
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dynamics of genetic code evolution: The emergence of
universality

John-Antonio Argyriadis, Yang-Hui He, Vishnu Jejjala, and Djordje Minic
Phys. Rev. E 103, 052409 — Published 17 May 2021

DOI: 10.1103/PhysRevE.103.052409

https://dx.doi.org/10.1103/PhysRevE.103.052409

Dynamics of genetic code evolution: The

emergence of universality ∗

John-Antonio Argyriadisa, Yang-Hui Heb, Vishnu Jejjalac, Djordje Minicd

aJesus College, University of Oxford, OX1 3DW, UK;

Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Rd, University

of Oxford, OX1 3PU, UK
bDepartment of Mathematics, City, University of London, EC1V 0HB, UK;

Merton College, University of Oxford, OX1 4JD, UK;

School of Physics, NanKai University, Tianjin, 300071, P.R. China
cMandelstam Institute for Theoretical Physics, School of Physics, NITheP, and CoE-MaSS,

University of the Witwatersrand, Johannesburg, WITS 2050, South Africa;

David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
dDepartment of Physics and Center for Soft Matter and Biological Physics, Virginia Tech,

Blacksburg, VA 24061, USA

E-mail: john-antonio.argyriadis@jesus.ox.ac.uk,

hey@maths.ox.ac.uk, vishnu@neo.phys.wits.ac.za, dminic@vt.edu

Abstract: We study the dynamics of genetic code evolution. The model of Vetsigian

et al. [1] and Vetsigian [2] uses the mechanism of horizontal gene transfer to demonstrate

convergence of the genetic code to a near universal solution. We reproduce and analyze

the algorithm as a dynamical system. All the parameters used in the model are varied

to assess their impact on convergence and optimality score.We show that by allowing

specific parameters to vary with time, the solution exhibits attractor dynamics. Finally,

we study automorphisms of the genetic code arising due to this model. We use this to

examine the scaling of the solutions in order to re-examine universality and find that

there is a direct link to mutation rate.

∗ The author list is alphabetical.

mailto:john-antonio.argyriadis@jesus.ox.ac.uk
mailto:hey@maths.ox.ac.uk
mailto:vishnu@neo.phys.wits.ac.za
mailto:dminic@vt.edu

Contents

1 Introduction 2

2 Modeling framework 4

2.1 Basic definitions 4

2.2 Fitness 6

2.3 The algorithm 7

3 Results and analysis 10

3.1 The model of Sella and Ardell 10

3.2 Varying parameters for space structure 11

3.3 Varying parameters for the innovation pool structure 13

3.4 Varying error and fitness parameters 17

3.5 Re-defining universality within a genetic code model 17

3.5.1 Example 18

3.6 Re-examining universality 21

4 Conclusion and prospects 22

A Different initial delta matrices ∆c,a 26

B Varying innovation pool structure 27

C Time evolution of H 29

D Varying noise and fitness parameters 30

E Defining universality 31

– 1 –

1 Introduction

The genetic code arose through evolution. We think of it as being universal, optimal,

and highly redundant [3]. The mechanics of the evolution of life on Earth means that

all organisms share the same genetic code in which each codon produces the same

amino acid. We call this the standard genetic code. (While there are deviations

from the standard genetic code [4], these involve only a handful of codons being coded

differently and will not be the subject of our investigations here.) Because of selection

pressures, the standard genetic code has self optimized to minimize errors in translation

and transcription [5–7]. From theoretical considerations, Woese et al. [8] showed that

the standard genetic code is related to a property called the polar requirement, which

has subsequently been corroborated by experiment [9] and shown to be highly optimal

when considering one type of error: point mutations [10]. It can be considered as part

of an abstract chemical property of the genetic code [11]. Following Vetsigian et al.

[1] and Vetsigian [2], in this paper, we consider the code’s optimality in terms of these

features.

Sella and Ardell [11] attempted to model the evolution of the genetic code. This was

done through considering the coevolution between the genetic code and the encoding

of a protein within a closed model system. This allows for complex dynamics between

mutations of messages and selection on proteins in order to minimize the lethal effects

of these mutations. This minimizes the errors through mutations and allows protein

networks to develop to promote a higher likelihood of survival. We seek to understand

whether the algorithm based on this coevolutionary model can be phrased as a purely

physical problem of dynamical evolution. To address this we must first discuss the

algorithm.

The algorithm described by Vetsigian et al. [1] models the evolution of the genetic

code through horizontal gene transfer (HGT). This allows organisms to exchange

genetic information via DNA through transferring the segments of a genome to each

other within the same generation through various mechanisms. This is used in concert

with the Code Message Coevolution Model dynamics described by Sella and Ardell

[11] to obtain an iterative discrete time algorithm. Implementation of the algorithm

demonstrates convergence of the genetic code to a highly optimised and near universal

solution. This solution is an attractor. Horizontal gene transfer is crucial to achieving

this solution. This result provides a testable model for understanding the standard

genetic code.

The dynamics from the coevolution model along with the additional communi-

– 2 –

cation incorporated by the iterative discrete time algorithm governs the evolution of

genetic code states (genetic code configurations) of which there is a finite number. This

allows us to treat the algorithm as a discrete dynamical system, as it is the time de-

pendent dynamics of coevolving matrices which represent the genetic code state. We

will consider this algorithm as if it were a system out of equilibrium for which there is

the emergence of an attractor solution in the space of genetic code mappings [12].

The behavior we establish exemplifies the notion of universality. In statistical

physics, systems with a large number of degrees of freedom exhibit universality in a

scaling limit. Historically, this idea originated in the theory of phase transitions and was

made mathematical precise through the renormalization group. (See, for example, [13–

15].) Starting from specific initial conditions, by integrating out degrees of freedom

(e.g., through coarse-graining), we flow to a fixed point. At the fixed point, the theory

is scale invariant.† Very different physical systems can flow to the same fixed point

in that correlation functions of local operators behave in an identical manner. Such

theories are said to belong to the same universality class. Input parameters dictate how

the system converges to universality. It is therefore natural to examine how variations

on these parameters influence the universality of the solution. We will use approximate

scale invariance as a tool to assess how close we are to universality and to diagnose

features of the universal solution.

In this article, we investigate a mechanism for the origin of the genetic code that

leads to universal behavior at late times. We initially describe the model with consider-

ations of universality as in Vetsigian et al. [1] by defining it in such a way that all entities

within the algorithm converge to a single solution. We then consider universality in a

more formal manner through statistical mechanics.

Let us begin by stating the main results. The first requirement for the convergence

of the genetic code is a trivial observation that we make rigorous: there must be more

codons than amino acids. The second requirement is that we must demand horizontal

gene transfer to optimize the setup. This corroborates the claims of Vetsigian et al. [1].

We also discover that universality in terms of scaling in the solution depends on the

rate of mutations. It is largely independent of mistranslations of the genetic code.

The organization of this paper is as follows. In Section 2, we recast the biological

algorithm into a computational algorithm to which we can apply the principles of

dynamical systems. We reproduce the results from Vetsigian et al. [1] and show that

the initial conditions do not influence the algorithm’s ability to flow to a near universal

† This is a simplification. At a fixed point of the renormalization group, the theory enjoys a larger

symmetry, conformal invariance, which includes scale or dilatation invariance.

– 3 –

solution. Our new results are in Section 3. In particular, in Section 3.1, we correct

minor errors in the literature. In Sections 3.2–3.4, we vary all the parameters in the

model in order to examine their influence on the attractor mechanism. In Section 3.5,

we discuss automorphisms and scaling in the genetic code. We then illustrate the

mechanism for universality in terms of scaling with an example. In Section 3.6, we re-

examine universality and express this behavior in terms of the homogeneity of the fitness

function. We find that the universal solution is characterized by the rate of mutations

and is largely independent of the mistranslation rate. In Section 4, we conclude with

a summary and directions for future work. Finally, the Appendices collect the results

of various experiments less central to the argument than those discussed in the main

text.

2 Modeling framework

We begin with a precise rephrasing of the problem addressed by Vetsigian et al. [1] into

one of computation. Emphasis will be on representing the aspects of the mathematical

problem while minimizing the amount of biology introduced.

2.1 Basic definitions

We model the set of codons making up DNA geometrically using a Hamming metric [16].

DEFINITION 1. Let ib ∈ i be a set of elements (bases) forming an alphabet of length

|i|. We define a codon as a sequence of n bases such that c ∈ C := {ib,1, . . . , ib′,n}. The

number of possible codons is |C| = |i|n.

For codons in the standard genetic code, we have |i| = 4 (A,C,G,T) and n = 3

meaning that |C| = 64. We define the set of codons, C, lexicographically. Note that

there is an associated symmetry with a Hamming metric [17].

We can next define the structure of the genetic code:

DEFINITION 2. Denoting the set of animo acids a ∈ A such that we have |A| amino

acids, the mapping from codon space to amino acid space, G : C → A is the genetic

code. We represent the map G as matrix ∆c,a with dimensions |C| × |A| such that:

∆c,a =

{
1 if G(c) = a ,

0 otherwise .
(2.1)

– 4 –

We refer to ∆c,a as the delta matrix. This matrix defined in (2.1) has one entry

per row (as each codon can only map to a single amino acid) and no empty columns

(we assume that every amino acid has been mapped to). The map G is surjective but

not injective. In Nature, we encounter 20 amino acids in the genetic code.‡ The codon

TTT maps to the amino acid phenylalanine, for example. This matrix can therefore

be considered as a non-square, row-stochastic, binary matrix with no empty columns.

Notice that when summing over the columns of a row-stochastic matrix, we get 1. These

properties place constraints on the information flow for optimization [18]. Note that

due to these constraints, we also must have |C| ≥ |A|. Using the inclusion/exclusion

principle [19], the number of possible configurations of the delta matrix ∆c,a is

#config =

|A|∑
j=0

(−1)j
(
|A|
j

)
(|A| − j)|C| . (2.2)

During the map G, errors occur with a given probability:

prob(c→ a) =
∑
c′

Lc,c′∆c′,a , Lc,c′(`) =


`

(n(|i|−1))
dist(c, c′) = 1 ,

1− ` dist(c, c′) = 0 ,

0 otherwise .

(2.3)

The parameter ` ∈ [0, 1] ⊂ R. The distance is defined using the Hamming metric such

that:

dist(c, c′) := #(cj 6= c′j)j=1,...,n . (2.4)

The distance is the number of bases ib that differ between two codons c and c′. Here, `

represents a parameter for the probability of error, and Lc,c′(`) is a bistochastic matrix,

viz., a symmetric, non-negative matrix whose rows and columns sum to 1. The matrix

Lc,c′(`) is used in order to only consider nearest neighbors in codon space. The number

of codons with dist(c, c′) = 1 is given by n(|i|−1) as there are n positions which can have

|i| − 1 different values. We can encode this information in a Hamming graph in which

the C = |i|n possible codons correspond to vertices and an edge joins vertices whose

corresponding codons that differ by a single letter — i.e., those codons at Hamming

distance 1.

In this algorithm the genetic code G rearranges itself in order to minimize the

likelihood that probabilistic nature of the map causes a differing amino acid a to appear

when mapping from codon space [6, 7]. In this model we consider two forms of errors,

both of which only occur on nearest neighbors (dist(c, c′) = 1). They are the following:

‡ For the purposes of calculation, we treat the stop codons as mapping to a dummy amino acid, so

in our language |A| = 21 in the standard genetic code.

– 5 –

1. Mistranslation: When a single base ib is read incorrectly. We will denote this

Tc,c′ and take `→ ν, where ν is the rate of mistranslation.

2. Point mutations: A single base ib changes before being read. We will denote

this Mc,c′ and `→ µ where µ is the rate of mutations. There are various kinds of

point mutations.

For simplicity, we will neglect excisions or insertions of bases.

2.2 Fitness

Information is translated from genome to proteome. For our purposes, these are se-

quences of codons and amino acids, respectively. In particular,

DEFINITION 3. A sequence SG = {c1, . . . , cM} of length M is called a genome,

where each codon cx ∈ C has a position x in the sequence {1, . . . ,M}. A target amino

acid s(x) is the mapping under the genetic code G of the codon at position x to the

amino acid s(x) ∈ A. The image under the genetic code map G of the genome sequence

SG, gives a sequence SP = {s1, . . . , sM} of target amino acids called the proteome,

which is a subsequence of a protein.

We denote the target amino acid s(x) as s in order to abbreviate notation. The

definition we quote above is a slight simplification of [1, 2, 11] as in this algorithm, we

assume s ≡ a ∈ A. As the amino acids at each position in the sequence are indistin-

guishable [1], we can store details of the proteome and genome within the following

objects:

DEFINITION 4. A vector Ls specifies the frequency of the target amino acid s in a

proteome sequence of length M . The codon usage matrix Uc,s specifies the frequency of

a codon c within a target amino acid s.

Crucially, we encode all necessary information about the genome and proteome

within these two objects without having to go through the respective sequences ana-

lytically. The two matrices are both column stochastic, i.e.,

|A|∑
s

Ls = 1 ,

|C|∑
c

Uc,s = 1s . (2.5)

– 6 –

The notion of distance in amino acid information space is structurally ambiguous

(not well defined like a Hamming metric). Due to this we can define the topological

distance between amino acids by the following ad ∈ [0, 1], which can be randomly

generated. The notion of distance is normalized. Using this we can define a fitness

matrix as:

Wa,s = Φ|ad−sd| . (2.6)

As in Sella and Ardell [11], Φ is a parameter used to consider how an abstract physic-

ochemical distance between amino acids scales into the fitness. This makes the fitness

matrix (2.6) some measure of how “useful” each arbitrary amino acid a is instead of

the target amino acid s. Since 0 < Φ ≤ 1, this is a positive symmetric matrix. By

considering the probability of mistranslations and the entire genome we can describe

an overall fitness score [1]:

f =
∏
c

∏
s

{
∑
c′

∑
a

Tc,c′∆c′,aWa,s}LsUc,s . (2.7)

This product is taken component wise.

To measure how well a delta matrix performs, we define the optimality score O

as:

O =
∑
c

∑
c′

(Nc,c′{
∑
a

∑
b

∆c,aSa,b∆
T
c′,b}) , (2.8)

which measures the average amino acid similarity between neighboring codons. We

define amino acid similarity as Sa,b =
∑

s |Wa,s − Ws,b|. In (2.8), Nc,c′ is 1 if two

codons are nearest neighbors (dist(c, c′) = 1) and zero otherwise [1, 2]. Note that it

is a tautology that two isomorphic genetic codes give the same optimality score. We

return to this point in Section 3.5 below.

2.3 The algorithm

Based on these mathematical preliminaries, we consider the following algorithm [1].

1. Construction: We can construct a set of N objects each with their own genetic

code G and therefore delta matrix ∆c,a and their own codon usage matrix Uc,s.

2. Mixing: We randomly select one object as the acceptor A and a random subset

K of N as the donors (k ∈ K ⊂ N) and run them through the iteration:

(1−H)UA
c,s +

H

K

∑
k∈K

U (k)
c,s → UA

c,s . (2.9)

– 7 –

H represents the fraction of the genetic code due to horizontal gene transfer

(H ∈ [0, 1]).

3. Fitness maximization: We attempt an elementary code change to the delta

matrix ∆c,a. We do this by assigning one codon to a new amino acid. This is

done by reallocating a unit entry in ∆c,a to a different position within that row

of the matrix. We accept the new code if and only if it preserves or increases the

fitness score f , which has been calculated using the new UA
c,s. Otherwise, we keep

the original delta matrix ∆c,a, if there are no new possibilities.

4. Mutational equilibrium: We can derive a new codon usage matrix UA
c,s from

the new delta matrix ∆c,a uniquely at mutational selection equilibrium. We

first derive a fitness matrix with respect to codons Fc,s =
∑

a ∆c,aWa,s. Using

the Perron–Frobenius theorem, we calculate the column stochastic eigenvector

corresponding to the largest eigenvalues, for the following matrix (Qs):

Qs
c,c′ =

∑
c′′

Mc,c′′δc′′,c′Fc′′,s , (2.10)

where δc′′,c′ is a Kronecker delta so that we consider the sth column of the matrix

Fc′′,s as a diagonal matrix. The index s here is fixed and not a free index. Each

column stochastic eigenvector of Qs
c,c′ corresponds to the sth column of UA

c,s. We

normalize the eigenvector so that it is column stochastic) by setting the sum of

elements to unity.

5. Repetition: We repeat steps 2 through 4 for t time steps.

Experimental setup: In this model there are 12 parameters to generate and define.

These are tabulated as follows.

• Space structure: |i| and n for the codon space, |A| and ad for amino acid space,

and Ls target amino acid frequency;

• Innovation pool structure: N number of objects, K number of donors per

iteration, and H fraction of genome that is similar due to horizontal gene transfer;

• Noise and fitness parameters: ν, µ, and Φ;

• Number of time steps: t.

– 8 –

Figure 1: Evolution of optimality score for (a) H = 0 (red) and (b) H = 0.4 (blue). Both

graphs were produced using the following parameters: |i| = 4, n = 3 giving |C| = 64, |A| = 20,

N = 80, K = 1, ν = 0.01, µ = 10−4, and Φ = 0.99. Ls and ad are the same for both graphs.

We generate Ls and ad randomly. The parameters |i|, n, |A|, N , and K are positive

integers while H, ν, µ, and Φ take any value in the interval [0, 1]. We reproduce the

results in Vetsigian et al. [1] using their parameters as quoted in Figure 1. The initial

delta matrices ∆c,a are identical at the start, as done in Vetsigian et al. [1].The results

in Figure 1 show that when modeling without horizontal gene transfer (Figure 1 (a),

red), the delta matrices ∆c,a optimize themselves, but do not converge to a universal

solution. This is shown by the optimality scores, O, ranging from 0.7 to 1.25 and not

changing after 1500 time steps. When including horizontal gene transfer (Figure 1 (b),

blue) we get a set of optimality scores, O, that optimize on average more than without

horizontal gene transfer (red, H = 0). The results display the attractor mechanism.

This is because the optimality score falls in a smaller range (between 0.75 and 1) and

fluctuations continuing at the the t = 5000 time step.

The time taken to produce these results was very large as we use |i| = 4, n = 3, and

|A| = 20 giving us 64 × 20 matrices. To perform a more careful analysis, we consider

a toy model by reducing the matrix dimensions to 27 × 9. This corresponds to the

parameters |i| = 3, n = 3 (so |C| = 27) and |A|=9. We also set up the algorithm so that

each entity has its own unique delta matrix ∆c,a such that they all start with different

initial optimality scores in order to see if the scores will still converge. These results are

in Appendix A. They show some convergence after 5000 time steps. This suggests that

the set of ∆c,a can be arbitrary in order for optimised attractor mechanism to emerge.

This also points to the existence of an attractor mechanism at work for H 6= 0.

– 9 –

When performing the analysis all initial delta matrices ∆c,a will be identical. We

will vary a single parameter from the set {|i|, n, |A|, N,K,H, ν, µ,Φ} while keeping the

others fixed. We generate ad and Ls randomly for all runs. We will take ten runs for

each parameter and take the average. The standard deviation will be used to analyze

the spread (to measure the rate of convergence). We use the standard deviation as it

allows us to measure the spread of optimality scores in an intuitive manner, similar to

the mean code distance used in Vetsigian et al. [1] as we highlight further in Section 3.5.

We will take the average of the standard deviation over the ten runs. These results are

discussed in Sections 3.2–3.4 below, where we consider universality to be represented

by the ability for all entities within the algorithm to converge to a single solution. The

remainder of Section 3 is devoted to re-defining and re-examining universality using

statistical mechanics and the renormalisation group.

3 Results and analysis

3.1 The model of Sella and Ardell

In an insightful paper, Sella and Ardell [11] develop a Code Message Coevolution Model

that describes the impact of message mutation on the fitness of the genetic code. The

authors observe that at mutational equilibrium, there is a balance between mutations

in messages and selection on proteins. This model has been summarized in Becich

et al. [20]. The process involves calculating the column stochastic eigenvector corre-

sponding to the largest eigenvalues as described in step 4 (mutational equilibrium) of

the algorithm described in Section 2.3. We note for completeness and reproducibility

two minor errata. Example A from Sella and Ardell [11] consists of a model with the

following setup. There is a ring of five codons mapping to a ring of five amino acids

with ∆c,a being the identity matrix. Note that we will denote the eigenvector as Uc,s,

however, s is fixed and is not a free index (as in our step 4). To reproduce the results,

we take Φ = 0.85 and µ = 0.01.§ The resulting eigenvalues and eigenvectors are given

in Table 1. Note that at machine precision the eigenvectors sum to one (
∑

c Uc,s = 1)

as required.

§ We are grateful to D. Ardell for communications on this point.

– 10 –

Eigenvalues and column stochastic eigenvectors for a set of Φ and µ

Scaling for an abstract Rate of mutations µ Largest eigenvalue λs

physicochemical between amino acids Φ

1 0.8 0.1 0.9549

2 0.85 0.01 0.9808

Corresponding eigenvector Uc,s
T

1
[
0.2635 0.2134 0.1549 0.1549 0.2134

]
2
[
0.9058 0.0461 0.0011 0.0011 0.0461

]
Table 1: Row 1 gives the resulting eigenvalues and eigenvectors for the parameters stated

in the paper. Row 2 provides the eigenvalues and eigenvectors from the paper using the

corrected parameters. Note these eigenvectors are for a given value of s.

3.2 Varying parameters for space structure

Recall that |i| counts the number of nucleotides. These are the letters that comprise a

DNA sequence. Taking a codon to consist of an n nucleotide sequence, the number of

possible codons is then |C| = |i|n. These codons describe |A| amino acids. With four

bases as in the standard genetic code, there are 64 three base sequences corresponding

to possible codons. These codons correspond to 20 amino acids, so we have a many to

one map. In this subsection, we report on experiments involving varying parameters

corresponding to the spatial structure of the map.

Experiment 1: Varying the number of nucleotides

We test the fitness optimization for the cases |i| = 3, 4, 5. We do not take |i| = 2 as this

gives |C| = 8 < |A| = 9, breaking one of the constraints on the delta matrix. We do not

take |i| ≥ 6 either as this produces a matrix that is at minimum 216× 9, which takes

significant processing time to iterate. The results are given in Figure 2. For all values of

|i|, Figure 2 (a) displays an optimised solution with an attractor mechanism converging

to a near universal solution.When varying |i| we find the value of the optimality score,

O, increases proportionally as shown in Figure 2 (b). This makes sense as increasing |i|
increases |C| meaning we sum over more elements to get the optimality score O. The

rate of convergence decreases as indicated by the error bars increasing proportionally

with |i| in Figure 2 (b). This is as expected as larger matrices should take longer to

find the universal solution.

– 11 –

Figure 2: Figure 2 (a) shows the average time evolution of the standard deviation of the

optimality score for a given |i| over ten runs. Figure 2 (b) shows the average final optimality

score for a given |i| over ten runs. The initial parameters are the same for all runs: n = 3,

|A| = 9, N = 80, K = 1, H = 0.4, ν = 0.01, µ = 10−4, and Φ = 0.99. The error bars show

the average one standard deviation spread of final optimality scores over the ten runs (to

measure the rate of convergence).

Experiment 2: Varying the length of a codon

For the length of a codon n, we take n = 2, 3, 4. We do not take n = 1 or n ≥ 5 for the

same reasons as when varying |i|. The results are given in Figure 3. They display the

same pattern as when varying |i|, because we are increasing |C| again. When n = 2, we

get |C| = |A| = 9 which means ∆c,a forms a permutation matrix. This matrix cannot

be changed in step 3 of the algorithm discussed in Section 2.3 (fitness maximization)

as we cannot reassign a single codon c to a new amino acid a without being left with

an empty column. The delta matrix, ∆c,a, cannot therefore evolve, giving a single flat

line for n = 2 as seen in Figure 3 (a). This implies that we require |C| > |A| for the

algorithm to work. We take note of the smallness of the standard deviations in Figure 3

(b).

– 12 –

Figure 3: Figure 3 (a) shows the average time evolution of the standard deviation of the

optimality score for a given n over ten runs. Figure 3 (b) shows the average final optimality

score for a given n over ten runs. The initial parameters are the same for all runs: |i| = 3,

|A| = 9, N = 80, K = 1, H = 0.4, ν = 0.01, µ = 10−4, and Φ = 0.99. The error bars show

the average one standard deviation spread of final optimality scores over the ten runs (to

measure the rate of convergence).

Experiment 3: Varying the number of amino acids

The result of this experiment is that variations on |A| display convergence. It is impor-

tant to consider that the randomly generated values for topological amino acid distance

ad and site frequency Ls will also vary, as they are generated with consideration on |A|.
The results for this are given in Figure 4. There appears to be an upwards trend in

Figure 4 (b). This result is intuitively expected as increasing the number of amino acids

increases the number of terms we sum over; however, further investigation is needed to

confirm this. This should be done keeping randomly generated variables fixed where

possible.

3.3 Varying parameters for the innovation pool structure

Recall that the algorithm from Section 2.3 begins by constructing N objects each with

a genetic code G. At each time step, one of these objects receives a fragment of genome

from K donors selected from the set of objects. The parameter H computes the fraction

of the recipient genome due to horizontal gene transfer.

– 13 –

Figure 4: Figure 4 (a) shows the average time evolution of the standard deviation of the

optimality score for a given |A| over ten runs. Figure 4 (b) shows |A| (number of amino acids)

against the average final optimality score, averaged over ten runs. The initial parameters are

the same for all runs: |i| = 3, n = 3, N = 80, K = 1, H = 0.4, ν = 0.01, µ = 10−4,

and Φ = 0.99. The error bars in show the average one standard deviation spread of final

optimality scores over the ten runs (to measure the rate of convergence).

Experiment 4: Varying N

The results for varying N is shown in Figure 9 in Appendix B. The number of entities

N is taken from 10 to 100 in steps of 10. The results when varying the number of

entities show a linear relationship between number of entities N and final average final

optimality score as seen in Figure 9 (b).

Experiment 5: Varying K

When varying the number of donors K from 1 to 5, we find that it does not affect

the algorithm’s dynamics as seen in Figure 10 in Appendix B. This makes sense as we

are always adding the same fraction H to the acceptor codon usage UA
c,s. We should

note there does appear to be a slight upwards trend in average final optimality score as

shown in Figure 10 (b). Further investigation should be undertaken with larger value

of K such that K ≈ N .

Experiment 6: Varying H

We take H, the fraction of the genome similar due to horizontal gene transfer from

0 to 1 in increments of 0.1. The results are shown in Figure 5 below. Figure 5 (a)

that for H = 0, there is no convergence as expected, while for H = 0.2 the results

begin to converge but at a very slow rate. Looking at the Figure 5 (b), it is clear

– 14 –

that 0.4 ≤ H ≤ 0.7 gives the minimal optimality score and the smallest error bars.

This implies the final results have been substantially optimised and have converged

to a greater extent via the attractor mechanism to a near universal solution. When

H ≥ 0.8 , the final scores, O, are less optimal and have converged less.This is probably

due to a change from “mixing” to “swapping” of codon usage matrices Uc,s, preventing

optimal communication. Results from Figure 5 suggest that maximum mixing occurs

around H = 0.6.

Figure 5: The average final optimality score for a given H. Figure 5 (a) shows the average

time evolution of the standard deviation of the optimality score for a given H over ten runs.

Figure 5 (b) shows the average final optimality score for a given H over ten runs. The initial

parameters are the same for all runs: |i| = 3, n = 3, |A| = 9, N = 80, K = 1, ν = 0.01,

µ = 10−4, and Φ = 0.99. The error bars show the average one standard deviation spread of

final optimality scores over ten runs (to measure the rate of convergence).

Experiment 7: Time evolution of H

The parameter H is best considered a variable that decreases with time [1, 21]. This

is due to better translation of the model allowing evolution of a protein network with

more specific interactions to occur [1]. To model this, we define H in the following

manner:

H(t) = H0e
−kt . (3.1)

In this equation, H0 is the initial fraction of horizontal gene transfer similar (0 ≤
H0 ≤ 1), and k is a constant. Initially, H0 is set to 1. Setting k = 10−3 gives a number

that is approximately zero at, say, t = 5000. The results in Section 3 indicate that we

expect convergence to occur after 5000 iterations. For this reason, we set k = 10−4 so

that H(t = 5000) is relatively far from zero. The resulting dynamics is given in the

– 15 –

Figure 6 and Appendix C, where the degree of convergence is significantly improved in

several runs, to all prior results. The majority of the trials have fully converged and

can be considered universal. Note that the solutions converge to different values, due to

ad being randomly generated. We can see that only Figure 6 (d), does not completely

converge. The rate of convergence seem to to be fairly similar to the runs when using

large constant H. This makes sense as this is a stochastic process meaning the rate

of convergence should vary between runs. However, the average rate of convergence

significantly improves in the cases where universality manifests within this time frame.

Note that H(t) sits in the optimal range suggested in Section 3.3 for approximately the

last 1500 time steps.

Figure 6: Evolution of optimality score with a time evolving parameter H. Four runs

showing the evolution of optimality score for a time evolving H (according to (3.1)). We use:

|i| = 3, n = 3, |A| = 9, N = 80, K = 1, ν = 0.01, µ = 10−4, Φ = 0.99, k = 10−4, and H0 = 1.

– 16 –

3.4 Varying error and fitness parameters

Recall that the parameters ν, µ, and Φ take values in the interval [0, 1]. The parameter

ν measures the rate of mistranslation, when a single base is misread. The parameter

µ measures the rate of mutation, when a single base is changed. The parameter Φ

characterizes how an abstract physicochemical distance between amino acids scales

into the fitness.

Experiment 8: Varying ν and µ

The plots for these variations are in Appendix D. It can be seen that variations on ν

have no effect on a given optimality score. As we are trying to minimize the effects of

errors from ν and µ, there is less requirement to optimize as they decrease. This can

be seen in Figure 12 (b) in Appendix D. As these parameters decrease the optimality

score increases. Note we take ν and µ from 1 to 10−4 on a log scale. We do not try

ν, µ = 0 as this implies there is no need to optimize the code as no errors can occur.

Experiment 9: Varying Φ

As described by Vetsigian [2], Φ is a scale for the fitness for one amino acid substitution.

This implies that it should not affect the rate of convergence directly. However, it will

affect the score converged to. To examine this we reduce the fitness score f to a function

of Φ and ν in order to consider their role in the algorithm given by Figure 13 (a) in

Appendix D. The rest of the values are randomly generated. The variations of Φ are

proportional to f as expected.

3.5 Re-defining universality within a genetic code model

The framework we have described so far shows that there is some degree of convergence

via an attractor mechanism.With horizontal gene transfer turned on (H 6= 0), we have

an attractor. While the details of the solution depend in part on the initial conditions

assigned to parameters in the model, the model exhibits near universality at late times.

This is demonstrated by the converging behaviour of the optimality scores O of all

entities.We aim to refine the concept of universality. To do this we must first understand

genetic code configurations and the possible symmetries associated with them. We will

then analyze the fitness landscape of all genetic code configurations in order to to see

if this function can be scaled homogeneously. To re-examine universality further, we

mainly consider the model provided by Sella and Ardell [11] while also incorporating

the fitness function provided by Vetsigian et al. [1].

– 17 –

Note that for this section we will also work with the fitness in the following form:

log f =
∑
c

∑
s

LsUc,s log(
∑
c′

∑
a

Tc,c′∆c′,aWa,s) . (3.2)

The logarithm simplifies algebraic manipulations.

Using Definition 2, we represent each genetic code configuration using a delta

matrix ∆c,a. We can also calculate total number of configurations using (2.2). This

framework allows us to consider the genetic code mapping as a surjective mapping from

a Hamming graph (of codons) to a random graph (of distance between amino acids in

an abstract topological information space). These graphs have automorphisms due to

labeling which we will highlight clearly in an upcoming example. The automorphisms

imply that certain genetic code configurations (and therefore delta matrices ∆c,a) are

isomorphic to each other, meaning that they represent the same genetic code map G

even though they have different delta matrices ∆c,a. Considering the random graph

is randomly generated, we a priori assume that no automorphisms exist within the

amino acid graph. Note this is only true for |A| > 2, as |A| = 1 is trivial and |A| = 2

has an inherent symmetry in swapping the labels. Now the codons graphs as setup

as a Hamming graph. Hamming graphs are known for having automorphisms [17].

Due to there being a certain number of automorphisms for the Hamming graph for a

given |i| and n, we quotient (2.2) by the number of symmetries to get the number of

unique codes. As previously noted in Section 2.2, these automorphisms imply that two

isomorphic genetic codes should yield the same optimality score.

3.5.1 Example

In order to understand the isomorphisms, we will consider an example. Put |i| = 2,

n = 2, and |A| = 3. This means |C| = 4 giving delta matrices with dimensions 4 × 3.

Using (2.2) we get #config(|C| = 4, |A| = 3) = 36. We represent this map in the following

format:

01

1000

11

G

a b

c (3.3)

In (3.3), G : {00, 10, 11, 01} 7→ {c, c, b, a}. We see that the Hamming graph on the

left hand side is isomorphic under relabeling [17]. In particular, if we relabel 0←→ 1,

– 18 –

Figure 7: Four surface plots of log f in µ–ν phase space for Φ = 0.99 (a), 0.5 (b), 0.1 (c),

0.01 (d). We have set |C| = 4 and |A| = 3. Each colored surface corresponds to a unique

genetic code configuration.

the genetic code map would not change. This configuration has a symmetry factor 18.

Taking the quotient of the number of configurations with the symmetry factor suggests

that there are only two unique configurations of ∆c,a for |C| = 4 and |A| = 3. Said

another way, in this example, there are
(

4
2

)
ways of selecting a pair of codons that are

mapped by G to the same amino acid. Taking into account the repetition, there are

3! (the order of S3) ways of mapping the codons to the amino acids. The product

of these terms gives the 36 configurations. Taking into account the isomorphisms, we

pick out the odd and even elements of the permutation group S3 as our distinguished

configurations.

We will now calculate (3.2) for all configurations of ∆c,a. We do this for a given value

of Φ and generate plots in the µ–ν phase space plane (error space). In Figure 7, we show

results for Φ = 0.99, 0.5, 0.1, 0.01. We expect each unique genetic code configuration to

correspond to a unique surface in error space.

– 19 –

From Figure 7, we see that there are two unique surfaces for a given value of Φ.

This is due to there being two unique configurations of ∆c,a. Within this phase space,

there is a curve on which the surfaces interact. These curves are a critical locus for

which the ability of a code to produce a maximum log f changes. As Φ varies, the shape

of the surfaces change and critical locus changes. In the case for Φ = 0.99 (Figure 7

(a)), the critical locus is essentially independent of ν. The dependence on ν for the

surfaces and the critical locus grow as Φ decreases. In order to verify this, we take a

polynomial fit to the critical locus for this model.

Taking the ansatz,

log(f)fit = a+ b1ν + b2µ+ c1ν
2 + c2νµ+ c3µ

2 , (3.4)

for Φ = 0.99 the surfaces have polynomials of the form:

log(f)fit = −84.8470 + 0.0801ν − 0.0618ν2 + 22.0655µ− 15.2344µ2 , (3.5)

log(f)fit = −84.0745 + 0.0522ν − 0.0404ν2 + 26.1504µ− 23.5190µ2 , (3.6)

with R2 > 0.99995. Taking the difference between (3.5) and (3.6), we get the critical

locus

− 0.7725 + 0.0278ν − 0.0214ν2 + 4.0849µ+ 8.2846µ2 = 0 . (3.7)

As inferred from Figure 7, the dependence on ν is negligible as the coefficients are two

or three orders of magnitude smaller than the coefficients for terms involving µ. For

any value of Φ, the coefficient of the µν cross term O(10−10). Thus, at Φ ≈ 1,

∂ log f

∂ν
= 0 . (3.8)

This relation does not necessarily hold for smaller values of Φ for which we report

results in Appendix E. Here, the coefficients of ν are on a similar magnitude to those

for µ. This implies that Φ influences the effects of mistranslations ν in an inversely

proportional manner. For the results in the prior sections we use Φ = 0.99 for all runs

as in [1]. This is due to the fact that the effects of mistranslations are more likely to

be non-lethal. Note that as Φ and µ are related through eigenvectors and therefore not

linearly related.

Note we also have results for |i| = 4, n = 1 and|A| = 3 such that we have another

case with |C| = 4 and |A| = 3 but with different automorphisms in Appendix E. For

this we find a unique configuration of genetic codes and therefore no critical locus. We

also find that the dependence on ν increases and Φ decreases as before.

– 20 –

3.6 Re-examining universality

In order to understand the universality of the model in a more formal manner, we

examine it in terms of Widom scaling [22]. In particular, we look for homogeneous

behavior as a signal of scale invariance on a critical locus. Consider the logarithm of

the fitness function, log f . As above, f(ν, µ) is a function of the rate of mistranslations

and the rate of mutations. Now, homogeneity of log f demands that

log f(κν, κµ) = κβ log f(ν, µ) , (3.9)

where κ ∈ R is a scale and β is the degree of homogeneity. As ν, µ ∈ [0, 1], we require

that κν, κµ ∈ [0, 1]. In particular, when κ = 1,

ν
∂ log f

∂ν
+ µ

∂ log f

∂µ
= β log f(ν, µ) . (3.10)

This is the content of Euler’s homogeneous function theorem.

However, if we consider the case of Φ ≈ 1 − ε, where ε � 1, then contributions

from ν become negligible such that we can apply (3.8), leaving us to calculate ∂ log f
∂µ

.

From (3.2), the only part of the log f that depends on µ is Uc,s. Therefore, we must

calculate ∂Uc,s

∂µ
.

Suppose A is a real symmetric matrix with eigenvalues λi and eigenvectors vi
such that vTi vi = 1. The Perron–Frobenius theorem ensures that the matrix A has a

unique real eigenvalue with a magnitude larger than that of any other eigenvalue and

a corresponding eigenvector with positive components. Then

∂vi = (λi1− A)+(∂A)vi , (3.11)

where X+ denotes the Moore–Penrose inverse of X [23]. In defining Uc,s, we have

normalized so that
∑

c Uc,s = 1s. As Qs
c,c′ is a symmetric and real matrix, we therefore

only need to rescale Uc,s → U ′c,s such that
∑

c U
′
c,s · U ′c,s = 1 for any given s. By doing

this we can differentiate U ′c,s:

β =

∑
c

∑
s µ((λmax

s 1−Qs
c,c′)

+(
∑

c′′
∂Mc,c′′

∂µ
δc′′,c′Fc′′,s)U

′
c,s)
′Ls∑

c

∑
s Uc,sLs

, (3.12)

where

∂Mc,c′′

∂µ
=


1/(n(|i| − 1)) if dist(c, c′) = 1 ,

−1 if dist(c, c′) = 0 ,

0 otherwise .

(3.13)

– 21 –

We have derived the degree of scaling in the limit Φ → 1. This implies that the

model is approximately homogeneous in the regime that we have worked in, with degree

specified by (3.12). We see that the order is dependent on the mutations µ, implying

that the universality of the code arise due to species having similar mutational errors.

We regard the scaling behavior as a phenomenological observation about the solution

near an approximate fixed point of the renormalization group.

We emphasize that when investigating what happens as we tweak the parameters of

the model, we calculate the standard deviation to establish which results are significant

when we measure the optimality score. In assessing Widom scaling, we look at the

degree of homogeneity, not the degree of optimality; we do this using the fitness score,

which is the function actually being maximized in this algorithm, not the optimality

score. The Ls terms act as a weighting for each amino acid s. We have used a scaling

argument in order to justify universality of the algorithm. The fact that the degree of

homogeneity is independent of ν, the rate of mistranslations, in the Φ→ 1 limit, does

not imply that the final optimality score is independent of mistranslations. As seen in

Experiment 8 in Section 3.4, it is not: decreasing ν increases the optimality score. We

should emphasise that for smaller values of Φ, (3.12) will not hold. This is because

(3.8) begins to break down for values of Φ outside the condition Φ ≈ 1. We can amend

(3.12) to consider results around Φ = 0.9 by incorporating the addition on an error

term through considerations of the first term of (3.10). This approximation does not

apply for smaller values of Φ, however, since, as suggested by Sella and Ardell [11], we

expect Φ to be relatively large.

4 Conclusion and prospects

In this paper, we have argued that with generic initial conditions, there is a late time

near universality resulting from the flow of the theory to an attractive solution, viz., the

standard genetic code. The convergence via the attractor mechanism to a near universal

solution relies on the mechanism of horizontal gene transfer [1], which corresponds to

setting a parameter H to a non-zero value. We varied the parameters of the model

and found that all variations still display this convergence, except for H = 0. This

demonstrates the robustness of the model. We also found that for 0.3 < H < 0.7 we

obtain near universal solutions with the greatest degree of optimisation, with H > 0.7

not being as effective due to some transition from “mixing” to “swapping”. Taking H

as a decreasing time-dependent function vastly improves the convergence in comparison

to constant values of H. We found that increasing the number of codons, |C|, increases

– 22 –

the optimality score O. By limiting the fitness function to a regime that we work in

(Φ = 0.99), we are able to make approximations that lead to homogeneity in log f ,

where f(ν, µ) is a fitness function depending on the rate of mistranslation and the

rate of point mutation. We derive an expression for the degree of homogeneity, β.

In the limit Φ → 1, β depends strongly on the mutation rate and negligibly on the

mistranslation rate. We conclude that the rate of point mutations is the crucial factor in

driving arbitrary initial conditions to the attractor solution that optimizes fitness of the

genetic code. The point mutation rate is determined by the eigenvalue of the linearized

renormalization group transformation around the fixed point for the dynamics.

Improvements to make the algorithm more accurate for biology would involve ex-

ploring how to incorporate stop codons which do not code for amino acids into the

model as something more than a dummy amino acid. We should also consider that

mutations and horizontal gene transfer do not occur at the same rate as suggested by

both occurring at each iteration. Some work to estimate a timescale for this model

possibly by considering rate of error as the sum of all errors (ν+µ) and relating this to

the measured rate of error in, for example, a kinetic proofreading model [24]. We also

suggest that additional factors and steps should be incorporated in order to guarantee

a universal solution is converged to every run.

Variations on the dimensions, |C| and |A|, which count the number of codons and

the number of amino acids, respectively, display convergence to a universal result. This

could have applications to synthetic biology where codes with up to 8 bases have been

created [25]. These codes should also converge to a universal genetic code given enough

time. An open question is to determine what sets the initial conditions. Why did life

on Earth evolve to make use of four base pairs in DNA, three base pairs per codon,

and 20 amino acids?

We have focused on a single basin of attraction, whereas there could be others.

The basin of attraction may be determined by biochemistry inputs. We can imagine,

for example, a different basin of attraction in which the solvent is ammonia, methane,

or hydrogen fluoride instead of water. We can also imagine biochemistry organized

around silicon instead of carbon. The molecular realization of the genetic code would

be different based on these other inputs, but we expect that the same principles apply,

and these other hypothetical genetic codes would also evolve to a universal solution

based on the principle of horizontal gene transfer.

Broadly speaking, we have argued that the concept of universality from statistical

physics applies to biological systems like the genetic code. The thermodynamic limit

arises from a large N number of degrees of freedom in the entities studied. The dy-

– 23 –

namical system is driven to an attractor solution as a result of interactions, in this

case horizontal gene transfer. We have considered a mechanism for horizontal gene

transfer and by tweaking its parameters identified which ones are the most important.

The existence of approximate homogeneity offers evidence for universality. We would

like to interrogate how general this setup is and whether it is useful for studying other

complex systems.

Indeed, like thermodynamics and evolution itself, we wish to consider horizontal

gene transfer as an organizing principle in Nature. Different solutions to a theory or

different possible initial conditions can exchange information with each other through

complex processes. Dynamics can then flow the system to a late time attractor solution

that is independent of specific parameters of the model. As a proving ground for this

hypothesis, we can consider the vacuum selection problem in quantum gravity. String

theory, a promising candidate framework for marrying gravitation with quantum theory,

generically predicts a landscape of vacua, one of which is our Universe with the Standard

Models of particle physics and cosmology as phenomenological features that explain

dynamics at small and large scales. (See, for example, [26–28] for related reviews.)

These vacua inevitably arise as a consequence of a simple observation — we live in four

spacetime dimensions whereas the consistency of the theory demands ten, and there is

no unique way to reduce the number of dimensions. Because they are unobserved, the

extra dimensions predicted by string theory comprise a compact geometry with special

properties. The moduli space of string compactifications is believed to be connected.

We can calculate the degree of fine tuning necessary to support certain cosmological

structures and the astrophysical and chemical preconditions necessary for life [29].

Rather than making an explicitly anthropic argument [30, 31], we can model a dynamics

for vacuum selection which incorporates a mechanism analogous to horizontal gene

transfer to lead to universal and optimal structures as an attractive fixed point. Thus,

instead of arguing that low energy observables such as the cosmological constant are

distributed randomly across the landscape, horizontal gene transfer, by driving the

system to the attractor value, may obviate aspects of the measure problem. Developing

and testing this hypothesis within the string theory framework is work in progress.

Acknowledgements

We are grateful to David Ardell, Nigel Goldenfeld, Sujay Nair, and Kalin Vetsigian for

feedback and insightful discussions. YHH is indebted to the Science and Technology

Facilities Council, UK, for grant ST/J00037X/1. VJ thanks the South African Re-

– 24 –

search Chairs Initiative of the Department of Science and Technology and the National

Research Foundation for support. DM thanks the Julian Schwinger Foundation and

the US Department of Energy (DE-SC0020262) for support.

– 25 –

A Different initial delta matrices ∆c,a

Initializing with different delta matrices, the optimality score converges.

Figure 8: Graph showing evolution of optimality score when all entities have a different

initial ∆c,a rather than the same initial ∆c,a. Initial parameters are: |i| = 3, n = 3, |A| = 9,

N = 80, K = 1, H = 0.4, ν = 0.01, µ = 10−4, and Φ = 0.99

– 26 –

B Varying innovation pool structure

As discussed in Section 3.3, we plot what happens as we vary N , the number of entities

under consideration, and K, the number of donors.

Figure 9: Figure 9 (a) shows the average time evolution of the standard deviation of the

optimality score for a given N over ten runs. Figure 9 (b) shows N (number of entities)

against the average final optimality score, averaged over ten runs. The initial parameters are

the same for all runs: |i| = 3, n = 3, |A| = 9, K = 1 , H = 0.4, ν = 0.01, µ = 10−4, and

Φ = 0.99. The error bars show the average one standard deviation spread of final optimality

scores over ten runs (to measure the rate of convergence).

– 27 –

Figure 10: Figure 10 (a) shows the average time evolution of the standard deviation of the

optimality score for a given K over ten runs. Figure 10 (b) shows K (number of donors)

against the average final optimality score, averaged over ten runs. The initial parameters are

the same for all runs: |i| = 3, n = 3, |A| = 9, N = 80, H = 0.4, ν = 0.01, µ = 10−4, and

Φ = 0.99. The error bars show the average one standard deviation spread of final optimality

scores over ten runs (to measure the rate of convergence).

– 28 –

C Time evolution of H

Figure 11: Evolution of optimality score with a time evolving parameter H. Six runs

showing the evolution of optimality score for a time evolving H (according to (3.1)). We use:

|i| = 3, n = 3, |A| = 9, N = 80, K = 1, ν = 0.01, µ = 10−4, Φ = 0.99, k = 10−4, and H0 = 1.

– 29 –

D Varying noise and fitness parameters

As discussed in Section 3.4, we plot variations of ν (the mistranslation rate), µ (the

mutation rate), and Φ (the scale for abstract physicochemical distance).

Figure 12: Figure 12 (a) shows the average time evolution of the standard deviation of the

optimality score for a given ν and µ over ten runs. Figure 12 (b) shows ν and µ against the

average final optimality score, averaged over ten runs. The initial parameters are the same

for all runs: |i| = 3, n = 3, |A| = 9, N = 80, K = 1, H = 0.4, and Φ = 0.99. When varying

ν, we put µ = 10−4. When varying µ, we put ν = 0.01. The error bars show the average one

standard deviation spread of final optimality scores over three runs (to measure the rate of

convergence).

Figure 13: Figure 13 (a) displays a surface plot of the fitness function f in terms of Φ and ν.

Figure 13 (b) is simply a heatmap of the first plot. We use: |i| = 3, n = 3, |A| = 9, N = 80,

K = 1, H = 0.4, and µ = 10−4. Other parameters are randomly generated.

– 30 –

E Defining universality

We show the best fits for different values of Φ corresponding to the surfaces for log f

as a function of ν and µ in Figure 7.

Figure 14: Four surface plots of polynomial fit of log f in µ–ν phase space for Φ = 0.99 (a),

0.5 (b), 0.1 (c), 0.01 (d). This is to be compared with Figure 7.

In analogy to (3.5) and (3.6) for Φ = 0., 99, we provide polynomial best fits for

|i| = 2, n = 2 and |A| = 3 for Φ = 0.5, 0.1, 0.01.

• Φ = 0.5:

log(f)fit = −49.6633+44.1899ν−31.6042ν2+21.4761µ−14.8319µ2 , R2 = 0.99761 .

(E.1)

– 31 –

log(f)fit = −47.5384+40.8086ν−29.5881ν2+25.3872µ−22.8529µ2 , R2 = 0.997706 .

(E.2)

• Φ = 0.1:

log(f)fit = −47.7527+61.5566ν−39.4707ν2+16.8343µ−11.4213µ2 , R2 = 0.99705 ,

(E.3)

log(f)fit = −45.5857+59.7551ν−39.8311ν2+19.962µ−18.1142µ2 , R2 = 0.996994 .

(E.4)

• Φ = 0.01:

log(f)fit = −48.6657+62.1467ν−36.9472ν2+11.0255µ−6.69862µ2 , R2 = 0.997404 ,

(E.5)

log(f)fit = −46.9935+63.104ν−41.1589ν2+14.3666µ−13.2086µ2 , R2 = 0.997725 .

(E.6)

The values |i| = 4, n = 1, |C| = 4, |A| = 3 is represented by the map:

4

21

3

G

a b

c (E.7)

These give the surface plots of polynomial fit of log f over the µ–ν phase space shown

in Figure 15.

– 32 –

Figure 15: Four surface plots of polynomial fit of log f in µ–ν phase space for Φ = 0.99 (a),

0.5 (b), 0.1 (c), 0.01 (d).

– 33 –

References

[1] Kalin Vetsigian, Carl Woese, and Nigel Goldenfeld. Collective evolution and the

genetic code. Proceedings of the National Academy of Sciences, 103(28):10696–10701,

2006. ISSN 0027-8424. doi: 10.1073/pnas.0603780103. URL

https://www.pnas.org/content/103/28/10696.

[2] Kalin Horen Vetsigian. Collective evolution of biological and physical systems, 2005.

URL

http://guava.physics.uiuc.edu/people/Theses/Vetsigian_PhD_thesis.pdf.

[3] Guy Sella and David H. Ardell. The coevolution of genes and genetic codes: Crick’s

frozen accident revisited. Journal of Molecular Evolution, 63(3):297–313, Sep 2006.

ISSN 1432-1432. doi: 10.1007/s00239-004-0176-7. URL

https://doi.org/10.1007/s00239-004-0176-7.

[4] S.G. Bonitz, Roberta Berlani, Gloria Coruzzi, May Li, Giuseppe Macino, F.G.

Nobrega, M.P. Nobrega, B.E. Thalenfeld, and Alexander Tzagoloff. Codon recognition

rules in yeast mitochondria. Proceedings of the National Academy of Sciences of the

United States of America, 77:3167–70, 07 1980. doi: 10.1073/pnas.77.6.3167. URL

https://www.pnas.org/content/77/6/3167.

[5] Stephen J. Freeland and Laurence D. Hurst. The genetic code is one in a million.

Journal of molecular evolution, 47:238–48, 10 1998. doi: 10.1007/PL00006381. URL

https://doi.org/10.1007/PL00006381.

[6] Stephen J. Freeland, Tao Wu, and Nick Keulmann. The case for an error minimizing

standard genetic code. Origins of life and evolution of the biosphere, 33(4):457–477,

Oct 2003. ISSN 1573-0875. doi: 10.1023/A:1025771327614. URL

https://doi.org/10.1023/A:1025771327614.

[7] David Haig and Laurence D. Hurst. A quantitative measure of error minimization in

the genetic code. Journal of Molecular Evolution, 33(5):412–417, Nov 1991. ISSN

1432-1432. doi: 10.1007/BF02103132. URL https://doi.org/10.1007/BF02103132.

[8] C.R. Woese, D.H. Dugre, Carl Saxinger, and S.A. Dugre. The molecular basis for the

genetic code. Proceedings of the National Academy of Sciences of the United States of

America, 55:966–74, 05 1966. doi: 10.1073/pnas.55.4.966. URL

https://www.pnas.org/content/55/4/966.

[9] Damien C. Mathew and Zaida Luthey-Schulten. On the physical basis of the amino

acid polar requirement. Journal of Molecular Evolution, 66(5):519–528, May 2008.

ISSN 1432-1432. doi: 10.1007/s00239-008-9073-9. URL

https://doi.org/10.1007/s00239-008-9073-9.

– 34 –

https://www.pnas.org/content/103/28/10696
http://guava.physics.uiuc.edu/people/Theses/Vetsigian_PhD_thesis.pdf
https://doi.org/10.1007/s00239-004-0176-7
https://www.pnas.org/content/77/6/3167
https://doi.org/10.1007/PL00006381
https://doi.org/10.1023/A:1025771327614
https://doi.org/10.1007/BF02103132
https://www.pnas.org/content/55/4/966
https://doi.org/10.1007/s00239-008-9073-9

[10] Thomas Butler, Nigel Goldenfeld, Damien Mathew, and Zaida Luthey Schulten.

Extreme genetic code optimality from a molecular dynamics calculation of amino acid

polar requirement. Physical review. E, Statistical, nonlinear, and soft matter physics,

79:060901, 07 2009. doi: 10.1103/PhysRevE.79.060901. URL

https://link.aps.org/doi/10.1103/PhysRevE.79.060901.

[11] Guy Sella and David H. Ardell. The impact of message mutation on the fitness of a

genetic code. Journal of Molecular Evolution, 54(5):638–651, May 2002. ISSN

1432-1432. doi: 10.1007/s00239-001-0060-7. URL

https://doi.org/10.1007/s00239-001-0060-7.

[12] S.H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,

Chemistry and Engineering. Studies in nonlinearity. Westview, 2000. URL

https://books.google.co.uk/books?id=NZZDnQEACAAJ.

[13] Kenneth G. Wilson. The Renormalization Group: Critical Phenomena and the Kondo

Problem. Rev. Mod. Phys., 47:773, 1975. doi: 10.1103/RevModPhys.47.773. URL

https://link.aps.org/doi/10.1103/RevModPhys.47.773.

[14] K. G. Wilson. The renormalization group and critical phenomena. Rev. Mod. Phys.,

55:583–600, 1983. doi: 10.1103/RevModPhys.55.583. URL

https://link.aps.org/doi/10.1103/RevModPhys.55.583.

[15] N. Goldenfeld. Lectures on phase transitions and the renormalization group. 1992.

ISBN 9780429973123. URL https://books.google.co.uk/books?id=HQpQDwAAQBAJ.

[16] D.J. Baylis. Error Correcting Codes: A Mathematical Introduction. Taylor & Francis,

2017. ISBN 9781351449847. URL

https://books.google.co.uk/books?id=r0OVtAEACAAJ.

[17] S. Morteza Mirafzal and Meysam Ziaee. A note on the automorphism group of the

Hamming graph. arXiv e-prints, art. arXiv:1901.07784, Jan 2019. URL

https://arxiv.org/abs/1901.07784.

[18] W. Bialek. Biophysics: Searching for Principles. Princeton University Press, 2012.

ISBN 9780691138916. URL https://books.google.co.uk/books?id=5In_FKA2rmUC.

[19] R. B.J.T. Allenby and Alan Slomson. How to Count: An Introduction to

Combinatorics, Second Edition. Chapman & Hall/CRC, 2nd edition, 2010. ISBN

1420082604, 9781420082609. URL

https://books.google.co.uk/books?id=iRrSBQAAQBAJ.

[20] Peter Becich, Brian P Stark, Harish S Bhat, and David Ardell. Cmcpy: Genetic

code-message coevolution models in python. Evolutionary bioinformatics online, 9:

– 35 –

https://link.aps.org/doi/10.1103/PhysRevE.79.060901
https://doi.org/10.1007/s00239-001-0060-7
https://books.google.co.uk/books?id=NZZDnQEACAAJ
https://link.aps.org/doi/10.1103/RevModPhys.47.773
https://link.aps.org/doi/10.1103/RevModPhys.55.583
https://books.google.co.uk/books?id=HQpQDwAAQBAJ
https://books.google.co.uk/books?id=r0OVtAEACAAJ
https://arxiv.org/abs/1901.07784
https://books.google.co.uk/books?id=5In_FKA2rmUC
https://books.google.co.uk/books?id=iRrSBQAAQBAJ

111–25, 02 2013. doi: 10.4137/EBO.S11169. URL

https://doi.org/10.4137/EBO.S11169.

[21] Carl R. Woese. On the evolution of cells. Proceedings of the National Academy of

Sciences, 99(13):8742–8747, 2002. ISSN 0027-8424. doi: 10.1073/pnas.132266999. URL

https://www.pnas.org/content/99/13/8742.

[22] B. Widom. Equation of State in the Neighborhood of the Critical Point. Journal of

Chemical Physics, 43:3898–3905, December 1965. doi: 10.1063/1.1696618.

[23] K. B. Petersen and M. S. Pedersen. The matrix cookbook, October 2008. URL

http://www2.imm.dtu.dk/pubdb/p.php?3274. Version 20081110.

[24] U. Alon. An Introduction to Systems Biology. Chapman & Hall/Crc Mathematical and

Computational Biology. CRC Press LLC, 2019. ISBN 9781439837177. URL

https://books.google.co.uk/books?id=MWXdQgAACAAJ.

[25] Shuichi Hoshika, Nicole A. Leal, Myong-Jung Kim, Myong-Sang Kim, Nilesh B.

Karalkar, Hyo-Joong Kim, Alison M. Bates, Norman E. Watkins, Holly A. SantaLucia,

Adam J. Meyer, Saurja DasGupta, Joseph A. Piccirilli, Andrew D. Ellington, John

SantaLucia, Millie M. Georgiadis, and Steven A. Benner. Hachimoji dna and rna: A

genetic system with eight building blocks. Science, 363(6429):884–887, 2019. ISSN

0036-8075. doi: 10.1126/science.aat0971. URL

https://science.sciencemag.org/content/363/6429/884.

[26] Frederik Denef and Michael R. Douglas. Computational complexity of the landscape. I.

Annals Phys., 322:1096–1142, 2007. doi: 10.1016/j.aop.2006.07.013. URL

https://ui.adsabs.harvard.edu/abs/2007AnPhy.322.1096D.

[27] Vishnu Jejjala, Michael Kavic, and Djordje Minic. Time and M-theory. Int. J. Mod.

Phys., A22:3317–3405, 2007. doi: 10.1142/S0217751X07036981. URL

https://doi.org/10.1142/S0217751X07036981.

[28] Yang-Hui He. The Calabi-Yau Landscape: from Geometry, to Physics, to

Machine-Learning. 2018. URL https://arxiv.org/abs/1812.02893.

[29] Fred C. Adams. The Degree of Fine-Tuning in our Universe – and Others. 2019. URL

https://arxiv.org/abs/1902.03928#.

[30] Steven Weinberg. The Cosmological Constant Problem. Rev. Mod. Phys., 61:1–23,

1989. doi: 10.1103/RevModPhys.61.1. URL

https://link.aps.org/doi/10.1103/RevModPhys.61.1.

[31] Joseph Polchinski. The Cosmological Constant and the String Landscape. In The

Quantum Structure of Space and Time: Proceedings of the 23rd Solvay Conference on

– 36 –

https://doi.org/10.4137/EBO.S11169
https://www.pnas.org/content/99/13/8742
http://www2.imm.dtu.dk/pubdb/p.php?3274
https://books.google.co.uk/books?id=MWXdQgAACAAJ
https://science.sciencemag.org/content/363/6429/884
https://ui.adsabs.harvard.edu/abs/2007AnPhy.322.1096D
https://doi.org/10.1142/S0217751X07036981
https://arxiv.org/abs/1812.02893
https://arxiv.org/abs/1902.03928#
https://link.aps.org/doi/10.1103/RevModPhys.61.1

Physics. Brussels, Belgium. 1 - 3 December 2005, pages 216–236, 2006. URL

https://arxiv.org/abs/hep-th/0603249.

– 37 –

https://arxiv.org/abs/hep-th/0603249

	Introduction
	Modeling framework
	Basic definitions
	Fitness
	The algorithm

	Results and analysis
	The model of Sella and Ardell
	Varying parameters for space structure
	Varying parameters for the innovation pool structure
	Varying error and fitness parameters
	Re-defining universality within a genetic code model
	Example

	Re-examining universality

	Conclusion and prospects
	Different initial delta matrices c,a
	Varying innovation pool structure
	Time evolution of H
	Varying noise and fitness parameters
	Defining universality

