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Observational studies of ecological systems have shown that different species compositions can10

arise from distinct species arrival orders during community assembly—also known as colonization11

history. The presence of multiple interior equilibria in the positive orthant of the state space of12

the population dynamics will naturally lead to history dependency of the final state. However, it13

is still unclear whether and under which conditions colonization history will dominate community14

composition in the absence of multiple interior equilibria. Here, by considering that only one species15

can invade at a time and there are no recurrent invasions, we show clear evidence that the colo-16

nization history can have a big impact on the composition of ecological systems even in the absence17

of multiple interior equilibria. In particular, we first derive two simple rules to determine whether18

the composition of a community will depend on its colonization history in the absence of multiple19

interior equilibria and recurrent invasions. Then we apply them to communities governed by gener-20

alized Lotka-Volterra (gLV) dynamics and propose a numerical scheme to measure the probability21

of colonization history dependence. Finally, we show, via numerical simulations, that for gLV dy-22

namics with a single interior equilibrium the probability that community composition is dominated23

by colonization history increases monotonically with community size, network connectivity, and the24

variation of intrinsic growth rates across species. These results reveal that in the absence of mul-25

tiple interior equilibria and recurrent invasions community composition is a probabilistic process26

mediated by ecological dynamics via the interspecific variation and the size of regional pools.27

I. INTRODUCTION28

Ecological communities are formed by co-occurring29

and interacting species in a given place and time [1–3].30

It has been shown that within these communities, the31

specific composition of species is a function of several32

ecological, evolutionary, and stochastic processes [3–6].33

Importantly, one of the main factors affecting community34

composition is the order of species arrival—also known35

as colonization history [7–11]. That is, colonization his-36

tory can introduce priority effects, where the persistence37

of species depends on the order at which they join a given38

community.39

Many mathematical or physical tools have been used40

to investigate the impact of colonization history on com-41

munity composition. For example, Ref. [12] introduced a42

toy model of ecosystem assembly to map out all assembly43

pathways generated by external invasions. The coloniza-44

tion process was characterized as a finite Markov chain,45

and proved to exhibit a unique set of recurrent states (the46

end state of the process) that are resistant to invasions.47

This also shows that the end state is independent of the48

assembly history. For replicator systems and the gLV49

model, a phase transition was found from a phase where50

a unique globally attractive fixed point exists to a phase51

where multiple dynamical attractors exist [13–20]. The52

latter phase naturally leads to history-dependent com-53

munity properties.54

Although many other studies have also shown history55

dependent or independent communities in different the-56

oretical models [21–27], these studies do not allow us to57

find general conditions under which colonization history58

can have the highest (or lowest) chance to affect commu-59

nity composition. In fact, it is still unclear whether and60

under which conditions colonization history will domi-61

nate community composition in the absence of multiple62

interior equilibria and recurrent invasions. Note that in63

the presence of a single interior equilibrium, if we allow64

for recurrent invasion, then sooner or later this interior65

equilibrium will be reached, and the assembly process66

(in the long run) will be trivially history independent.67

Therefore, in this work we are interested in the history68

dependency by considering that only one species can in-69

vade at a time, and there are no recurrent invasions.70

The complexity of factors affecting community assem-71

bly has undercut our ability to anticipate whether a given72

regional pool of species can be more susceptible to col-73

onization history than another. Yet, knowing this can74

advance our understanding about the probabilistic na-75

ture and predictability of ecological communities. In this76

paper, we try to address the following key questions: In77

the absence of multiple interior equilibria and recurrent78

invasions, are there any conditions under which coloniza-79

tion history will completely dominate community compo-80

sition? Does the type of interspecific interactions affect81

the probability that community composition depends on82
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colonization history? How do the intrinsic properties of1

species affect the impact of colonization history on com-2

munity composition? In the face of an accelerating rate of3

species turnover, answering these questions is important4

in order to understand and anticipate key biodiversity5

changes in ecological communities.6

The rest of the paper is organized as follows: Section II7

provides two motivating examples, and then introduces8

two simple rules to determine the relationship between9

community composition and colonization history. Sec-10

tion III defines a community model with gLV dynamics11

and proposes a numerical scheme to measure the proba-12

bility of colonization history dependence. Section IV dis-13

cusses the effects of both community and intrinsic prop-14

erties on the history dependence. Section V is devoted to15

a discussion on the limitations of our current work and16

some potential extensions.17

II. MOTIVATING EXAMPLES18

To illustrate the scope and assumptions behind our19

study, we start our analysis by considering a small pool20

of 3 species that can coexist at a unique interior equilib-21

rium, as shown in Fig. 1. It is worth mentioning that in22

order to increase the tractability of the problem, here we23

assume that only one species can invade at a time and the24

ecological dynamics is fast enough to reach a boundary25

equilibrium (i.e., with some of the S species having zero26

abundance) before the next species invasion. Thus, in27

this example, there are 6 possible colonization histories28

(or assembly paths), one unique interior equilibrium, and29

6 different boundary equilibria from which an ecological30

community of 3 species can be assembled by introducing31

one species at a time, i.e., via successive invasions to an32

empty community ∅ (see Fig. 1b and Fig. 1e).33

As shown in Fig. 1b, species 2 and 3 cannot coexist on34

their own (i.e., the boundary equilibrium {2, 3} is infea-35

sible), the assembly paths (of length 3): ∅→ 3→ 2→ 136

and ∅→ 2→ 3→ 1 cannot achieve the final community37

{1, 2, 3}, while other assembly paths (of length 3) can.38

Note that if we allow for recurrent invasion, then the as-39

sembly path (of length 4): ∅ → 2 → 3 → 1 → 2 can40

eventually achieve {1, 2, 3}. Hence, the history depen-41

dence we are interested in is equivalent to the existence42

of non-optimal assembly paths (of length > S) to assem-43

ble a community formed by S species, that is, there is44

at least one infeasible boundary equilibrium. And his-45

tory independence means that starting from the empty46

community all the S! assembly paths (of optimal length47

S) can lead to the final state with S species stably co-48

exist, that is, all boundary equilibria are feasible. For49

example, for the system shown in Fig. 1e, any subset of50

the 3 species can coexist at their equilibria. In this case,51

the final community composition is independent of the52

colonization history, and any optimal assembly paths (of53

length S) can assemble a community formed by S species.54

Based on the above observations, in the absence of55

multiple interior equilibria and recurrent invasions, we56

have two simple rules to determine the relationship of57

community composition and colonization history:58

First, if there exists a set of species {S} that can co-59

exist at a unique equilibrium, but a smaller subset of60

species {T } (⊂ {S}) cannot, then the final community61

composition formed by the S (= |{S}|) species depends62

on the colonization history. This rule can be understood63

as follows. For a given regional pool {S} = {1, ..., S},64

without loss of generality, let us assume there is only one65

subcommunity {T } = {1, ..., T} (with T < S) that does66

not have a feasible boundary equilibrium, then the fol-67

lowing two assembly paths (of the same length S): (1)68

∅ → 1 → · · · → T − 1 → T → T + 1 → · · · → S;69

(2) ∅ → 1 → · · · → T − 1 → T + 1 → T →70

· · · → S will yield different states. The former leads to71

{1, · · · , T − 1, T + 1, · · · , S} with S − 1 species present,72

while the latter leads to {1, · · · , S} with all the S species73

present. Similar arguments can be applied to the case of74

more infeasible subcommunities. Basically, the assembly75

paths (of length S) that avoid those roadblocks (infea-76

sible subcommunities) will naturally lead to {1, · · · , S}77

with all the S species present, while those assembly paths78

(of length S) that encounter those roadblocks (infeasible79

subcommunities) will lead to different final states, in the80

absence of recurrent invasions.81

Second, if any subcommunities of {S} can coexist at a82

unique boundary equilibrium, then the final community83

composition formed by the S species does not depend on84

the colonization history. This result can be explained via85

the following example: when a new species is added to a86

species pool to build a new community {I} = {1, 2, ..., I},87

the community with I (< S) species can stably coexist in88

a unique boundary equilibrium, which is stable and feasi-89

ble. Following these steps to add more and more species90

one at a time, we will always reach the unique interior91

equilibrium with all the S species present, regardless of92

the detailed assembly path. Thus, the final state is inde-93

pendent of the colonization history.94

We emphasize that the above two simple rules hold95

for a wide class of population dynamics models where96

all the S species can coexist at a unique interior equi-97

librium and recurrent invasions are not allowed. How-98

ever, we still lack a numerical scheme to quantitatively99

study the impact of colonization history on community100

assembly. Directly constructing the assembly graph for101

large systems is computationally intractable. Indeed, for102

a species pool of size S, suppose the S species can co-103

exist at a stable interior equilibrium, then starting from104

the empty community, with one species can invade at a105

time, there are S! potential assembly paths to reach the106

final state where all the S species present, and there are107

(2S − 2) possible subcommunities (with at least one and108

at most S−1 species). If there are some subcommunities109
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FIG. 1. Ecological communities can display different dependencies on colonization history. For illustration purposes,
we show the assembly of a 3-species community {1, 2, 3} by the invasion or colonization of one species at a time, following the
gLV dynamics. There are in total 3! = 6 different colonization trajectories. (a) The ecological network depicts the pairwise
interactions among the three species (which are also encoded in the interaction matrix A). The feasible intrinsic growth

rate vector r is set to be
(
1
3
, 1
3
, 1
3

)>
. (b) Starting from an empty ecological community ∅ (top node), the three species are

added successively into the community via different orders. Since species-2 and 3 cannot coexist (gray node), the community
composition will be dependent on colonization history. That is, the final state of the three species together cannot be assembled
if we follow the trajectory ∅ → 3 → 2 → 1 or ∅ → 2 → 3 → 1, while the other four trajectories will lead to the desired final
state. (c) As an example, we show two different trajectories and their final community compositions. Panels (d-f) show a
similar case as the previous example, but with different interaction matrix A. In this case, the community composition is
independent on colonization history.

that do not have feasible boundary equilibria, they will1

serve as roadblocks in some assembly paths (or isolated2

nodes in the assembly graph, e.g., {2, 3} in Fig. 1b). For3

large S, we know that both S! and (2S − 2) are notori-4

ously large, rendering the construction of the assembly5

graph computationally intractable. Without the assem-6

bly graph at hand, it is very hard, if not impossible,7

to identify which assembly paths (of optimal length S)8

will lead to the final state with all S species present.9

Moreover, once we encounter a roadblock in a particular10

assembly path, it is very challenging to predict exactly11

how many recurrent invasions will be needed to eventu-12

ally reach the final state with all S species present, if we13

do not have the assembly graph. Therefore, for ecosys-14

tems with only one attracting interior equilibrium, even15

though the community assembly with recurrent invasions16

allowed is trivially history independent in the long run,17

it becomes highly nontrivial without recurrent invasions.18

III. MODEL DEFINITION19

In this work we choose the classical gLV model to20

quantitatively study the impact of colonization history21

on community composition. This model includes param-22

eters that govern the intrinsic growth rates of different23

species and pairwise interactions among different species,24

and it is tractable enough to allow us to investigate the25

conditions under which community composition depends26

on colonization history.27

The gLV model can be written as follows28

dNi(t)

dt
= Ni(t)

ri +

S∑
j=1

Aij Nj(t)

 , i = 1, · · · , S, (1)

where Ni is the abundance (or biomass) of species-i, S29

corresponds to the number of species in the community,30

A = [Aij ]S×S is the interaction matrix whose elements31

denote the per capita effect of one species on the per32

capita growth rate of another species, and ri is the in-33

trinsic growth rate of species-i.34

To ensure that the S species can coexist at a unique35

interior equilibrium, following previous studies [28, 29],36

we focus on diagonally stable interaction matrices A (i.e.,37

there is a positive definite diagonal matrix D such that38

DA+A>D is a negative definite symmetric matrix [30]).39

A diagonally stable interaction matrix A guarantees that40
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the gLV model has a single, globally, attractive equilib-1

rium [31]. We emphasize that the assumption of a di-2

agonally stable interaction matrix A is deeply driven by3

the complexity of this problem and allows us to focus on4

the feasibility of the system—the necessary condition for5

species coexistence [32, 33].6

To construct the A matrix, we first capture its binary7

structure by constructing an Erdős-Rényi (ER) random8

graph. We begin with S isolated nodes (species). For9

each of the S(S− 1)/2 node pairs, we construct an undi-10

rected edge between the two nodes with probability C.11

It is worth noting that C represents the connectance of12

the community (i.e., the ratio between actual and po-13

tential interactions in the ecological network). Once the14

ER graph is constructed, we assign the interspecific in-15

teraction strengths to the edges (here we treat edges16

as bidirectional). The interaction strengths Aij(i 6= j)17

are drawn from a normal distribution N
(
0, σ2

)
, where18

σ = 1/
√
S(2 + ε) denotes the characteristic interspecific19

interaction strength, and ε is a constant [34]. The diago-20

nal elements are set to be Aii = −d with d representing21

the intrinsic damping time scale of each species.22

We consider three interaction types: (1) random (no23

sign structure). Aij and Aji are independently sampled24

from N
(
0, σ2

)
. (2) predator-prey (+,−): We generate25

a random number p from a uniform distribution U [0, 1].26

If p ≤ 0.5, we draw Aij from a half-normal distribution27 ∣∣N (0, σ2
)∣∣, and Aji from −

∣∣N (0, σ2
)∣∣. If p > 0.5, we28

do the opposite. (3) mixture of competition (−,−) and29

mutualism (+,+): we generate a random number p from30

U [0, 1]. If p ≤ 0.5, we draw Aij and Aji independently31

from
∣∣N (0, σ2

)∣∣. If p > 0.5, we draw Aij and Aji inde-32

pendently from −
∣∣N (0, σ2

)∣∣.33

To ensure the randomly-generated interaction matrix34

A is diagonally stable, we set ε = 0.01 and d = 1 [34].35

Furthermore, to ensure the coexistence of the whole com-36

munity with S species, we use the feasibility domain to37

construct feasible vector of intrinsic growth rates [35].38

When the interaction matrix A is given, the feasibility39

domain can be determined as an algebraic cone:40

DF (A) = {r = N∗1v1 + · · ·+N∗SvS}, (2)

where N∗i > 0 is the equilibrium abundance of species41

i, and vi is the spanning vector of the algebraic cone,42

whose j-th component is given by vij =
−Aji√∑S
k=1 A2

ki

. If43

the vector of intrinsic growth rates r is chosen inside the44

feasibility domain DF (A), the community with S species45

will always be feasible. This feasible vector can be de-46

fined as follows: r =
∑S

i=1 n
∗
ivi, where n∗i ∈ (0, 1) and47 ∑S

i=1 n
∗
i = 1. This procedure guarantees that there is at48

least one assembly path that can given rise to the whole49

community formed by S-coexisting species.50

IV. ANALYSIS AND RESULTS51

As noted in the simple rules mentioned in Sec. II,52

whether all subsets of species can coexist at their bound-53

ary equilibria will determine if the community compo-54

sition depends on colonization history. Under the gLV55

dynamics, this coexistence is guaranteed if the equilib-56

ria of system (1) are feasible (i.e., all present species57

have positive abundance) and globally stable for all sub-58

communities. It has been proved that if the interaction59

matrix A is diagonally stable, then all sub-matrices (Â)60

are diagonally stable as well [30], and the non-trivial pos-61

itive equilibrium will be globally asymptotically stable62

(that is, species can stably coexist) [31]. These matrix63

properties imply that we only need to guarantee the feasi-64

bility of the boundary equilibria for all subcommunities.65

The unique boundary equilibrium of every subcommu-66

nity with k species (k < S) under gLV dynamics can67

be calculated as N̂∗ = (N̂∗1 , · · · , N̂∗k ) = −Â−1r̂, where68

Â and r̂ are the reduced interaction matrix (k × k) and69

intrinsic growth rate vector (k × 1) of the correspond-70

ing subcommunity, and when N̂∗i > 0 (i = 1, · · · , k),71

this subcommunity is feasible, otherwise, it is infeasible.72

Thus, we can obtain a numerical scheme to determine73

for the gLV model whether the community composition74

depends on colonization history: For a community {S}75

that follows the gLV dynamics characterized by a diago-76

nally stable interaction matrix A and a feasible intrinsic77

growth rate vector r, in the absence of recurrent inva-78

sions, if there exists an infeasible subcommunity {T },79

then the final community composition of the community80

{S} depends on colonization history. Otherwise, it will81

be colonization-history independent.82

A. Examples of small communities83

To illustrate the application of the above numeri-84

cal scheme, we consider the two 3-species communities85

shown in Fig. 1. The community shown in Fig. 1a is86

characterized by a feasible intrinsic growth rate vector87

r = ( 1
3 ,

1
3 ,

1
3 )>, and a diagonally stable interaction ma-88

trix.89

A =

 −1.00 −0.01 0.46
−0.10 −1.00 −1.02
−0.58 0.89 −1.00

.90

In this case, we can verify that there exists a feasible inte-91

rior equilibrium N∗ = (0.417, 0.104, 0.184)> for the three92

species, but there is no feasible boundary equilibrium for93

the species-pair {2, 3}. Thus, based on the above result,94

the final community composition will depend on the col-95

onization history. Indeed, Figure 1c shows two different96

final states obtained by two assembly paths. Figure 1d97

shows a community characterized by the same feasible98
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intrinsic growth rate vector r, but with a different diag-1

onally stable interaction matrix2

A =

 −1.00 −0.37 −0.19
−0.40 −1.00 0.06
−0.25 −0.19 −1.00

.3

In this case, all subsets of species have the unique and4

feasible boundary equilibria. Thus, the final community5

composition does not depend on the colonization history:6

any assembly path will eventually yield the same final7

community composition of the three species (see Fig. 1f8

for examples of assembly paths).9

B. Effects of community properties10

A big advantage of our numerical scheme is that it11

allows us to perform extensive numerical simulations to12

investigate which properties of the community and indi-13

vidual species can affect the probability that community14

composition depend on colonization history. In particu-15

lar, for a given community {S} with gLV dynamics, we16

can numerically check all subsets (subcommunities) to17

search whether there exists any infeasible subset {T },18

and if so, we conclude that the community is history de-19

pendent. Furthermore, to study the impact of commu-20

nity properties on the history dependence, we systemat-21

ically generate diagonally stable interaction matrices A22

with different community size (S), network connectance23

(C), and interaction types. In particular, for each inter-24

action type and given (C, S) values, we first randomly25

construct an interaction matrix A, and then generate26

2,000 feasible intrinsic growth rate vectors r ∈ DF (A).27

From the 2,000 communities (A, r), we count how many28

communities having infeasible subcommunities to calcu-29

late the probability that community composition depends30

on colonization history, denoted as P , for a given inter-31

action type and (C, S) values. We repeat this process for32

an ensemble of 50 different realizations of A, and then33

calculate the standard error of the mean (SEM) of P for34

a given interaction type and (C, S) values.35

We find that the probability P always increases with36

the community size S (Fig. 2-top) or network con-37

nectance C (Fig. 2-bottom), regardless of the interac-38

tion type. This indicates that the community composi-39

tion will almost surely dependent on colonization history40

when an ecological system is composed of a large number41

of species or when species are highly connected.42

To check how this result holds beyond expectations,43

we consider a simple null model as follows. We assume44

that a random subset of species has a fixed probability45

p to have a feasible boundary equilibrium. Then, the46

probability to have at least one subset of species that47

does not have a feasible boundary equilibrium is given by48

1−pn, where n = 2S−2 is the number of possible subsets49

with at least one and at most (S− 1) species. According50

to the above result, we conclude that the probability that51

community composition depends on colonization history52

is Pnull = 1−pn, where the subscript ‘null’ stands for the53

null model.54

In the top panel of Fig. 2, for a given community size55

S, we plot Pnull based on different values of p (horizontal56

lines). Clearly, lower p yields higher Pnull, regardless of57

the connectance C. For example, for S = 10, we have58

Pnull ∼ 0.1 for p = 0.9999 (green line), and Pnull ∼ 1 for59

p = 0.99 (yellow line). However, our calculation based on60

the gLV model indicates that P increases monotonically61

with increasing C, and for S = 10 we have P → 1 only62

if C is above 0.6, regardless of the interaction types. In63

the bottom panel of Fig. 2, for a given value of p, we64

plot Pnull as a function of the community size S, finding65

that Pnull increases monotonically with S. Note that the66

S-dependency of Pnull is heavily driven by the value of67

p. For example, for p = 0.999 (or 0.9), Pnull will always68

underestimate (or overestimate, respectively) P for S <69

12, regardless of the interaction types. The difference70

between Pnull and P shown here suggests that ecological71

dynamics (as simple as they can be) can fundamentally72

alter the dependency of the community composition on73

colonization history. That is, this probability cannot be74

precisely predicted from the probability of feasibility of75

each individual subset (as assumed in the null model).76

C. Effects of intrinsic properties77

To investigate the extent to which the variation of in-78

trinsic properties across species affect the history depen-79

dence, we systematically generate feasible vectors of in-80

trinsic growth rates r with different levels of variability81

across the elements. In particular, for different interac-82

tion types, we sample 2, 000 feasible vectors r ∈ DF (A)83

for each randomly-generated interaction matrix A with84

community size S = 8 and network connectance C = 0.4,85

and then in each case we can calculate different interspe-86

cific variations of intrinsic growth rates ξ = <r2>
<r>2 . We87

categorize them (with bin width = 0.05) according to the88

variation (ξ) across their elements, and use the curves to89

replace the histogram to show the expected value. Simi-90

larly, here we sample 50 different realizations of the ma-91

trix A to calculate the SEM of P for each ξ bin.92

From Fig. 3, we can observe that P increases mono-93

tonically with increasing ξ, regardless of the interaction94

type. In other words, the higher the interspecific varia-95

tion within a community, the higher the probability that96

community composition depends on colonization history.97

An intuitive explanation of this phenomenon is as follows.98

As we increase ξ, different species tend to have quite99

different intrinsic growth rates, and hence play differ-100

ent “roles” in the community assembly, rendering higher101

probability that community composition depends on col-102

onization history.103
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competition and mutualism.

Random Predator-prey Mixture

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2

Null (S=8, p=0.99)
Null (S=8, p=0.999)
Null (S=8, p=0.9999)

LV (S=8, C=0.4)

FIG. 3. The probability P that community composition depends on colonization history as a function of intrinsic
properties of species. The probability is calculated for different levels of interspecific variation ξ (intrinsic growth rate) and
interaction types, using the gLV model (line plots with error bars) or the null model (lines). We fix community size S = 8 and
network connectance C = 0.4. Each column corresponds to a particular interaction type: random interactions, predator-prey,
and mixture of competition and mutualism.

Here, for the given community size S, we also plot Pnull1

based on different values of p. As shown in Fig. 3 (hor-2

izontal lines), lower p yields higher Pnull, regardless of3

the interspecific variation ξ and interaction types. For4

example, for S = 8, we have Pnull ∼ 0.01 for p = 0.99995

(green line), and Pnull ∼ 0.9 for p = 0.99 (yellow line).6

However, our calculation based on the gLV model indi-7

cates that P increases monotonically with increasing ξ,8

and for S = 8 we have P → 1 if ξ is above 2, regardless9

of the interaction types. The difference between Pnull10

and P underscores the impact of interspecific variation11

on the probability that community composition depends12

on colonization history, which cannot be predicted from13

the null model. This is acceptable because the simple14

null model only contains two parameters p and S, while15

the gLV model of N species contains N +N2 parameters16

(stored in r and A). Although the null model cannot17

accurately fit the simulation results of the gLV model,18
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it can still offer a theoretical guide to predict the qual-1

itative trend so that we can better appreciate why the2

colonization history matters for large and complex eco-3

logical communities.4

V. DISCUSSION5

In summary, here we offered simple rules linking colo-6

nization history and community composition in the ab-7

sence of multiple interior equilibria and recurrent inva-8

sions. Moreover, we applied those rules to communi-9

ties that are governed by gLV dynamics and proposed10

a numerical scheme to measure the probability that11

community composition depends on colonization history.12

Through extensive simulations, we demonstrated that13

this probability increases monotonically with commu-14

nity size, network connectance, and variation of intrin-15

sic growth rates across species. Moreover, we proposed16

a simple null model to fit the above numerical results.17

However, due to the complexity of the gLV model, espe-18

cially the various parameter settings of species number,19

network connectance, or growth rate heterogeneity, the20

effects cannot be precisely predicted from the null model21

that only considers the probability of feasibility of each22

each sub-community of species.23

It is worth noting that our current framework has sev-24

eral limitations. First, it focuses on the coexistence of25

species at a globally stable interior equilibrium[36] based26

on the assumption of a diagonally stable interaction ma-27

trix. But the coexistence of species could be driven by28

not only an equilibrium state, but also different dynam-29

ical behavior, such as limit cycles or chaos, those more30

complicated scenarios deserve a more dedicated research31

effort [37]. Second, the simulation framework is appli-32

cable to gLV dynamics with linear functional responses.33

Extending the calculations to population dynamics mod-34

els with more complicated functional response will also35

be an interesting future direction [33, 38]. Third, our ex-36

planation of the probability P increasing with the vari-37

ation ξ of species intrinsic growth rates (Fig. 3) is very38

conceptual. We call for more quantitative explanations39

of this very interesting phenomenon. Despite those limi-40

tations, the simplicity of our work allows us to provide a41

first-order classification of the conditions modulating the42

impact of colonization history. This work can serve as a43

basis for future work aiming to study the extent to which44

it is possible to reconstruct (or to partially reconstruct)45

the species arrival order in a community.46
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