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ABSTRACT: We study the dynamics of genetic code evolution. The model of Vetsigian
et al. [1] and Vetsigian [2] uses the mechanism of horizontal gene transfer to demonstrate
convergence of the genetic code to a near universal solution. We reproduce and analyze
the algorithm as a dynamical system. All the parameters used in the model are varied
to assess their impact on convergence and optimality score.We show that by allowing
specific parameters to vary with time, the solution exhibits attractor dynamics. Finally,
we study automorphisms of the genetic code arising due to this model. We use this to
examine the scaling of the solutions in order to re-examine universality and find that
there is a direct link to mutation rate.
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1 Introduction

The genetic code arose through evolution. We think of it as being universal, optimal,
and highly redundant [3]. The mechanics of the evolution of life on Earth means that
all organisms share the same genetic code in which each codon produces the same
amino acid. We call this the standard genetic code. (While there are deviations
from the standard genetic code [4], these involve only a handful of codons being coded
differently and will not be the subject of our investigations here.) Because of selection
pressures, the standard genetic code has self optimized to minimize errors in translation
and transcription [5-7]. From theoretical considerations, Woese et al. [8] showed that
the standard genetic code is related to a property called the polar requirement, which
has subsequently been corroborated by experiment [9] and shown to be highly optimal
when considering one type of error: point mutations [10]. It can be considered as part
of an abstract chemical property of the genetic code [11]. Following Vetsigian et al.
[1] and Vetsigian [2], in this paper, we consider the code’s optimality in terms of these
features.

Sella and Ardell [11] attempted to model the evolution of the genetic code. This was
done through considering the coevolution between the genetic code and the encoding
of a protein within a closed model system. This allows for complex dynamics between
mutations of messages and selection on proteins in order to minimize the lethal effects
of these mutations. This minimizes the errors through mutations and allows protein
networks to develop to promote a higher likelihood of survival. We seek to understand
whether the algorithm based on this coevolutionary model can be phrased as a purely
physical problem of dynamical evolution. To address this we must first discuss the
algorithm.

The algorithm described by Vetsigian et al. [1] models the evolution of the genetic
code through horizontal gene transfer (HGT). This allows organisms to exchange
genetic information via DNA through transferring the segments of a genome to each
other within the same generation through various mechanisms. This is used in concert
with the Code Message Coevolution Model dynamics described by Sella and Ardell
[11] to obtain an iterative discrete time algorithm. Implementation of the algorithm
demonstrates convergence of the genetic code to a highly optimised and near universal
solution. This solution is an attractor. Horizontal gene transfer is crucial to achieving
this solution. This result provides a testable model for understanding the standard
genetic code.

The dynamics from the coevolution model along with the additional communi-



cation incorporated by the iterative discrete time algorithm governs the evolution of
genetic code states (genetic code configurations) of which there is a finite number. This
allows us to treat the algorithm as a discrete dynamical system, as it is the time de-
pendent dynamics of coevolving matrices which represent the genetic code state. We
will consider this algorithm as if it were a system out of equilibrium for which there is
the emergence of an attractor solution in the space of genetic code mappings [12].

The behavior we establish exemplifies the notion of universality. In statistical
physics, systems with a large number of degrees of freedom exhibit universality in a
scaling limit. Historically, this idea originated in the theory of phase transitions and was
made mathematical precise through the renormalization group. (See, for example, [13—
15].) Starting from specific initial conditions, by integrating out degrees of freedom
(e.g., through coarse-graining), we flow to a fixed point. At the fixed point, the theory
is scale invariant.! Very different physical systems can flow to the same fixed point
in that correlation functions of local operators behave in an identical manner. Such
theories are said to belong to the same universality class. Input parameters dictate how
the system converges to universality. It is therefore natural to examine how variations
on these parameters influence the universality of the solution. We will use approximate
scale invariance as a tool to assess how close we are to universality and to diagnose
features of the universal solution.

In this article, we investigate a mechanism for the origin of the genetic code that
leads to universal behavior at late times. We initially describe the model with consider-
ations of universality as in Vetsigian et al. [1] by defining it in such a way that all entities
within the algorithm converge to a single solution. We then consider universality in a
more formal manner through statistical mechanics.

Let us begin by stating the main results. The first requirement for the convergence
of the genetic code is a trivial observation that we make rigorous: there must be more
codons than amino acids. The second requirement is that we must demand horizontal
gene transfer to optimize the setup. This corroborates the claims of Vetsigian et al. [1].
We also discover that universality in terms of scaling in the solution depends on the
rate of mutations. It is largely independent of mistranslations of the genetic code.

The organization of this paper is as follows. In Section 2, we recast the biological
algorithm into a computational algorithm to which we can apply the principles of
dynamical systems. We reproduce the results from Vetsigian et al. [1] and show that
the initial conditions do not influence the algorithm’s ability to flow to a near universal

t This is a simplification. At a fixed point of the renormalization group, the theory enjoys a larger
symmetry, conformal invariance, which includes scale or dilatation invariance.



solution. Our new results are in Section 3. In particular, in Section 3.1, we correct
minor errors in the literature. In Sections 3.2-3.4, we vary all the parameters in the
model in order to examine their influence on the attractor mechanism. In Section 3.5,
we discuss automorphisms and scaling in the genetic code. We then illustrate the
mechanism for universality in terms of scaling with an example. In Section 3.6, we re-
examine universality and express this behavior in terms of the homogeneity of the fitness
function. We find that the universal solution is characterized by the rate of mutations
and is largely independent of the mistranslation rate. In Section 4, we conclude with
a summary and directions for future work. Finally, the Appendices collect the results
of various experiments less central to the argument than those discussed in the main
text.

2 Modeling framework

We begin with a precise rephrasing of the problem addressed by Vetsigian et al. [1] into
one of computation. Emphasis will be on representing the aspects of the mathematical
problem while minimizing the amount of biology introduced.

2.1 Basic definitions

We model the set of codons making up DNA geometrically using a Hamming metric [16].

DEFINITION 1. Leti, € i be a set of elements (bases) forming an alphabet of length
li|. We define a codon as a sequence of n bases such that ¢ € C := {ip1, ..., iy n}. The
number of possible codons is |C| = |i|".

For codons in the standard genetic code, we have |i| = 4 (A,C,G,T) and n = 3
meaning that |[C| = 64. We define the set of codons, C, lexicographically. Note that
there is an associated symmetry with a Hamming metric [17].

We can next define the structure of the genetic code:

DEFINITION 2. Denoting the set of animo acids a € A such that we have | A| amino
acids, the mapping from codon space to amino acid space, G : C — A is the genetic
code. We represent the map G as matriz A, with dimensions |C| x |A| such that:

ca = ) (2.1)
’ 0 otherwise .

_{1 if G(c) =a



We refer to A., as the delta matrix. This matrix defined in (2.1) has one entry
per row (as each codon can only map to a single amino acid) and no empty columns
(we assume that every amino acid has been mapped to). The map G is surjective but
not injective. In Nature, we encounter 20 amino acids in the genetic code.* The codon
TTT maps to the amino acid phenylalanine, for example. This matrix can therefore
be considered as a non-square, row-stochastic, binary matrix with no empty columns.
Notice that when summing over the columns of a row-stochastic matrix, we get 1. These
properties place constraints on the information flow for optimization [18]. Note that
due to these constraints, we also must have |C| > |A|. Using the inclusion/exclusion
principle [19], the number of possible configurations of the delta matrix A, is

| A|

S S W (R 22

During the map G, errors occur with a given probability:

—f— dist(c,d) =1,

(n(li[=1))

prob(c = a) =Y LeeAva,  Leo() =4 1—0  dist(c,d) =0, (2.3)
¢ 0 otherwise .

The parameter ¢ € [0,1] C R. The distance is defined using the Hamming metric such
that:

dist(c, c) 1= #(c; # ) j=1,..m - (2.4)
The distance is the number of bases i, that differ between two codons ¢ and ¢. Here, ¢
represents a parameter for the probability of error, and L. (/) is a bistochastic matrix,
viz., a symmetric, non-negative matrix whose rows and columns sum to 1. The matrix
L. (¢) is used in order to only consider nearest neighbors in codon space. The number
of codons with dist(c, ¢’) = 1 is given by n(|i|—1) as there are n positions which can have
li| — 1 different values. We can encode this information in a Hamming graph in which
the C = |i|™ possible codons correspond to vertices and an edge joins vertices whose
corresponding codons that differ by a single letter — i.e., those codons at Hamming
distance 1.

In this algorithm the genetic code G rearranges itself in order to minimize the
likelihood that probabilistic nature of the map causes a differing amino acid a to appear
when mapping from codon space [6, 7]. In this model we consider two forms of errors,
both of which only occur on nearest neighbors (dist(c,¢’) = 1). They are the following:

¥ For the purposes of calculation, we treat the stop codons as mapping to a dummy amino acid, so
in our language |A| = 21 in the standard genetic code.



1. Mistranslation: When a single base i; is read incorrectly. We will denote this
T. . and take ¢ — v, where v is the rate of mistranslation.

2. Point mutations: A single base 7, changes before being read. We will denote
this M. and ¢ — p where p1 is the rate of mutations. There are various kinds of
point mutations.

For simplicity, we will neglect excisions or insertions of bases.

2.2 Fitness

Information is translated from genome to proteome. For our purposes, these are se-
quences of codons and amino acids, respectively. In particular,

DEFINITION 3. A sequence Sg = {c1,...,cn} of length M is called a genome,
where each codon ¢, € C has a position = in the sequence {1,...,M}. A target amino
acid s(x) is the mapping under the genetic code G of the codon at position x to the
amino acid s(x) € A. The image under the genetic code map G of the genome sequence
Sa, gives a sequence Sp = {s1,...,8u} of target amino acids called the proteome,

which 1s a subsequence of a protein.

We denote the target amino acid s(z) as s in order to abbreviate notation. The
definition we quote above is a slight simplification of [1, 2, 11] as in this algorithm, we
assume s = a € A. As the amino acids at each position in the sequence are indistin-
guishable [1], we can store details of the proteome and genome within the following
objects:

DEFINITION 4. A vector Ly specifies the frequency of the target amino acid s in a
proteome sequence of length M. The codon usage matriz U, specifies the frequency of

a codon c within a target amino acid s.

Crucially, we encode all necessary information about the genome and proteome
within these two objects without having to go through the respective sequences ana-
lytically. The two matrices are both column stochastic, i.e.,

Al |

dLo=1, > U.=1,. (2.5)



The notion of distance in amino acid information space is structurally ambiguous
(not well defined like a Hamming metric). Due to this we can define the topological
distance between amino acids by the following ay € [0,1], which can be randomly
generated. The notion of distance is normalized. Using this we can define a fitness
matrix as:

W, = Plaasal (2.6)

As in Sella and Ardell [11], ® is a parameter used to consider how an abstract physic-
ochemical distance between amino acids scales into the fitness. This makes the fitness
matrix (2.6) some measure of how “useful” each arbitrary amino acid a is instead of
the target amino acid s. Since 0 < ® < 1, this is a positive symmetric matrix. By
considering the probability of mistranslations and the entire genome we can describe
an overall fitness score [1]:

f = H H{Z Z ,Tc,c’Ac’,aVVa,s}LSUC’S . (27)

This product is taken component wise.

To measure how well a delta matrix performs, we define the optimality score O

0= Z Z(Nc,c’{z Z Ac,aSaJJAZ:,b}) ) (28)

which measures the average amino acid similarity between neighboring codons. We
define amino acid similarity as Sop = >, |[Was — Wsp|. In (2.8), Noo is 1 if two
codons are nearest neighbors (dist(c,¢’) = 1) and zero otherwise [1, 2]. Note that it

as:

is a tautology that two isomorphic genetic codes give the same optimality score. We
return to this point in Section 3.5 below.

2.3 The algorithm

Based on these mathematical preliminaries, we consider the following algorithm [1].

1. Construction: We can construct a set of N objects each with their own genetic
code G and therefore delta matrix A., and their own codon usage matrix U, .

2. Mixing: We randomly select one object as the acceptor A and a random subset
K of N as the donors (k € K C N) and run them through the iteration:

i
(1 - H)UA + e PR (2.9)

keK



H represents the fraction of the genetic code due to horizontal gene transfer

(H €[0,1)).

3. Fitness maximization: We attempt an elementary code change to the delta
matrix A.,. We do this by assigning one codon to a new amino acid. This is
done by reallocating a unit entry in A., to a different position within that row
of the matrix. We accept the new code if and only if it preserves or increases the
fitness score f, which has been calculated using the new U, C‘f‘s. Otherwise, we keep
the original delta matrix A, ,, if there are no new possibilities.

4. Mutational equilibrium: We can derive a new codon usage matrix Ué‘s from
the new delta matrix A., uniquely at mutational selection equilibrium. We
first derive a fitness matrix with respect to codons F.; = > A, ,W,,. Using
the Perron—Frobenius theorem, we calculate the column stochastic eigenvector
corresponding to the largest eigenvalues, for the following matrix (Q*):

i,c’ = Z Mc,c”éc”,c’Fc”,s 5 (210)

C

where 6.7 » is a Kronecker delta so that we consider the st column of the matrix
F.r s as a diagonal matrix. The index s here is fixed and not a free index. Each
column stochastic eigenvector of QF , corresponds to the s column of UZ,. We
normalize the eigenvector so that it is column stochastic) by setting the sum of
elements to unity.

5. Repetition: We repeat steps 2 through 4 for ¢ time steps.

Experimental setup: In this model there are 12 parameters to generate and define.
These are tabulated as follows.

e Space structure: |i| and n for the codon space, |A| and a4 for amino acid space,
and L, target amino acid frequencys;

e Innovation pool structure: N number of objects, K number of donors per
iteration, and H fraction of genome that is similar due to horizontal gene transfer;

e Noise and fitness parameters: v, yu, and ®;

e Number of time steps: t.
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Figure 1: Evolution of optimality score for (a) H = 0 (red) and (b) H = 0.4 (blue). Both
graphs were produced using the following parameters: |i| = 4, n = 3 giving |C| = 64, |A| = 20,
N=80,K=1v=0.01,pu=10"% and ® = 0.99. L, and ay are the same for both graphs.

We generate Ly and a4 randomly. The parameters [i], n, |A|, N, and K are positive
integers while H, v, p, and ® take any value in the interval [0,1]. We reproduce the
results in Vetsigian et al. [1] using their parameters as quoted in Figure 1. The initial
delta matrices A, are identical at the start, as done in Vetsigian et al. [1].The results
in Figure 1 show that when modeling without horizontal gene transfer (Figure 1 (a),
red), the delta matrices A., optimize themselves, but do not converge to a universal
solution. This is shown by the optimality scores, O, ranging from 0.7 to 1.25 and not
changing after 1500 time steps. When including horizontal gene transfer (Figure 1 (b),
blue) we get a set of optimality scores, O, that optimize on average more than without
horizontal gene transfer (red, H = 0). The results display the attractor mechanism.
This is because the optimality score falls in a smaller range (between 0.75 and 1) and
fluctuations continuing at the the ¢ = 5000 time step.

The time taken to produce these results was very large as we use |i| = 4, n = 3, and
|A| = 20 giving us 64 x 20 matrices. To perform a more careful analysis, we consider
a toy model by reducing the matrix dimensions to 27 x 9. This corresponds to the
parameters |i| = 3, n = 3 (so |C| = 27) and | A|=9. We also set up the algorithm so that
each entity has its own unique delta matrix A., such that they all start with different
initial optimality scores in order to see if the scores will still converge. These results are
in Appendix A. They show some convergence after 5000 time steps. This suggests that
the set of A., can be arbitrary in order for optimised attractor mechanism to emerge.
This also points to the existence of an attractor mechanism at work for H # 0.



When performing the analysis all initial delta matrices A., will be identical. We
will vary a single parameter from the set {|i|,n, |A|, N, K, H, v, i, ®} while keeping the
others fixed. We generate a; and Ly randomly for all runs. We will take ten runs for
each parameter and take the average. The standard deviation will be used to analyze
the spread (to measure the rate of convergence). We use the standard deviation as it
allows us to measure the spread of optimality scores in an intuitive manner, similar to
the mean code distance used in Vetsigian et al. [1] as we highlight further in Section 3.5.
We will take the average of the standard deviation over the ten runs. These results are
discussed in Sections 3.2-3.4 below, where we consider universality to be represented
by the ability for all entities within the algorithm to converge to a single solution. The
remainder of Section 3 is devoted to re-defining and re-examining universality using
statistical mechanics and the renormalisation group.

3 Results and analysis

3.1 The model of Sella and Ardell

In an insightful paper, Sella and Ardell [11] develop a Code Message Coevolution Model
that describes the impact of message mutation on the fitness of the genetic code. The
authors observe that at mutational equilibrium, there is a balance between mutations
in messages and selection on proteins. This model has been summarized in Becich
et al. [20]. The process involves calculating the column stochastic eigenvector corre-
sponding to the largest eigenvalues as described in step 4 (mutational equilibrium) of
the algorithm described in Section 2.3. We note for completeness and reproducibility
two minor errata. Example A from Sella and Ardell [11] consists of a model with the
following setup. There is a ring of five codons mapping to a ring of five amino acids
with A., being the identity matrix. Note that we will denote the eigenvector as U, ,
however, s is fixed and is not a free index (as in our step 4). To reproduce the results,
we take ® = 0.8° and = 0.01.% The resulting eigenvalues and eigenvectors are given
in Table 1. Note that at machine precision the eigenvectors sum to one (3 U.s = 1)
as required.

§ We are grateful to D. Ardell for communications on this point.
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Eigenvalues and column stochastic eigenvectors for a set of & and u
Scaling for an abstract Rate of mutations ;1 Largest eigenvalue \°

physicochemical between amino acids ®

1 0.8 0.1 0.9549
2 0.8° 0.01 0.9808

Corresponding eigenvector UC,ST

1 {0.2635 0.2134 0.1549 0.1549 0.2134J
2 [0.9058 0.0461 0.0011 0.0011 0.0461}

Table 1: Row 1 gives the resulting eigenvalues and eigenvectors for the parameters stated
in the paper. Row 2 provides the eigenvalues and eigenvectors from the paper using the
corrected parameters. Note these eigenvectors are for a given value of s.

3.2 Varying parameters for space structure

Recall that |i| counts the number of nucleotides. These are the letters that comprise a
DNA sequence. Taking a codon to consist of an n nucleotide sequence, the number of
possible codons is then |C| = |i|*. These codons describe |A| amino acids. With four
bases as in the standard genetic code, there are 64 three base sequences corresponding
to possible codons. These codons correspond to 20 amino acids, so we have a many to
one map. In this subsection, we report on experiments involving varying parameters
corresponding to the spatial structure of the map.

Experiment 1: Varying the number of nucleotides

We test the fitness optimization for the cases |i| = 3,4,5. We do not take |i| = 2 as this
gives [C| = 8 < |A| = 9, breaking one of the constraints on the delta matrix. We do not
take |i| > 6 either as this produces a matrix that is at minimum 216 x 9, which takes
significant processing time to iterate. The results are given in Figure 2. For all values of
|i|, Figure 2 (a) displays an optimised solution with an attractor mechanism converging
to a near universal solution.When varying |i| we find the value of the optimality score,
O, increases proportionally as shown in Figure 2 (b). This makes sense as increasing |i|
increases |C| meaning we sum over more elements to get the optimality score O. The
rate of convergence decreases as indicated by the error bars increasing proportionally
with |7| in Figure 2 (b). This is as expected as larger matrices should take longer to
find the universal solution.

- 11 -



o

804 :

2 —1il=3 o 2

= —li|=4 5 b

£ 03 =S 7 ®

= >4l

8_ (a) % 1.5

Y= E

o =

5" s 1

2 g

o Y

g 0.1 %0.5 g

5 ~__ 3

ko) — ——— T =

= A ) . . < ‘ ‘ ‘ ‘ ‘

g O 0

) 0 1000 2000 3000 4000 5000 3 4 5
Timesteps Number of bases i

Figure 2: Figure 2 (a) shows the average time evolution of the standard deviation of the
optimality score for a given |i| over ten runs. Figure 2 (b) shows the average final optimality
score for a given [i| over ten runs. The initial parameters are the same for all runs: n = 3,
|A|=9, N =80, K=1, H=04, v =0.01, p = 107% and ® = 0.99. The error bars show
the average one standard deviation spread of final optimality scores over the ten runs (to

measure the rate of convergence).

Experiment 2: Varying the length of a codon

For the length of a codon n, we take n = 2,3,4. We do not take n =1 or n > 5 for the
same reasons as when varying |i|. The results are given in Figure 3. They display the
same pattern as when varying |i|, because we are increasing |C| again. When n = 2, we
get |C| = | A] = 9 which means A., forms a permutation matrix. This matrix cannot
be changed in step 3 of the algorithm discussed in Section 2.3 (fitness maximization)
as we cannot reassign a single codon ¢ to a new amino acid a without being left with
an empty column. The delta matrix, A.,, cannot therefore evolve, giving a single flat
line for n = 2 as seen in Figure 3 (a). This implies that we require |C| > |A| for the
algorithm to work. We take note of the smallness of the standard deviations in Figure 3

(b).
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Figure 3: Figure 3 (a) shows the average time evolution of the standard deviation of the
optimality score for a given n over ten runs. Figure 3 (b) shows the average final optimality
score for a given n over ten runs. The initial parameters are the same for all runs: |i| = 3,
Al=9, N=80, K =1, H=04, v =0.01, p = 1074, and ® = 0.99. The error bars show
the average one standard deviation spread of final optimality scores over the ten runs (to

measure the rate of convergence).

Experiment 3: Varying the number of amino acids

The result of this experiment is that variations on |.A| display convergence. It is impor-
tant to consider that the randomly generated values for topological amino acid distance
aq and site frequency L, will also vary, as they are generated with consideration on |Al.
The results for this are given in Figure 4. There appears to be an upwards trend in
Figure 4 (b). This result is intuitively expected as increasing the number of amino acids
increases the number of terms we sum over; however, further investigation is needed to
confirm this. This should be done keeping randomly generated variables fixed where
possible.

3.3 Varying parameters for the innovation pool structure

Recall that the algorithm from Section 2.3 begins by constructing N objects each with
a genetic code G. At each time step, one of these objects receives a fragment of genome
from K donors selected from the set of objects. The parameter H computes the fraction
of the recipient genome due to horizontal gene transfer.

— 13 —
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Figure 4: Figure 4 (a) shows the average time evolution of the standard deviation of the
optimality score for a given |.A| over ten runs. Figure 4 (b) shows |.A| (number of amino acids)
against the average final optimality score, averaged over ten runs. The initial parameters are
the same for all runs: |i| = 3, n =3, N =80, K =1, H = 04, v = 0.01, p = 1074,
and ® = 0.99. The error bars in show the average one standard deviation spread of final

optimality scores over the ten runs (to measure the rate of convergence).

Experiment 4: Varying N

The results for varying N is shown in Figure 9 in Appendix B. The number of entities
N is taken from 10 to 100 in steps of 10. The results when varying the number of
entities show a linear relationship between number of entities N and final average final
optimality score as seen in Figure 9 (b).

Experiment 5: Varying K

When varying the number of donors K from 1 to 5, we find that it does not affect
the algorithm’s dynamics as seen in Figure 10 in Appendix B. This makes sense as we
are always adding the same fraction H to the acceptor codon usage Ucf‘s. We should
note there does appear to be a slight upwards trend in average final optimality score as
shown in Figure 10 (b). Further investigation should be undertaken with larger value
of K such that K ~ N.

Experiment 6: Varying H

We take H, the fraction of the genome similar due to horizontal gene transfer from
0 to 1 in increments of 0.1. The results are shown in Figure 5 below. Figure 5 (a)
that for H = 0, there is no convergence as expected, while for H = 0.2 the results
begin to converge but at a very slow rate. Looking at the Figure 5 (b), it is clear

— 14 —



that 0.4 < H < 0.7 gives the minimal optimality score and the smallest error bars.
This implies the final results have been substantially optimised and have converged
to a greater extent via the attractor mechanism to a near universal solution. When
H > 0.8, the final scores, O, are less optimal and have converged less.This is probably
due to a change from “mixing” to “swapping” of codon usage matrices U, s, preventing
optimal communication. Results from Figure 5 suggest that maximum mixing occurs
around H = 0.6.
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Figure 5: The average final optimality score for a given H. Figure 5 (a) shows the average
time evolution of the standard deviation of the optimality score for a given H over ten runs.
Figure 5 (b) shows the average final optimality score for a given H over ten runs. The initial
parameters are the same for all runs: |i| =3, n =3, |A| =9, N =80, K =1, v = 0.01,
u=10"% and ® = 0.99. The error bars show the average one standard deviation spread of
final optimality scores over ten runs (to measure the rate of convergence).

Experiment 7: Time evolution of H

The parameter H is best considered a variable that decreases with time [1, 21]. This
is due to better translation of the model allowing evolution of a protein network with
more specific interactions to occur [1]. To model this, we define H in the following
manner:

H(t) = Hoe ™™ . (3.1)

In this equation, Hy is the initial fraction of horizontal gene transfer similar (0 <
Hy < 1), and k is a constant. Initially, Hy is set to 1. Setting k = 1073 gives a number
that is approximately zero at, say, ¢t = 5000. The results in Section 3 indicate that we
expect convergence to occur after 5000 iterations. For this reason, we set k = 107* so
that H(t = 5000) is relatively far from zero. The resulting dynamics is given in the
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Figure 6 and Appendix C, where the degree of convergence is significantly improved in
several runs, to all prior results. The majority of the trials have fully converged and
can be considered universal. Note that the solutions converge to different values, due to
aq being randomly generated. We can see that only Figure 6 (d), does not completely
converge. The rate of convergence seem to to be fairly similar to the runs when using
large constant H. This makes sense as this is a stochastic process meaning the rate
of convergence should vary between runs. However, the average rate of convergence
significantly improves in the cases where universality manifests within this time frame.
Note that H(t) sits in the optimal range suggested in Section 3.3 for approximately the
last 1500 time steps.
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Figure 6: Evolution of optimality score with a time evolving parameter H. Four runs
showing the evolution of optimality score for a time evolving H (according to (3.1)). We use:
lil=3,n=3,|4 =9, N=80, K=1,v=0.01, p = 1074 & = 0.99, k = 1074, and Hy = 1.
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3.4 Varying error and fitness parameters

Recall that the parameters v, u, and ® take values in the interval [0, 1]. The parameter
v measures the rate of mistranslation, when a single base is misread. The parameter
1 measures the rate of mutation, when a single base is changed. The parameter ®
characterizes how an abstract physicochemical distance between amino acids scales
into the fitness.

Experiment 8: Varying v and u

The plots for these variations are in Appendix D. It can be seen that variations on v
have no effect on a given optimality score. As we are trying to minimize the effects of
errors from v and p, there is less requirement to optimize as they decrease. This can
be seen in Figure 12 (b) in Appendix D. As these parameters decrease the optimality
score increases. Note we take v and u from 1 to 107* on a log scale. We do not try
v, it = 0 as this implies there is no need to optimize the code as no errors can occur.

Experiment 9: Varying ¢

As described by Vetsigian [2], ® is a scale for the fitness for one amino acid substitution.
This implies that it should not affect the rate of convergence directly. However, it will
affect the score converged to. To examine this we reduce the fitness score f to a function
of ® and v in order to consider their role in the algorithm given by Figure 13 (a) in
Appendix D. The rest of the values are randomly generated. The variations of ® are
proportional to f as expected.

3.5 Re-defining universality within a genetic code model

The framework we have described so far shows that there is some degree of convergence
via an attractor mechanism.With horizontal gene transfer turned on (H # 0), we have
an attractor. While the details of the solution depend in part on the initial conditions
assigned to parameters in the model, the model exhibits near universality at late times.
This is demonstrated by the converging behaviour of the optimality scores O of all
entities. We aim to refine the concept of universality. To do this we must first understand
genetic code configurations and the possible symmetries associated with them. We will
then analyze the fitness landscape of all genetic code configurations in order to to see
if this function can be scaled homogeneously. To re-examine universality further, we
mainly consider the model provided by Sella and Ardell [11] while also incorporating
the fitness function provided by Vetsigian et al. [1].
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Note that for this section we will also work with the fitness in the following form:
log f=> > LUclog(D> Y TewlvaWays) - (3.2)

The logarithm simplifies algebraic manipulations.

Using Definition 2, we represent each genetic code configuration using a delta
matrix A.,. We can also calculate total number of configurations using (2.2). This
framework allows us to consider the genetic code mapping as a surjective mapping from
a Hamming graph (of codons) to a random graph (of distance between amino acids in
an abstract topological information space). These graphs have automorphisms due to
labeling which we will highlight clearly in an upcoming example. The automorphisms
imply that certain genetic code configurations (and therefore delta matrices A.,) are
isomorphic to each other, meaning that they represent the same genetic code map G
even though they have different delta matrices A.,. Considering the random graph
is randomly generated, we a priori assume that no automorphisms exist within the
amino acid graph. Note this is only true for |A| > 2, as |A| = 1 is trivial and |A| = 2
has an inherent symmetry in swapping the labels. Now the codons graphs as setup
as a Hamming graph. Hamming graphs are known for having automorphisms [17].
Due to there being a certain number of automorphisms for the Hamming graph for a
given |i7| and n, we quotient (2.2) by the number of symmetries to get the number of
unique codes. As previously noted in Section 2.2, these automorphisms imply that two
isomorphic genetic codes should yield the same optimality score.

3.5.1 Example

In order to understand the isomorphisms, we will consider an example. Put |i| = 2,
n = 2, and |A| = 3. This means |C| = 4 giving delta matrices with dimensions 4 x 3.
Using (2.2) we get #config(|C| = 4, | A| = 3) = 36. We represent this map in the following
format:

01 11

00 10

¢ (3.3)

In (3.3), G : {00,10,11,01} — {c,c,b,a}. We see that the Hamming graph on the
left hand side is isomorphic under relabeling [17]. In particular, if we relabel 0 +— 1,
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Figure 7: Four surface plots of log f in pu—v phase space for ® = 0.99 (a), 0.5 (b), 0.1 (c),
0.01 (d). We have set |C| = 4 and |A| = 3. Each colored surface corresponds to a unique
genetic code configuration.

the genetic code map would not change. This configuration has a symmetry factor 18.
Taking the quotient of the number of configurations with the symmetry factor suggests
that there are only two unique configurations of A., for |C| = 4 and |A| = 3. Said
another way, in this example, there are (3) ways of selecting a pair of codons that are
mapped by G to the same amino acid. Taking into account the repetition, there are
3! (the order of S3) ways of mapping the codons to the amino acids. The product
of these terms gives the 36 configurations. Taking into account the isomorphisms, we
pick out the odd and even elements of the permutation group S3 as our distinguished
configurations.

We will now calculate (3.2) for all configurations of A, ,. We do this for a given value
of ® and generate plots in the u—v phase space plane (error space). In Figure 7, we show
results for ® = 0.99,0.5,0.1,0.01. We expect each unique genetic code configuration to
correspond to a unique surface in error space.
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From Figure 7, we see that there are two unique surfaces for a given value of ®.
This is due to there being two unique configurations of A.,. Within this phase space,
there is a curve on which the surfaces interact. These curves are a critical locus for
which the ability of a code to produce a maximum log f changes. As ® varies, the shape
of the surfaces change and critical locus changes. In the case for ® = 0.99 (Figure 7
(a)), the critical locus is essentially independent of v. The dependence on v for the
surfaces and the critical locus grow as ® decreases. In order to verify this, we take a
polynomial fit to the critical locus for this model.

Taking the ansatz,
log(f)ae = a + biv + bop + c1v* + covp + e (3.4)
for & = 0.99 the surfaces have polynomials of the form:

log(f)as = —84.8470 + 0.0801v — 0.0618% 4 22.06551 — 15.23444 ,  (3.5)
log(f)ae = —84.0745 4 0.0522v — 0.0404v* + 26.1504u — 23.5190p* ,  (3.6)

with R? > 0.99995. Taking the difference between (3.5) and (3.6), we get the critical
locus
—0.7725 + 0.0278v — 0.02140% + 4.0849 + 8.28464% = 0 . (3.7)

As inferred from Figure 7, the dependence on v is negligible as the coefficients are two
or three orders of magnitud