4
(blue), 8 (red) and 12 (yellow). Finite-size correction scales
as O(N−δ) (solid lines), where δ → 1 as n → ∞.

For comparison, the series expansion forms of Eqs. (13)
and (18) as well as Bethe lattice approximation from
Eq. (12) are also included. Results for n = 3-6 are con-
sistent with published values, and except for n = 3 our
results are at least an order of magnitude more accurate.
For 6 < n ≤ 13 no prior results are known. Remark-
ably, as for Zn lattices [2], pc results for Dn lattices are
obtained with higher precision—for comparable compu-
tational efforts—as n increases (Fig. 1). Because the con-
vergence exponent δ [Eq. (19)] increases with n, finite-size
corrections indeed then decay faster. For the range of n
considered, this advantage compensates the decrease in
N0 imposed by the growing memory cost. As a result,
the method achieves a higher absolute accuracy in higher

3 6 9 12

0.4

0.6

0.8

1

FIG. 2. Convergence exponent δ for site and bond percolation
on Z

n, Dn and E8-related lattices, E6, E7, E8 and Λ9. (Re-
sults for Z

n site percolation in n = 4 to 13 are from Ref. 2.)
Error bars from fitting are smaller than (comparable to) the
marker size in n ≤ 6 (in n > 6). Lines are guides to the
eye. Note that δ generically grows with n but its value is not
universal.

dimensions, and a relative uncertainty of 10−6 to 10−7 is
obtained for all investigated systems.

Because δ controls the convergence rate of invasion
percolation, it is interesting to compare its behavior for
different lattices (Fig. 2). At first glance, δ increases
with n for both Z

n and Dn lattices and tends to 1 as
dimension increases, as expected from the Bethe lattice
analysis [2, 16]. While for site percolation on Z

n, Dn

and E8-related lattices δ appears similar, the exponent
evolves differently for bond percolation on different lat-
tices as well as for either type of percolation on a same
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lattice. Its evolution further appears to change around
the upper critical dimension, nu = 6, with δ for different
percolation criteria separating in n > 6. Because δ is not
universal—depending on the type of percolation as well
as on lattice geometry, it is not clear whether this phe-
nomenon is merely a coincidence or intimately related to
the mean-field physics. Further theoretical consideration
of this quantity would be needed to say more definitely.
In any event, δ may be a useful quantity for selecting a
lattice to study percolation criticality. A greater δ indeed
implies a faster decay of certain finite-size corrections.

B. Comparison with series expansion

Our precise numerical thresholds for Dn lattices can
be compared with the series prediction for both site and
bond percolation in Sec. III. The relative error of the
expansion up to n−ℓ term, defined as

η(ℓ)p =
∣

∣

∣
pc,simulation − p

(ℓ)
c,series

∣

∣

∣
/pc,simulation, (20)

is shown in Fig. 3(a). As expected, the various thresholds
converges gradually to the Bethe lattice value, 1/σ, in
the large n limit. For site percolation, this convergence
rate is fairly slow—a ∼ 10% deviation persists even in
n = 13—but introducing higher-order terms in the series
dramatically reduces that error. In particular, includ-
ing terms of order up to n−6 leads to a relative error of
∼ 0.1% in n = 13. For bond percolation, because the
prefactors for both n−3 and n−4 in the expansion form
are zero, the deviation is already down to ∼ 0.1% in
n = 13. Including two more terms in Eq. (18) further di-
vides the error by a factor ∼ n2. The series expansion in
Eqs. (13) and (18) is thus expected to predict percolation
thresholds with very high accuracy for n > 13.

Percolation thresholds for Zn, Dn and E8-related lat-
tices are compared with the Bethe lattice result in
Eq. (12). Although a dimensional series expansion is not
available for E8-related lattices, their large site connec-
tivity (see Sec. II) brings them reasonably close to the
Bethe lattice result already. In all three cases, the Bethe
lattice prediction indeed better matches the bond than
the site percolation threshold [Fig. 3(b)]. For Z

n and
Dn lattices, as discussed above, this result was expected
from the vanishing first subleading coefficients in series
expansion. For E8-related lattices, for which no such
series exist, the same trend is observed. More specifi-
cally, the deviation is <

∼ 1% for bond percolation and
<
∼ 40% for site percolation. This feature thus appears to
be generic for lattices beyond Z

n, for which it was first re-
ported [25, 33, 34]. Yet it lacks a physical explanation. A
generic scaling form for the percolation threshold beyond
the Bethe lattice approximation might be informative in
this respect, but is still found lacking.

10
-4

10
-3

10
-2

10
-1

10
0

3 6 9 12
10

-3

10
-2

10
-1

(a)

(b)

FIG. 3. (a) Relative error for the site (diamonds) and bond
(asterisks) percolation thresholds on Dn lattices predicted by
series expansion for various highest-order terms. Note that for
site percolation the high-order lines are truncated in small n
because the relative error then changes sign. Lines are guides
to the eye. (b) Percolation thresholds on Z

n, Dn and E8-
related lattices (markers with dotted line) compared to the
Bethe lattice limit 1/σ (solid line), which matches well the
bond percolation threshold in all three lattice types.

VI. CONCLUSION

We have reported the series expansion and numerical
percolation thresholds for Dn lattices as well as the nu-
merical thresholds for E8-related lattices from n = 6 to
9. The excellent agreement between the two independent
approaches cross-validates the methods used and their
results. More interestingly, the Bethe lattice approxima-
tion to the percolation threshold generically presents a
markedly higher precision for bond than for site percola-
tion for all lattices considered, as was first observed for
hypercubic lattices. This finding should motivate further
theoretical studies of a generic scaling form.
The invasion percolation scheme itself presents some

interesting physical features. Although its convergence
exponent δ evolves similarly in low dimensions, bond
percolation presents much faster decaying finite-size cor-
rections than site percolation in n > 6. Whether the
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effect is related to the upper critical dimension, how-
ever, remains unclear. This finding nevertheless suggests
that pre-asymptotic corrections might be most efficiently
suppressed for bond percolation models, and thus that
these lattices may be preferable for evaluating certain
critical exponents. Our findings therefore identify un-
resolved critical features of percolation theory, and set
the stage for investigating percolation criticality on high-
dimensional lattices beyond the conventional hypercubic
geometry.
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