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Models of complex networks often incorporate node-intrinsic properties abstracted as hidden
variables. The probability of connections in the network is then a function of these variables. Real-
world networks evolve over time, and many exhibit dynamics of node characteristics as well as
of linking structure. Here we introduce and study natural temporal extensions of static hidden-
variable network models with stochastic dynamics of hidden variables and links. The dynamics is
controlled by two parameters: one that tunes the rate of change of hidden variables, and another that
tunes the rate at which node-pairs re-evaluate their connections given the current values of hidden
variables. Snapshots of networks in the dynamic models are equivalent to networks generated by
the static models only if the link re-evaluation rate is sufficiently larger than the rate of hidden-
variable dynamics, or, if an additional mechanism is added whereby links actively respond to changes
in hidden variables. Otherwise, links are out of equilibrium with respect to hidden-variables and
network snapshots exhibit structural deviations from the static models. We examine the level of
structural persistence in the considered models and quantify deviations from static-like behavior.
We explore temporal versions of popular static models with community structure, latent geometry,
and degree heterogeneity. While we do not attempt to directly model real networks, we comment
on interesting qualitative resemblances to real systems. In particular, we speculate that links in
some real networks are out-of-equilibrium with respect to hidden variables, partially explaining
the presence of long-ranged links in geometrically-embedded systems and inter-group connectivity
in modular systems. We also discuss possible extensions, generalizations, and applications of the
introduced class of dynamic network models.

I. INTRODUCTION

Networks are ubiquitous in nature [1–9], and their
study relies heavily on the mathematical and compu-
tational analysis of simple models [10, 11], typically in
the form of random networks built according to some
stochastic rules. In many models, nodes are assigned
characteristics (such as fitnesses [12, 13] or spatial co-
ordinates in a physical [14] or latent space [15–17]),
which in turn affect the network’s structural forma-
tion. Such models fall under the umbrella of hidden-
variables models [18], because they depend on internal
node-characteristics that are only implicitly expressed by
the network structure, through effects on link-formation.
Usually, hidden variables (HVs) are not externally spec-
ified as parameters – rather, their probability distribu-
tion is specified [12, 19], and they are sampled during
the network’s formation. Two sources of randomness un-
derly such networks: the random HVs of nodes, and the
random formation of edges given those HVs. In general,
hidden-variables models are defined by the following pro-
cedure:

1. A random hidden-variable configuration H is
drawn with probability density ρ(H) from a set of
possible hidden-variable configurations H.

2. Graph G is then drawn with conditional probability
P(G|H) from a set of possible graphs G.

As a result, the overall probability of sampling any par-
ticular graph G ∈ G is equal to

P(G) =

∫
H
P(G|H)ρ(H)dH. (1)

Hidden-variables models, due to their capacity to en-
code nodewise heterogeneity, are in many cases capa-
ble of exhibiting more structural realism than models
without hidden variables. For example, hidden vari-
ables underly network models incorporating realistic fea-
tures such as community structure (stochastic block mod-
els [20]), latent geometry (random geometric graphs
[21]), and degree-heterogeneity (soft configuration mod-
els [22]).

However, such models do not capture the dynamics
of node-characteristics, nor the impact thereof on net-
work structure. The influence of dynamic node-states on
evolving link-structure has been investigated in the con-
text of adaptive networks [23–28], but in that case node-
states arise due to a highly complex feedback, interacting
with one another through co-evolving links. Such mod-
els are more realistic and have interesting features, but
they do not directly explore the impact of dynamic node-
properties on dynamic network structure.

There is a wide abundance of real-world examples of
dynamic node-properties influencing dynamics of net-
work structure, such as:

a) changing habits, interests, jobs, and other at-
tributes of people in social networks [29],
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b) changing geospatial coordinates of organisms dur-
ing formation of social ties, group-memberships,
and pathogenic contact networks [30–34],

c) changing phenotypic traits of species as they bio-
logically evolve in ecological networks [35, 36],

d) changing marketing and administrative strategies
of entities in economic networks [37, 38],

e) changing demographic and infrastructural charac-
teristics of cities in evolving highway and airport
networks [39–41],

f) changing gene-expression levels of neurons in devel-
oping connectomes [42, 43],

g) changing consumption-levels of residential nodes in
evolving power grids [44, 45],

h) changing displayed content of websites on the
evolving world-wide web [46, 47].

These examples motivate the development of a simple
modeling framework describing the impact of dynamic
node-characteristics on dynamic link-structure. Such a
framework would provide a temporal analogue of how
node-properties influence network structure in hidden-
variables models. In fact, it is standard practice to derive
temporal versions of static-network concepts [48–66], as
has been done for several models of static networks with
hidden variables such as stochastic block models [67–73].

Motivated by these considerations, here we study tem-
poral extensions of general static hidden-variables mod-
els, obtained by introducing dynamics of hidden variables
and of links. In these models each node has an evolv-
ing hidden variable, and each node-pair has a pairwise
affinity (equal to the connection probability in the static
hidden-variables model), which is a function of the hid-
den variables of both nodes. Pairwise affinities evolve
over time due to their dependence on a pair of evolving
hidden variables. The network itself evolves via node-
pairs being selected to re-evaluate their connections, re-
sampling them with connection probability equal to the
pair’s affinity at the moment of re-evaluation. These sys-
tems are governed by just two parameters beyond those
of any static model: a rate of hidden-variable dynamics
σ, and a rate of link-resampling ω.

We find that these models have snapshots that are sta-
tistically equivalent to networks generated from the static
model if:

a) the link-resampling rate is sufficiently larger than
the rate of hidden-variable dynamics, or

b) if we add an additional dynamic mechanism
whereby links actively respond to changes in hidden
variables.

We also identify the conditions under which model net-
works evolve gradually, i.e., exhibit link-persistence, and
evaluate qualitative resemblances of snapshots to some

real networks which arise as deviations from static-model
behavior. We obtain analytical and numerical results
for effective connection probabilities (the probability of
a node-pair being connected given their current hidden-
variable values), directly quantifying deviations from
static-model behavior in each case.

The family of models we introduce is demonstrated
to have wide generality, as exemplified by temporal ex-
tensions of four different static models with hidden vari-
ables: stochastic block models [20], random geometric
graphs [21], soft configuration models [22], and hyper-
bolic graphs [15]. These examples relate to, and par-
tially encompass, several models of networks with dy-
namic node-properties that have been previously studied
– for instance dynamic latent space models [74–77], dy-
namic random geometric graphs [78, 79], and dynamic
stochastic block models [72, 73]. The framework we study
is also widely generalizable to other contexts.

Our study takes a step towards realistic modeling of
dynamic networks with dynamic node properties. It in-
troduces a family of temporal network models that ex-
tends static hidden-variables models to the temporal set-
ting, providing theoretical insight into the kinds of struc-
ture that can emerge as a consequence of the influence of
hidden-variable dynamics on network-structure dynam-
ics. The framework can be used for studying real-world
temporal networks under the null hypothesis that physi-
cal or latent dynamic hidden variables drive the dynam-
ics of network structure. Additionally, motivated by the
phenomenology emerging in these models, we speculate
that links in some real systems are out of equilibrium with
respect to hidden-variables, partially explaining the pres-
ence of long-ranged links in geometrically-embedded sys-
tems and inter-group connectivity in modular systems.

In Section II, we describe the properties that we use to
characterize the models we introduce. We then introduce
the static and temporal hidden-variables model families
in Section III, followed by various limiting regimes in Sec-
tion IV. Section V provides several examples illustrating
temporal hidden-variables models. We then consider a
variant of the family of models in Section VI, incorpo-
rating an additional dynamic mechanism that enforces
static-model connection probabilities. The final sections
are dedicated to descriptions of related work (Section
VII) and a discussion of our results and the implications
thereof (Section VIII). Appendices provide the details of
several calculations and procedures left out of the main
text.

II. DESIRED PROPERTIES OF DYNAMIC
HIDDEN-VARIABLES MODELS

This section outlines the properties that we use to char-
acterize the family of dynamic hidden-variables models
that we introduce. Our goal is to construct natural tem-
poral versions of static networks with hidden variables,
and to understand the consequences of having introduced
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such dynamics. Our approach is via a Markov chain on
graphs and hidden-variable configurations, with sources
of randomness in the original static model being replaced
by random processes in the temporal model.

Specifically, given a static hidden-variables model, i.e.,
a probability density on hidden-variable configurations
H ∈ H and a conditional probability distribution on
graphs G ∈ G given H, the temporal extension yields
a probability distribution/density on temporal sequences
of graphs and hidden-variable configurations, denoted

G =
{
G(t)

}T
t=1
∈ GT and H =

{
H(t)

}T
t=1
∈ HT , re-

spectively. We will evaluate the conditions under which
models within our framework satisfy the following prop-
erties:

a) Equilibrium Property: The marginal probability of
a graph at any timestep is identical to its probabil-
ity in the static model; likewise for hidden variables.

b) Persistence Property: The level of structural per-
sistence over time – quantified by, e.g., any graph
similarity measure between graphs at adjacent
timesteps – is high relative to the null expectation
(of two i.i.d. static-model samples).

c) Qualitative Realism: The graph-structure, HV-
geometry (e.g., link-lengths), and/or dynamic be-
haviors resemble observed characteristics of some
real-world systems at a qualitative level.

If the Equilibrium Property is satisfied, the tempo-
ral network in question is a strict extension of the static
model – individual snapshots are then indistinguishable
from static-model realizations. If the Equilibrium Prop-
erty is not satisfied, snapshots deviate from the static
model, the resulting phenomenology of which we seek to
understand. The Persistence Property holding implies
a gradually evolving network, without sudden structural
transitions between networks at adjacent timesteps. The
Persistence Property can be quantified by application of
graph similarity measures [80] to graphs at neighboring
timesteps. In most cases the level of structural persis-
tence is tunable, making the level of satisfaction of the
Persistence Property fall along a continuum. The high-
est accessible persistence-values arise when the graph is
completely unchanging over time, whereas the lowest ac-
cessible persistence-values correspond to graphs that are
completely resampled each timestep. To have Qualita-
tive Realism simply means that the system exhibits some
characteristics and behaviors that are analogous to real-
world systems – regardless of whether the detailed mech-
anisms are realistic or quantitatively accurate. In partic-
ular, we are interested in qualitative features relating to
the dynamics of node-characteristics, and the effects of
such dynamics on a network’s structural evolution.

III. MODELING FRAMEWORK

This section provides an overview of our modeling ap-
proach, and then defines static and temporal hidden-
variables models. We first describe our approach to con-
structing temporal extensions of static models, which
produce length-T sequences of graphs G with a probabil-
ity conditioned on a length-T sequence of hidden-variable
configurations H. The latter arises from Markovian dy-
namics [81, 82] governed by conditional probability den-
sity PH

(
H(t+1)

∣∣H(t)
)

. The initial configuration H(1)

is sampled from the static-model hidden-variable density
ρ
(
H(1)

)
. Markovian dynamics yields a temporally-joint

probability density p(H) as a product:

p(H) = ρ
(
H(1)

) T−1∏
t=1

PH
(
H(t+1)

∣∣∣H(t)
)
. (2)

Given H, the graph sequence G is produced via a Markov
chain with transition probability having auxiliary H-
dependence, PG

(
G(t+1)

∣∣G(t),H
)

. Herein, we primarily
consider graph dynamics with H-dependence of the form
PG
(
G(t+1)

∣∣G(t), H(t+1)
)

, but also consider dynamics of

the form PG
(
G(t+1)

∣∣G(t), H(t+1), H(t)
)

in Section VI. In
general, we could consider any choice of H-dependence –
as long as G(t) is not influenced by H(t′) for any t′ > t,
since that would entail graph-structure at time t being
dependent on HVs at future-times t′ > t. The ini-
tial graph G(1) is sampled from the static-model con-
ditional probability P

(
G(1)

∣∣H(1)
)

. The H-conditioned
temporally-joint graph probability distribution P (G|H)
is then given by:

P (G|H) = P
(
G(1)

∣∣∣H(1)
) T−1∏
t=1

PG
(
G(t+1)

∣∣∣G(t),H
)
.

(3)
Altogether, the temporally-joint graph probability distri-
bution is given by

P (G) =

∫
HT

P (G|H)p(H)dH, (4)

which is the temporal extension of Equation (1).
It is this strategy that underlies all temporal exten-

sions of static models that we consider. Static graphs
without hyperparameters may also be included by disre-
garding H above, leaving only Equation (3), which be-
comes a general Markov chain on graphs governed by
PG
(
G(t+1)

∣∣G(t)
)

. Note that G can be seen as a multi-
plex network [83, 84] with layers representing timesteps.

A. Static Hidden-Variables Model

Here we describe the static hidden-variables model [18]
(SHVM), which generates graphs by a two-step proce-
dure. First, each node j (out of n total, labeled as
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{1, ..., n} = [n]) is assigned a hidden variable hj ∈
X , drawn independently with probability density ν(hj)
from set X . Thus the hidden-variable configuration is
H = {hj}nj=1 ∈ H = Xn and the joint hidden-variable

density is ρ(H) =
∏n
j=1 ν(hj). Second, node-pairs ij

(1 ≤ i < j ≤ n) connect with pairwise probability
f (hi, hj), independently from one another. The condi-
tional probability P(G|H) of a graph G is thus given by

P(G|H) =
∏

1≤i<j≤n

(f (hi, hj))
Aij (1− f (hi, hj))

1−Aij ,

(5)
where {Aij}1≤i<j≤n are elements of the adjacency matrix
of graph G. For a fixed H, this is an edge-independent
random graph. But since H is random, P(G) is a prob-
abilistic mixture of Equation 5 over possible hidden-
variable configurations H ∈ Xn via Equation 1.

B. Temporal Hidden-Variables Model

We now describe a temporal version of the SHVM
(Section III A), namely the temporal hidden-variables

model (THVM). We denote by A
(t)
ij the ij-th element

of G(t)’s adjacency matrix. The initial conditions

(G(1), {h(1)
j }nj=1) are sampled from the SHVM. For t ∈

{1, ..., T − 1}, the system updates according to:

a) Hidden-variable dynamics: Each node j samples

h
(t+1)
j from a conditional density Ph(h

(t+1)
j |h(t)

j ),
discussed below.

b) Link-resampling: Each node-pair ij, with probabil-

ity ω, resamples A
(t+1)
ij with connection probability

f(h
(t+1)
i , h

(t+1)
j ). Otherwise, A

(t+1)
ij = A

(t)
ij .

Simply put, each node’s hidden variable undergoes
Markovian dynamics (governed by Ph), and each node-
pair ij is re-evaluated for linking (with probability ω each
timestep) with connection probability equal to ij’s cur-

rent affinity-value f(h
(t+1)
i , h

(t+1)
j ). We separately con-

sider two types of hidden-variable dynamics Ph:

a) Jump-dynamics: Each node j, with probability
σ ∈ [0, 1], resamples its hidden-variable to obtain

h
(t+1)
j . The conditional density for jump-dynamics

is thus

Ph(h′|h) = σν(h′) + (1− σ)1h(h′), (6)

with 1h(h′) being the Dirac measure.

b) Walk-dynamics: The hidden variable of every node
moves to a nearby point in X using Brownian-like
motion with the average step-length proportional
to parameter σ ∈ [0, 1].

We implement the latter option by transforming the den-
sity ν(h) on X to the uniform density on [0, 1]D, where
D is the dimension of X , using the inverse CDF trans-
form. We then do a random walk in [0, 1]D, with step-
size proportional to σ, preserving the uniform distribu-
tion. Transformed back to X , the random walk incre-
ments preserve the distribution ν(h). The details are in
Appendix D.

In both walk-dynamics and jump-dynamics, parameter
σ encodes the rate of change of hidden variables. Also
in both cases, the transition probability density PH is

separable due to independence of {h(t)
j }nj=1:

PH
(
H(t+1)

∣∣∣H(t)
)

=

n∏
j=1

Ph
(
h

(t+1)
j

∣∣∣h(t)
j

)
. (7)

The stationary density of the above dynamics is equal to
the static-model hidden-variable density ρ. The density

of H = {{h(t)
j }nj=1}Tt=1 is also separable,

p(H) =

n∏
j=1

(
ν
(
h

(1)
j

) T−1∏
t=1

Ph
(
h

(t+1)
j

∣∣∣h(t)
j

))
. (8)

The probability of a graph-sequence G given H is the
temporal product (3) of the following transition proba-
bilities,

PG

(
G(t+1)

∣∣∣G(t), H(t+1)
)

=
∏

1≤i<j≤n

Y
A

(t+1)
ij

ij (1−Yij)
1−A

(t+1)
ij ,

(9)

with Yij denoting the conditional linking probability,

Yij = ωf
(
h

(t+1)
i , h

(t+1)
j

)
+ (1− ω)A

(t)
ij , (10)

encoding the fact that link-resampling happens with
probability ω, and that otherwise the link (or non-link)
remains the same.

We will primarily quantify the structure of THVM
snapshots via the effective connection probability,

f̄(h, h′) = lim
t→∞

P
(
A

(t)
ij = 1

∣∣∣h(t)
i = h, h

(t)
j = h′

)
, (11)

which, if the Equilibrium Property is satisfied, is the
same as the affinity-function f(h, h′). If the affinity is
a function of a composite variable such as the distance
between or the product of the pair of hidden variables,
the effective connection probability is defined analogously
but for those composite quantities. We note here that
the average degree (number of link-ends per node) is in-
dependent of the values of σ and ω in THVM snapshots
(see Appendix A).

IV. PARAMETER SPACE AND RESULTING
DYNAMICS OF TEMPORAL HIDDEN

VARIABLES MODELS

In this section we consider several limiting cases in
the space of dynamics-parameters (σ, ω) ∈ [0, 1]2, and
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Name Parameter Regime Equilibrium Property Tunable Persistence

Single Static Graph ω = σ = 0 Yes No

i.i.d. Graph Sequence ω = σ = 1 Yes No

Quasi-Static α2(σ, ω) ≈ 1 (Equation 12) Yes* Yes

Complete link-resampling ω = 1, σ ∈ (0, 1) Yes Depends on f**

Deterministic HV-to-graph ω = 1, f : X 2 → {0, 1} Yes Depends on f**

Complete HV-resampling σ = 1, ω ∈ (0, 1) No Yes ***

Fixed Hidden Variables σ = 0 Yes Yes

Erdős-Rényi-like σ/ω � 1 No No

Fixed graph structure ω = 0 Yes**** No****

TABLE I. Table of limiting cases of dynamics-parameters (σ, ω) for THVMs. The first and second columns provide a
short-hand name and the associated parameter regime. The third column states whether the Equilibrium Property is satisfied,
whereas the fourth column states whether the Persistence Property is satisfied (in a way that is tunable at any desired level,
which for instance leaves out the case σ = ω = 0).

*In the quasi-static regime, G(t) will have arisen from an HV-configuration closely resembling H(t), due to a timescale-separation. This
implies approximate, rather than exact, satisfaction of the Equilibrium Property.

** When ω = 1 although the persistence property is in general lost due to each possible edge being resampled at every timestep, there is still
some persistence present, tuned by σ and dependent upon the affinity function f .

*** When σ = 1 the persistence property is tunably satisfied at the level of graph-structure, but not at all at the level of hidden variables,
which are completely resampled every timestep.

**** In the case of ω = 0, the initial graph remains fixed for all time, while HVs change. Since the initial condition is sampled from the static
model, this regime technically satisfies the Equilibrium Property. It does so both at the level of graphs and at the level of hidden variables, but
not at all at the joint level. Persistence is not tunable at the level of graphs, but is at the level of hidden variables.

some special-case categories of affinity function f . The
resulting regimes exhibit a variety of qualitatively dis-
tinct behaviors. If σ = ω = 0, a single graph is sampled
from the static model, and all of its hidden variables and
links are held fixed for all t. To the opposite extreme,
if σ = ω = 1, at each timestep, every node’s hidden
variable is fully randomized, and then all possible links
are re-evaluated, resulting in a sequence of independent
and identically distributed (i.i.d.) instances of the static
model. In either case, the Equilibrium Property is satis-
fied – but the Persistence Property is not for σ = ω = 1
(there is no persistence), whereas for σ = ω = 0 there is
complete persistence.

In Sections IV A, IV B, IV D, and IV C, several other
parameter regimes are analyzed. We discuss the behavior
of temporal networks in each case, how well they qual-
ify in terms of the Equilibrium and Persistence Proper-
ties, and their relations to preexisting commonly studied
static network ensembles. Table I shows the different
special cases, while a schematic picture of the space of
dynamics-parameters is shown in Figure 1.

A. Quasi-Static Regime (α2(σ, ω) ≈ 1)

Here we consider the parameter regime quantified by
the condition α2(σ, ω) ≈ 1 (upper-left region of Figure
1), where

α2(σ, ω) =
ω

1− (1− ω)(1− σ)2
∈ [0, 1], (12)

in which networks have both random link-structure and
random hidden variables, and exhibit both the Persis-
tence Property and the Equilibrium Property. The quan-

tity α2(σ, ω) is a naturally-arising function characterizing
how effective connection probabilities differ from their
static-model counterparts (see Appendix A). The Equi-
librium Property is satisfied due to sufficient timescale
separation: link-resampling happens quickly enough rel-
ative to hidden-variable motion for G(t) to remain caught
up with H(t). The dynamics can thus be considered
quasi-static, in the sense of quasi-static transformations
in classical equilibrium thermodynamics [85]. Over time,
the HV-configuration and link-structure both fully ex-
plore their respective spaces, functioning as a tempo-
ral network whose stationary distribution is the static
hidden-variables model defined in Section III A. Note
that the Equilibrium Property is only approximately sat-
isfied if α2(σ, ω) < 1, that approximation becoming
exact only in limit of extreme timescale-separation or
α2(σ, ω) = 1. Two regimes at the boundary of the
quasi-static regime have exact satisfaction of the Equi-
librium Property: ω = 1 (Section IV B) and σ = 0 (Sec-
tion IV C). Adding a third mechanism of dynamics allows
for exact satisfaction of the Equilibrium Property at all
(σ, ω) ∈ [0, 1]2 (see Section VI).

B. Complete link-resampling (ω = 1)

Here we consider the case ω = 1 (top region of Figure
1). This case resembles that of the quasi-static regime,
but all links form based on current hidden-variable
configurations, so there is no graph-encoded memory:
PG
(
G(t+1)

∣∣G(t),H
)

= P
(
G(t+1)

∣∣H(t+1)
)

. The result-
ing Markov chain on H × G thus satisfies the Equilib-
rium Property exactly, as opposed to approximately in
the quasi-static regime (Subsection IV A). Link-structure
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ω = 1
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Hidden 
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i.i.d. 
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FIG. 1. Two-parameter space of possible dynam-
ics. The two parameters (σ, ω) ∈ [0, 1]2 tune the rate of
change of hidden variables and rate of resampling of links,
respectively. In general, with dynamic hidden variables, link-
structure is out-of-equilibrium relative to the configuration
of hidden variables at any particular timestep, violating the
Equilibrium Property. In the quasi-static regime (upper left)
and along the upper and leftward boundary regions (ω = 1
and σ = 0, respectively) the Equilibrium Property is re-
covered. In the lower-right regime, HVs are so randomized
that network snapshots resemble Erdős-Rényi graphs. At
σ = 1 (right-hand boundary), all hidden variables are re-
sampled at every timestep, but only a fraction ω of links re-
sampled. If ω = 0 (lower boundary), the network structure
remains fixed for all time, regardless of the hidden-variable
dynamics. The dashed curves distinguish, qualitatively, three
regimes: the quasi-static regime lies above the upper dashed
curve, the Erdős-Rényi-like regime lies below the lower dashed
curve, and the general non-equilibrium regime lies in between.
The shapes of the dashed curves come from contours of the
function α2(σ, ω): the upper curve approximately designates
α2(σ, ω) = 0.85, whereas the lower curve approximately desig-
nates α2(σ, ω) = 0.15 (see Section IV A and Figure 3). Both
curves emanate from (0, 0) and reach the σ = 1 boundary
at the values of α2(1, ω) = ω ≈ 0.85 (upper curve) and
α2(1, ω) = ω ≈ 0.15 (lower curve), see Equation 12.

when ω = 1 is more correlated over time than two
i.i.d. samples from the SHVM (due to persistence in
HV-configurations), but the specific level of persistence
depends on the form of the affinity function f(h, h′) and
on σ. A variety of temporal network models have fully-
resampled edges at each timestep [72, 86, 87].

As subset of the ω = 1 regime, consider THVMs with
binary affinity function f : X 2 → {0, 1}. In this case
all randomness comes from hidden variables, because f
deterministically maps HV-configurations to graphs. The
static model’s conditional probability distribution in such

cases is given by a product of indicator functions:

P(G|H) =
∏

1≤i<j≤n

1 {Aij = f (hi, hj)} , (13)

equal to 1 if and only if f(hi, hj) = Aij for all ij, and
equal to zero otherwise. Since the HV-dynamics PH con-
serves ρ, and since ω = 1 ensures that all node-pairs
have up-to-date links with respect to hidden variables,
this model satisfies the Equilibrium Property exactly.
The rate of HV-dynamics, and thus of link-dynamics,
is controlled by σ (but also influenced by the form of
f). This regime encompasses sharp random geometric
graphs (RGGs) of any kind [21]; see Section V B for tem-
poral RGGs with ω ∈ [0, 1].

C. Fixed Hidden Variables (σ = 0)

Here we consider σ = 0 (left region of Figure 1),
in which case all HVs are frozen in place, ensuring
satisfaction of the Equilibrium Property. The ini-
tial HV-configuration H(1) has the SHVM density ρ,
but conditioning on some particular initial configura-
tion H(1) yields fixed pairwise connection probabilities
pij = f (hi, hj), resulting in temporal versions of edge-
independent static networks [88–90]. Analytical expres-
sions for link-dynamics can be written straightforwardly
in terms of the set of values {pij}1≤i<j≤n and the pa-

rameter ω. The transition probability PG
(
G(t+1)

∣∣G(t)
)

is

PG(G(t+1)|G(t)) =
∏

1≤i<j≤n

p
A

(t)
ij →A

(t+1)
ij

ij , (14)

where p0→0
ij , p0→1

ij , p1→0
ij , and p1→1

ij are respectively the
non-link persistence, link-formation, link-removal, and
link-persistence probabilities for node-pair ij. That is,

pα→βij = P(A
(t+1)
ij = β|A(t)

ij = α), given by:

pα→βij =(1− ωpij)(1−α)(1−β)(ωpij)
(1−α)β

× (ω(1− pij))α(1−β)(1− ω(1− pij))αβ .
(15)

Many static network models have independent edges
with pre-defined connection probabilities, and thus can
be made temporal as THVMs with σ = 0. Examples in-
clude the Erdős-Rényi (ER) model [91] the (soft) stochas-
tic block model (SBM) [92], and inhomogeneous random
graphs [88] with fixed coordinates.

The Persistence Property can be quantified by any of
the numerous measures of graph dissimilarity [80], by
application to graph-pairs at neighboring timesteps. A
simple example in the σ = 0 setting is the expected Ham-
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ming dissimilarity [93],∑
1≤i<j≤n

P
(
A

(t)
ij 6= A

(t+1)
ij

)
=

∑
1≤i<j≤n

(
p1→0
ij pij + p0→1

ij (1− pij)
)

= 2ω
∑

1≤i<j≤n

pij(1− pij),

(16)

which simplifies substantially in some cases, for instance
the ER model (pij = p for all ij), leaving 2ωp(1− p)

(
n
2

)
.

The parameter ω directly tunes the level of persistence,
with ω = 0 yielding the highest persistence (an unchang-
ing graph) and ω = 1 yielding the lowest persistence (a
fully resampled graph).

Edge-resampling dynamics with fixed pij-values closely
resembles dynamic percolation [94], which has been inves-
tigated in lattices [95], trees [96] and ER graphs [97, 98],
and also relates to edge-Markovian networks [99–101].

D. Complete resampling of hidden variables (σ = 1)

Here we consider the case for which all hidden variables
are resampled at every timestep (σ = 1), so that no HV-
driven structural persistence exists (right region of Fig-
ure 1). Note that walk-dynamics is parameterized by σ so
that σ = 1 implies complete HV-randomization. If σ = 1,
correlations among links (and non-links) do still exist due
to simultaneous resampling; the set of node-pairs selected
for link-resampling at timestep t form links based upon
the same underlying hidden-variable configuration H(t).
In this setting, ω quantifies the level of agreement among
node-pairs as to what the HV-configuration is. For in-
stance in spatial network models, if σ = 1, then ω directly
controls the level of geometry-induced correlations.

Given the HV-configuration at time t and averaging
over all past timesteps, node-pair ij is connected with
probability

P
(
A

(t)
ij = 1

∣∣∣h(t)
i , h

(t)
j

)
= ωf

(
h

(t)
i , h

(t)
j

)
+ (1− ω)〈f〉,

(17)
where 〈f〉 =

∫
X 2 ν(h)ν(h′)f(h, h′)dhdh′ is the expected

affinity of a pair of nodes with randomized HVs. The
expression 17 is an example of an effective connection
probability which deviates from the static-model affin-
ity function. A more general formula for the effective
connection probability in the case of jump-dynamics and
arbitrary f(h, h′), σ, and ω is derived in Appendix A,
and some special cases are described in the examples in
Sections V A,V B,V C,V D. As ω → 0 with σ = 1 (and
in general for σ/ω � 1), the model approaches a tempo-
ral version of the ER model, since each node-pair at the
time of link-resampling will have completely randomized
hidden variables; each edge will then independently exist
with probability 〈f〉 if 0 < ω � 1. If ω = 0 we have fixed
graph structure, i.e. a network that simply remains as

whatever the initially sampled graph was, but with dy-
namic hidden variables (for any σ > 0).

V. TEMPORAL EXTENSIONS OF POPULAR
STATIC NETWORK MODELS

This section contains several examples of THVMs. In
each subsection, we describe a static hidden-variables
model, its temporal extension according to the model-
ing framework of Section III B, the effective connection
probability that arises due to the dynamics, and offer
some additional discussion. We specifically consider tem-
poral extensions of the following static network models:
stochastic block models [20], random geometric graphs
[21], hypersoft configuration models [22], and hyperbolic
graphs [15].

A. Temporal Stochastic Block Models

This subsection considers temporal extensions of
stochastic block models (SBMs), which are used to model
community structure in networks [20, 92, 102, 103].

1. Static Hyperparametric SBMs

We consider a static network with conditionally
Bernoulli-distributed edges amongst n nodes j ∈ [n], each
node having been randomly assigned to one of m groups
(a.k.a. communities, blocks, colors). Each node j in-
dependently draws a group-index qj ∈ [m] = {1, ...,m}
from probability distribution % = {%q}q∈[m]. Each node-
pair then connects with probability fqi,qj . In this defini-
tion, the group-memberships {qj}j∈[n] are not externally
specified as model parameters – rather, their distribution
% is specified. Thus, the group-memberships are hyperpa-
rameters, and we refer to these static networks as hyper-
parameteric SBMs or hyper-SBMs (equivalent to inho-
mogeneous random graphs with hidden color [105, 106]).
The expected number of nodes nq in a given block q is
〈nq〉 = n%q, and the joint distribution of {nq}q∈[m] is
multinomial. Note that this model could be formulated
with continuous HVs as per Section III A, but we instead
use discrete HVs for simplicity (see Appendix H for the
continuous-to-discrete mapping). As an illustrative ex-
ample to be used throughout this section, we consider
the case of m = 2 groups, with %1 = 1 − %2 = u. The
within-group affinity is p = f1,1 = f2,2, and the between-
group affinity is zero (f1,2 = 0).

2. Temporal hyper-SBMs

To make the hyper-SBM dynamic, at each timestep
t ∈ {2, ..., T} each node i with probability σ resamples its
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FIG. 2. Snapshots of a temporal stochastic block model: a modular network with dynamic group-assignments
and link-resampling. The n = 100 nodes are partitioned into two groups with group-membership probabilities %1 = 0.4 =
1−%2, and group-memberships change in time by group-resampling with probability σ. The affinity function is fq,q′ = p1{q = q′}
with p = 0.25, disallowing inter-group connections in the static model. Network snapshots are displayed via a spring-force layout
algorithm [104], for various parameters (σ, ω) such that networks span a variety of structural outcomes. Node-coloration is
by group-membership, and link-coloration is black for within-group links and green for between-group links. In the central
panel, the effective connection probability f̄1,2 between communities is plotted. Outside of the quasi-static regime, group-
membership dynamics is fast enough for a substantial number of inter-group links to exist (f̄1,2 > 0), despite the inter-group
connection formation probability being f1,2 = 0.

group-index q
(t)
i from distribution %, and then each node-

pair ij with probability ω resamples A
(t)
ij with connection

probability f
q
(t)
i ,q

(t)
j

. Thus,

P
(
q

(t)
i = q′

∣∣∣q(t−1)
i = q

)
= (1−σ)1{q = q′}+σ%q′ , (18)

and

P
(
A

(t)
ij = 1

∣∣∣A(t−1)
ij , q

(t)
i , q

(t)
j

)
= (1−ω)A

(t−1)
ij +ωf

q
(t)
i ,q

(t)
j
.

(19)
See Figure 2 for visualized embeddings of network snap-
shots from the stationary distribution of the example
m = 2, %1 = u = 1− %2, fq,q′ = p1{q = q′}.

3. Effective connection probabilities in hyper-SBMs

The block-dynamics of nodes in temporal hyper-SBMs
introduces several novel features to the system. First,
pairwise affinities change over time. Second, the set of
all existing links at time t need not have arisen from
the group-assignments of time t. Temporal snapshots in
general thus deviate from the static model – the Equi-
librium Property does not necessarily hold. However,
even if snapshots do not resemble the static model, they
do resemble a static model – an effective SBM. Consider
two nodes, with current group-indices q, q′. Averaging
over all past values of hidden variables, we obtain the
effective connection probability f̄q,q′ for dynamic hyper-
SBMs. Since the SBM case is directly obtainable from
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discretization of the continuous model (see Appendix H)
we can use a discrete version of the general formula de-
rived in Appendix A, namely:

f̄q,q′ = α2fq,q′

+ (α1 − α2) (〈fq,·〉+ 〈fq′,·〉)
+ (1− 2α1 + α2)〈f〉,

(20)

where coefficients αb(σ, ω) for b ∈ {1, 2} are given by

αb =
ω

1− (1− ω)(1− σ)b
, (21)

and marginally-averaged affinities are

〈fq,·〉 =
∑
q′

%q′fq,q′ ,

〈f〉 =
∑
q

%q〈fq,·〉 =
∑
q,q′

%q%q′fq,q′ .
(22)

Note that when σ = 1 we have α1(1, ω) = α2(1, ω) = ω
and Equation 20 reduces to the form of Equation 17. In
the simple example case (m = 2, %1 = u, fq,q′ = p1{q =
q′}), terms in f̄q,q′ are evaluated as:

〈f1,·〉 = up,

〈f2,·〉 = (1− u)p,

〈f〉 = p(u2 + (1− u)2),

(23)

from which the formula for f̄q,q′ becomes

f̄q,q′ = α2p1{q = q′}

+ (α1 − α2)


2up, q = q′ = 1

2(1− u)p, q = q′ = 2

p q 6= q′

+ (1− 2α1 + α2)p(u2 + (1− u)2).

(24)

In particular, the between-group effective connection
probability becomes

f̄1,2 = p
(
α1 − α2 + (1− 2α1 + α2)(u2 + (1− u)2)

)
,

(25)
which is visualized in Figure 2. In the extreme case
of σ/ω � 1 all links form between nodes with ef-
fectively random group-assignments, making all pairs
equally likely to connect, and reducing the system to a
temporal Erdős-Rényi network of connection probability
p(u2 + (1− u)2).

4. Temporal hyper-SBMs discussion

Interesting examples of Qualitative Realism arise in
temporal hyper-SBMs. For instance, group-dynamics of
nodes yields inter-group connectivity, as is observed in
real systems. If someone joins a different club, switches
political party, or emigrates to a new country, they at first

primarily carry ties to their original group – and thus
upon changing group-membership, they suddenly have
many inter-group links – not because of inter-group link-
formation, but because of dynamic group-membership.
Likewise, within-group connectivity can be lower than
in the static model, as is the case in real systems due
to nodes having recently arrived from another group, or
from neighbor-nodes having recently departed. These ef-
fects arise outside the quasi-static regime, so we speculate
that in some cases the non-equilibrium regime can bet-
ter emulate real-world systems. We also note that we
here considered group-resampling HV-dynamics (a dis-
crete version of jump-dynamics), but we could also con-
sider a general Markov chain on group-assignments with
stationary distribution %.

B. Temporal Random Geometric Graphs

In this section we describe THVMs arising from static
random geometric graphs (RGGs), which model the influ-
ence of an underlying geometry on graph-structure [21].

1. Static Random Geometric Graphs

In random geometric graphs (RGGs), nodes are as-
signed spatial coordinates as hidden variables, and node-
pairs are linked if their coordinates are closer than
some threshold distance r. Hence the affinity is binary,
f(hi, hj) = 1{dX (hi, hj) ≤ r}, with dX : X 2 → [0,∞)
denoting the geodesic distance in latent space X . Ex-
amples of well-studied RGGs include Euclidean RGGs
with periodic or nonperiodic boundary conditions [21],
spherical RGGs [107], and hyperbolic RGGs (the hyper-
bolic model with inverse-temperature parameter β = ∞
[15]). As a primary example we consider a simple one-
dimensional RGG with periodic boundary conditions:
X = [0, 1) and dX (hi, hj) = 1/2− |1/2− |hi − hj ||.

2. Temporal RGGs

To go from static RGGs to temporal RGGs, we incor-
porate coordinate-dynamics and link-resampling dynam-
ics. We consider here jump-dynamics, each node resam-
pling its coordinate according to the static-model density
ν, with probability σ, each timestep t ∈ {2, ..., T} (the co-
ordinate density follows Equation 6, with ν(h) = 1 for the
uniform density on the unit interval). Link-resampling
happens independently for each node-pair with proba-
bility ω each timestep. Since RGGs have deterministic
connectivity, link-resampling of ij at time t guarantees

that A
(t)
ij = 1 if dX (h

(t)
i , h

(t)
j ) ≤ r and A

(t)
ij = 0 otherwise.

But if ij’s connectivity is not resampled at time t, links
may fall out-of-equilibrium with respect to coordinates.
Note that we could also study temporal RGGs with walk-
dynamics, with either periodic or reflecting boundary
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FIG. 3. Snapshots of a temporal random geometric graphs: a geometrically-embedded network with dynamic
node-coordinates and link-resampling. Coordinates of n = 100 nodes are sprinkled uniformly into a 1D ring of unit
circumference, and change in time via jump-dynamics (coordinate-resampling with probability σ). The affinity as a function
of distance is f(x) = 1{x ≤ r}, where r = 0.1 is the connection radius, disallowing long-ranged links in the static model.
Snapshots are shown at various values of (σ, ω), with the displayed embedding having angular positions equal to 2π times
spatial coordinates, and radial positions set equal to 1 plus some added random noise to aid with visualization of network
connectivity amongst closeby node-pairs. Link coloration is according to length: black links are of distances x ≤ r whereas
green links are of distances x > r. In the central panel, the function α2(σ, ω) ∈ [0, 1] is visualized, which encodes the level of
locality in temporal RGGs (see Equation 26).

conditions; for simplicity, we study jump-dynamics here,
leaving temporal RGGs with walk-dynamics for a future
study.

3. Effective connection probabilities in temporal RGGs

We now describe the effective connection probability
f̄(x) for RGGs between pairs of nodes for arbitrary (σ, ω).
The expression for f̄(x) in temporal RGGs is derived in

Appendix B, and the result is provided here:

f̄(x) = α21{x ≤ r}+ 2r(1− α2). (26)

The quantity α2 = α2(σ, ω), defined in Equation 21, di-
rectly governs the level of locality in temporal RGGs.
See Figure 3 for a visualization of the function α2(σ, ω)
and of network snapshots across a range of (σ, ω)-values.
The effective connection probability f̄(x) has a step-like
form, with connection probability α2 + 2r(1−α2) for all
x ≤ r and 2r(1 − α2) for all x > r. The above effective
connection probability agrees perfectly with the results
of numerical simulations, see Figure 4.
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FIG. 4. The effective connection probability, in the-
ory and simulation, for 1D RGGs at various values
of the dynamics-parameters (σ, ω). The static model
affinity-function f(x) is plotted with square markers. The
solid lines are numerical estimates of the effective connec-
tion probability f̄(x) (with ω increasing as colors change
from blue to yellow), whereas the dotted lines are the
theoretical effective connection probability (Equation 26).

4. Temporal RGGs discussion

The naturally arising function α2(σ, ω) ∈ [0, 1] de-
scribes the level of locality in network snapshots (see Fig-
ure 3), and quantifies the Equilibrium Property. It inter-
polates between the case of RGGs (α2(σ, ω) = 1) and ER
graphs (α2(σ, ω) = 0), resembling the structural transi-
tion of the Watts-Strogatz model [108]. In this case, all
links form locally, and it is dynamics of node positions
that induces the transition (alongside formation of lo-
cal links at nodes’ new locations); a similar phenomenon
has been observed in contagion-dynamics among mobile
agents [109]. Also note, in dynamic RGGs, links can
exist that were not possible in the static model model:
links of length greater than r, since the effective connec-
tion probability f̄(x) no longer goes completely to zero
for x > r (see Equation 26). This is related to phe-
nomena observed in real-world networks: pairs of people
may form friendships locally, but maintain those friend-
ships after becoming geographically separated, resulting
in the existence of long-ranged social ties that would not
likely have formed at that distance. Likewise, the func-
tion f̄(x) is also less than one for distances x ≤ r, allow-
ing for non-links that would be impossible in the static
model. That phenomenon also appears in real-world sys-
tems: instead of individuals knowing everyone in their
local vicinity, non-links between closeby pairs may exist,
due to them having only recently become proximate. As
with the case of temporal hyper-SBMs, these examples of
Qualitative Realism are in conflict with the Equilibrium
Property. Note also that similar deviations of f̄(x) rel-
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FIG. 5. Expected degree over time of a node in a
temporal hypersoft configuration model with jump-
dynamics of hidden variables. Each node’s expected de-
gree (blue dotted curve) equilibrates towards its current
static-model expected degree (green solid curve), as per
Equation 29. In any realization, the actual degree over time
fluctuates (purple curve), but its ensemble-average (orange
solid curve) behaves as predicted. The average was ob-
tained by simulating 1000 realizations with (n, 〈k〉, γ, ω, σ) =

(200, 8, 2.8, 0.04, 0.01), keeping the HV-trajectory {h(t)
j }

T
t=1 of

a single node j fixed across trials.

ative to f(x) occur in THVMs arising from soft random
geometric graphs [110–113], for example the H2 model
(see Section V D).

C. Temporal Hypersoft Configuration Model

In this section we consider a dynamic version of hy-
persoft configuration models (HSCMs), which model net-
works with degree-heterogeneity [22].

1. Static Hypersoft Configuration Model

The static model we now consider is the hypersoft con-
figuration model [22, 114] (HSCM), a hyperparametric
version of a soft configuration model (SCM). SCMs come
in several varieties such as the Chung-Lu model [115], in-
homogeneous random graphs [88], and the Norros-Reittu
model [116]. Node-pairs connect with Aij-values being
independent (typically Bernoulli or Poisson distributed),
such that on average, each node has a particular degree-
value. In hyperparametric SCMs, that degree-value is
randomly assigned, according to some specified distri-
bution of expected degrees. For example, one way to
obtain SCMs with a degree distribution that is Pareto-
mixed Poisson (with, say, power-law tail-exponent γ and
expected degree 〈k〉), is for nodes j ∈ [n] to be assigned
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hidden variables hj ∈ [h−,∞) drawn from a Pareto den-

sity ν(h) = (γ − 1)hγ−1
− h−γ , with minimal HV-value

h− = (γ − 2)〈k〉/(γ − 1), and then for node-pairs to be
connected with probability

f(hi, hj) =
1

1 + n〈k〉/hihj
≈ hihj
n〈k〉

, (27)

the approximation holding when hihj/n〈k〉 � 1. The
expected degree of a node i in the static model is

〈ki|hi〉 = (n− 1)

∫ ∞
h−

f(hi, h)ν(h)dh ≈ hi. (28)

The actual degrees of nodes are sharply peaked around
their expected degrees, and thus the above implies that
the degree distribution itself likewise has a power-law tail
with exponent γ and mean 〈k〉.

2. Temporal HSCMs

Now we consider a temporal version of HSCMs. At
each timestep, each node j, with probability σ, resamples

its hidden variable h
(t)
j from the static-model HV-density

ν (jump-dynamics). Then, each node-pair ij (1 ≤ i <

j ≤ n), with probability ω, has its indicator-variable A
(t)
ij

resampled from a Bernoulli of mean f(h
(t)
i , h

(t)
j ).

In the static model, the HV-value hj alone determines
the expected degree 〈kj |hj〉. But in the temporal version,

the quantity h
(t)
i is time-evolving, and the expected de-

gree dynamically trails behind the static-model expected
degree, equilibrating at a geometric pace (See Figure 5):

E
[
k

(t)
i

∣∣∣∣{h(t−s)
i

}
s≥0

]
= (n− 1)ω

∑
s≥0

(1− ω)s
∫ ∞
h−

f
(
h

(t−s)
i , h

)
ν(h)dh

= ω
∑
s≥0

(1− ω)s
〈
ki

∣∣∣h(t−s)
i

〉
.

(29)

We can also average the above over all hidden-variable
values at timesteps earlier than t, to obtain an effective

expected degree that depends only on h
(t)
j . To do this,

we use the probability density of h
(t−s)
j given h

(t)
j under

jump-dynamics:

Ps

(
x
∣∣∣h(t)
j

)
= (1− σ)s1

h
(t)
j

(x) + (1− (1− σ)s) ν(x),

(30)
Averaging Equation 29 over HVs at all timesteps t − s
for s > 0,

E
[
k

(t)
i

∣∣∣h(t)
i

]
= ω

∑
s≥0

(1− ω)s
∫ ∞
h−

Ps

(
x
∣∣∣h(t)
i

)
〈ki|x〉dx

= α1

〈
ki

∣∣∣h(t)
i

〉
+ (1− α1)〈k〉,

(31)

where α1(σ, ω) = ω /(1− (1− ω)(1− σ)) . In this
case α1 measures the level of equilibration of node-
neighborhoods to their expected sizes. Having α1 ≈ 1
indicates the quasi-static regime whereas α1 ≈ 0 indi-
cates an averaged-out behavior so that the expected de-
gree of any given node is simply the expected average
degree 〈k〉 of the network.

3. Effective connection probabilities in temporal HSCMs

We now discuss effective connection probabilities in
HSCMs. The formula derived in Appendix A applies,
but note that the affinity f(h, h′) (Equation 27) is a func-
tion only of the product ψ = hh′. Thus we can examine
the effective connection probability as a function of ψ,
denoted f̄(ψ). In order to calculate f̄(ψ) we first must
compute the probability density of a product of hidden
variables in past timesteps, given the value of the prod-
uct at the current timestep. We then sum the expected
affinity given the product, weighted by ps = ω(1 − ω)s,
over all past timesteps s > 0. These calculations require
a variety of intermediate steps, and are described in Ap-
pendix C.

4. Temporal HSCMs discussion

Note that in HSCMs, non-equilibrium dynamics re-
duces degree-heterogeneity; nodes with large HV-values
only transiently retain them. Equilibration, on the other
hand, allows for a full structural expression of the nodes’
internal heterogeneity. This implies that extremely het-
erogeneous real-world networks, if described by these
models, would typically be in the quasi-static regime.
We only considered jump-dynamics here (resampling of
static-model expected degree-values), but we could al-
ternatively study walk-dynamics, where nodes’ HVs un-
dergo Brownian-like motion in a way that preserves ν.
This could be achieved straightforwardly as described in
D, alongside reflecting boundaries as studied in Appendix
E.

D. Temporal Hyperbolic Graphs

In this section we consider a temporal extension of
the hyperbolic model [15] (the H2 model, for short), a
geometry-based network model simultaneously exhibit-
ing sparsity, clustering, small-worldness [117, 118], degree
heterogeneity, community structure [119], and renormal-
izability [120].

1. Static H2 model

The H2 model is parameterized by a number of nodes
n, average degree 〈k〉, power-law exponent γ, and inverse-
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FIG. 6. Hidden-variable dynamics of nodes in a temporal H2 model, at increasing values of σ, with fixed
ω = 0.1. In each subplot, node-coordinates for 100 random nodes are shown at two adjacent timesteps, from a network
with parameters (n, γ, β,R) = (500, 2.2, 5, 8). Each arrow points from the coordinate-location of a node at a given timestep
(grey) to the coordinate-location of the same node at the next timestep (black). Subplots (A,B,C) depict jump-dynamics
(coordinate-resampling with probability σ, otherwise remaining in place), whereas subplots (D,E,F) depict walk-dynamics
(all nodes move to neighboring locations, with mean step-length parameterized by σ). Marker sizes are proportional to node
degree-values. For small σ/ω (subplots A and D), nodes’ existing connections have arisen from approximately the present
coordinates, making snapshots closely resemble the static hyperbolic model, as seen e.g. by the exhibited degree-heterogeneity.
For larger σ/ω (subplots B and E), connections have arisen via mixtures of past and present coordinates, reducing degree-
heterogeneity. For very large σ/ω (subplots C and F), the system behaves similarly to a temporal Erdős-Rényi network.

temperature β (which tunes the level of clustering). Hid-
den variables are polar coordinates, hj = (θj , rj), namely
a radial coordinate rj ∈ [0, R] encoding the popularity
of node j and an angular coordinate θj ∈ [0, 2π), en-
coding the similarity of node j to other nodes. These
coordinates are sampled according to separable density
ν(θ, r) = νang(θ)νrad(r) where angles are distributed uni-
formly (νang(θ) = 1/2π) and radii have an exponentially
growing density,

νrad(r) =
γ − 1

2

sinh
(
γ−1

2 r
)

cosh
(
γ−1

2 R
)
− 1

, (32)

where R = R(n, 〈k〉, β, γ) is selected so that the mean
degree is 〈k〉. The static-model affinity of node-pair ij is
a Fermi-Dirac function [121] (a sigmoid) of the hyperbolic
geodesic distance xij between i and j,

f(hi, hj) = f(xij) = 1
/(

1 + e(β/2)(xij−R)
)
, (33)

where xij = xij(hi, hj) is given by

cosh(xij) = cosh(ri) cosh(rj)

− sinh(ri) sinh(rj) cos(θij),
(34)

with θij = π − |π − |θi − θj ||. The connection probabil-
ity and coordinate-density in this model result in power-
law degree distributions (but could also give rise to other
degree distributions if the radial coordinate-density was
different), a similar feature to that exhibited by HSCMs
– but also, the geometry arising from inclusion of the an-
gular coordinate yields a large clustering coefficient and
spatially localized link-structure, making this model also
similar to standard RGGs. Increasing the parameter β
yields more localized link-structure, approaching a step
function as β → ∞, leaving in that case an RGG (see
Section V B 1) on the hyperbolic disk. As β → 0, typi-
cal link-lengths approach the system size and the model
behaves similarly to the HSCM (see Section V C 1).

2. Temporal H2 model

To temporally extend the H2 model, we allow coor-
dinate dynamics so that each node j exhibits a trajec-

tory in the hyperbolic disk, h
(t)
j = (θ

(t)
j , r

(t)
j ) for t ∈ [T ].

For jump-dynamics, each node jumps to a random lo-
cation according to density ν(θ, r), with probability σ
each timestep. For walk-dynamics, each node j steps
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FIG. 7. Effective connection probability function f̄(x)
in snapshots of a temporal hyperbolic model with
(n, γ, β,R) = (500, 2.2, 5, 8), for various values of ω.
With slower link-resampling (smaller ω), links are increas-
ingly allowed to dynamically stretch before being removed by
link-resampling, resulting in deviations from the static-model
affinity f(x) (black dotted line). Coloration of the curve
f̄(x) is from yellow to blue as ω increases. The upper panel,
A), shows the case of jump-dynamics of coordinates. The
lower panel, B), shows the case of walk-dynamics of coor-
dinates. The choice of coordinate-dynamics is consequential
in the non-equilibrium regime, despite each having the same
stationary density.

to a random location h
(t+1)
j having angular and radial

coordinates adjusted to relatively closeby values, with
increasingly large steps for larger σ-values; we describe
the details of H2 walk-dynamics in Appendix F. Dynam-
ics of nodes on the hyperbolic disk is visualized in Fig-
ure 6, for both jump-dynamics and walk-dynamics. For
σ � 1, nodes rarely resample their coordinates (in jump-
dynamics) and step to only very localized regions (in
walk-dynamics). On the other hand for σ ≈ 1, almost
all nodes resample their coordinates at each timestep (in

jump-dynamics) or move to a nearly-randomized loca-
tion (in walk-dynamics). We note that many other natu-
ral and interesting choices for HV-dynamics exist, as we
discuss in Section VIII and Appendix F.

3. Effective connection probabilities in the temporal H2

model

In the temporal H2 model considered here, the effec-
tive connection probability f̄(x) no longer remains in
the standard Fermi-Dirac form of f(x) (see Figure 7).
With decreasing ω/σ, the connection probability func-
tion smooths out and extends to a longer range due to
links being stretched more rapidly (for walk-dynamics),
or more frequently (for jump-dynamics). This effect is
more uniform and extends all the way out to long ranges
for jump-dynamics, whereas it is more localized for walk-
dynamics, for any given non-equilibrium value of (σ, ω).

Since the coordinates of H2 reflect popularity and simi-
larity attributes, the effective connection probability and
other non-equilibrium effects arising when outside of the
quasi-static regime have specific interpretations. The
set of current links arose from nodes having been con-
nected at past timesteps when their previous similarity
attributes were compatible (small hyperbolic distance);
in real networks, such links may persist into the future
even if the similarity attributes change. For instance with
social networks, consider friendships on Facebook, follow-
ers on Twitter, or author collaborations: similarity be-
tween connected pairs may decrease over time, but they
tend to remain connected. Likewise, it could take some
time for two people that become more similar to discover
one another and to connect, in an online or traditional
social network.

4. Temporal H2 model discussion

Outside of the quasi-static regime, snapshots G(t) do
not fully resemble the static H2 model – the Equilibrium
Property is in general violated (despite the fact that each
link was formed via the static-model connection proba-
bility corresponding to the pairwise distance at the time
of that link’s formation). This phenomenon results in re-
duced clustering because links become spread out across
the space rather than being localized amongst neighbor-
ing groups of nodes. Degree-heterogeneity is also sup-
pressed, as is the case for the temporal HSCM (see Sec-
tion V C), because nodes accumulating large numbers of
links due to being near the disk’s center do not stay
near the disk’s center indefinitely. Clustering and het-
erogeneity arise in the static H2 model due to the corre-
lations in links from the underlying geometry. But in the
static model, all links (and non-links) arise from the same
underlying coordinate-configuration. When coordinates
are dynamical, these correlations are weaker; nodes are
linked with probabilities arising as a mixture of past and
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present coordinate-configurations.

VI. LINK-UPDATING IN RESPONSE TO
HIDDEN-VARIABLE DYNAMICS

Finally, we describe an additional dynamical mecha-
nism that can be incorporated to achieve the Equilib-
rium Property exactly in temporal hidden-variables mod-
els, while retaining the Persistence Property, for all val-
ues of σ and ω: links are updated directly in response
to changes in hidden variables, rather than only through
link-resampling, to keep connection probabilities up-to-
date (we refer to this mechanism as link-response). In
this model variant, G(t+1)’s probability distribution de-
pends on each of G(t), H(t+1), and H(t), rather than on
just the former two. We illustrate the mechanism at first
in the case of ω = 0. Suppose node-pair ij has a link
with probability pij = f(hi, hj), and that HVs (hi, hj)
are updated to become (h′i, h

′
j) in the next timestep. To

ensure that the pair is then connected with probability
p′ij = f(h′i, h

′
j), we selectively delete now-less-likely edges

between connected pairs and selectively add now-more-
likely edges between unconnected pairs. In particular:

a) If p′ij ≥ pij , then Aij = 1 ⇒ A′ij = 1, and Aij =

0⇒ add link with probability q+
ij ,

b) If p′ij ≤ pij , then Aij = 0 ⇒ A′ij = 0, and Aij =

1⇒ remove link with probability q−ij .

The outcome needs to result in P(A′ij = 1|h′i, h′j) = p′ij .
Thus,

a) If p′ij ≥ pij , the new connection probability satisfies

p′ij = pij + (1− pij)q+
ij . Hence, q+

ij = 1− 1−p′ij
1−pij .

b) If p′ij ≤ pij , the new connection probability satisfies

1− p′ij = pijq
−
ij + (1− pij). Hence, q−ij = 1− p′ij

pij
.

Note that if p′ij = pij , then q+
ij = q−ij = 0; no links will

form or break unless pairwise affinities change. Denoting

p
(t)
ij = f(h

(t)
i , h

(t)
j ) for t ∈ {1, ..., T}, the graph transition

probability given H becomes:

PG
(
G(t+1)

∣∣∣G(t),H
)

=
∏

1≤i<j≤n

Yij

(
A

(t+1)
ij

∣∣∣A(t)
ij ,H

)
,

(35)
with Yij : {0, 1} → [0, 1] denoting the conditional
adjacency-element probability distribution. For any ω ∈
[0, 1], we have:

Yij

(
1
∣∣∣A(t)

ij ,H
)

= ωp
(t+1)
ij + (1−ω)Kij

(
A

(t)
ij ,H

)
, (36)

where Kij(A
(t)
ij ,H) incorporates the link-response dy-

namics:

Kij

(
A

(t)
ij ,H

)
=1
{
p

(t+1)
ij ≥ p(t)

ij

}(
q+
ij

(
1−A(t)

ij

)
+A

(t)
ij

)
+ 1

{
p

(t+1)
ij ≤ p(t)

ij

}
(1− q−ij)A

(t)
ij .

(37)
With the inclusion of link-response, arbitrary static

hidden-variable networks can be extended to temporal
settings while satisfying the Equilibrium Property ex-
actly (See Appendix VI for a full derivation), and the Per-
sistence Property in a tunable fashion. Allowing ω > 0
does not alter the Equilibrium Property’s exact validity,
and it provides a more tunable level of structural persis-
tence.

With G(t) indistinguishable from a static-model real-
ization, all non-equilibrium phenomena of the types dis-
cussed in V A, V B, V C, and V D are prevented – this can
either enhance or hinder Qualitative Realism, depend-
ing on the context. If a single node’s HV is changed, it
will need to re-evaluate connections to all other nodes
for which affinities have changed. This could be realis-
tic in some cases, since nodes themselves may be at the
most liberty to re-evaluate their connections. In other
cases, more gradual structural transitions may be pre-
ferred. This model-variant could thus serve well as a tem-
poral null model, especially for temporal networks with
snapshots well-described by an SHVM. Despite structure
of THVMs with link-response being identical to that of
SHVMs, all dynamical features are open for study and
for comparison to real-world networks.

VII. RELATED WORK

We briefly review existing lines of research related to
our study.

Several temporal network models are worth mention-
ing. Temporal analogs of specific static models have
been considered [67–73, 122, 123], many of which pre-
serve the Equilibrium Property. Most such models have
non-dynamic node properties, yielding models related to
edge-Markovian networks [99, 100, 124–126] and dynamic
percolation [94–96]. The dynamic-S1 model [87] is a tem-
poral extension of the static S1 model [15] consisting of
a sequence of independent samples with HVs partially
inferred from real data and partially synthetically gener-
ated; the dynamics therein resembles THVMs with ω = 1
and σ = 0, but with varying average degree parameter
across snapshots. Although it is common practice to ex-
tend static-model concepts to temporal settings [48–66],
many models of temporal networks are instead derived
from first principles [127–132], and focus primarily on
inference techniques, real-world applicability [133–136],
and/or the effects of temporality on spreading [86, 99].

Most relevant to THVMs are several existing works
with dynamic HVs that influence link-dynamics. Sev-
eral dynamic latent space models [74–77] exist, as do dy-
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namic random geometric graphs [78] (the latter being
continuous-time and infinite-space, with nodes sprinkled
as a Poisson process [137–139] and undergoing Brown-
ian motion [140], with links remaining up-to-date as for
THVMs with ω = 1). A model with both dynamic HVs
and persistent links [141] was recently introduced, along-
side rigorous inference techniques and applications – but
not in reference to static network models. Other stud-
ies investigated spreading on dynamic RGG-like graphs
[79, 109]. A few versions of dynamic SBMs are of partic-
ular relevance; in one such paper [72], the model is a case
of the temporal hyper-SBM studied in Section V A with
complete edge-resampling (ω = 1). Another study was of
a temporal hyper-SBM with ω < 1 which thus exhibits
both link-persistence and group-assignment-persistence
[73], influencing performance of community detection al-
gorithms and motivating the development of new ones.
Another area of relevant work is the rapidly emerging
area of dynamic graph embeddings [75, 142–154], related
to the task of inference of hidden-variable trajectories
[155].

We also note some additional works that are less-
directly related to ours. Adaptive network models (for
instance, SIS-dynamics [156] alongside contact-switching
[23, 24]), have dynamic node-properties that evolve with
time and guide network evolution, a commonality with
THVMs. Networks with node-addition and node-removal
[157–160] have dynamic node-properties (degree-values
as opposed to hidden variables) that influence link-
formation. In the fitness model of growing networks [12],
static HVs and dynamic degrees both govern connection
probabilities. Some static network models admit dual
growing formulations [161] – analogously, if the Equlib-
rium Property holds, THVM snapshots can be seen as
dynamically produced static-model samples. Indeed,
network-rewiring and MCMC algorithms are widely used
to sample static networks [162–166]; in stationarity, these
can be viewed as temporal networks satisfying the Equi-
librium Property, with a level of persistence tunable via
the number of iterations between adjacent snapshots.
Dynamic variants of the configuration model [167–169]
exemplify this.

VIII. DISCUSSION

In this work we have studied temporal network models
that are natural counterparts of static hidden-variables
models, obtained by inclusion of a dynamic mecha-
nism for node-characteristics (jump-dynamics or walk-
dynamics) and dynamic mechanism for link-structure
(link-resampling). Due to the wide generality of the
static hidden-variables framework, many popular static
network models can be made temporal as THVMs.

With a single source of randomness in the static model,
which includes ω = 1 with deterministic connectivity
(Section IV B) and σ = 0 with fixed initial HVs (Section
IV C), the Equilibrium Property is exactly satisfied and

the Persistence Property is controllable. If, however, the
static model has two layers of randomness and links are
not completely refreshed each timestep (σ > 0 and ω <
1), THVM snapshots are not in general distributed ac-
cording to the static model. Rather, numerous structural
deviations arise, due to links falling out-of-equilibrium
with respect to hidden variables – for instance, the ef-
fective connection probability f̄(h, h′) can substantially
differ from the affinity function f(h, h′) (see Figures 4
and 7). Despite violating the Equilibrium Property, such
models arise naturally and exhibit Qualitative Realism in
interesting ways – for instance, the appearance of long-
ranged links in temporal RGGs (Section V A 3) and inter-
group links in temporal hyper-SBMs (Section V A 3). An
exception to the non-equilibrium dynamics arises in the
quasi-static regime (Section IV A) in which case the Equi-
librium Property is approximately satisfied, due to all

A
(t)
ij -values arising from an HV-configuration closely re-

sembling H(t). A second exception arises if we add a
third dynamical mechanism (Section VI), namely link-
updating in direct response to HV-changes, which allows
exact satisfaction of the Equilibrium Property (see Ap-
pendix G) for all (σ, ω). Both situations also lend them-
selves to tunable satisfaction of the Persistence Property,
governed σ and ω.

An assortment of possible modifications, improve-
ments, and extensions are worth mentioning. Although
many questions are open within the present frame-
work, altered dynamics could also be considered. For
HV-dynamics, correlated motion akin to Langevin dy-
namics [170, 171] could provide insight into the for-
mation and persistence of communities. Altered link-
structure and link-dynamics could be considered as well:
some examples include directed and/or weighted links,
node-centric link-resampling dynamics [172], or pairwise-
individualized resampling rates. Continuous-time formu-
lations of THVMs could allow some theoretical simplifi-
cations; continuous time is used in studies of dynamical
percolation [94, 173, 174] and edge-Markovian networks
[97–101], which could each be extended to a THVM-
like framework by introducing hidden variables. Our re-
sults can also inform future studies of adaptive networks
[175–179]; THVMs provide a simple setting in which dy-
namic node-properties influence network-evolution. Un-
derstanding such settings will provide a baseline for
what to expect when coevolutionary feedbacks are also
present. An example of real-world links influencing node-
properties is social influence, whereby acquainted pairs
can become more similar over time [180, 181] – or geo-
graphically move to closer-by coordinate locations. The
inclusion of interdependencies relating to dynamical pro-
cesses [182, 183] can allow for more interesting dynamics
and realism, but at the cost of increased model complex-
ity.

Real-world networks have dynamic node-properties
that influence dynamics of link-structure. Examples of
such phenomena were set forth in Section I, ranging
across a wide variety of systems and scales. One di-



17

rect real-world application of THVMs could be to serve
as null models [65, 184] for evolving networks with dy-
namic node-properties [75]. Dynamic embedding meth-
ods [142–154], or generalizations of inference methods
from dynamic SBMs [73], could potentially allow retrieval
of H (and perhaps also σ, ω, and f) from an observed
G. Links of real evolving networks may not in general
be fully equilibrated relative to the current set of node-
characteristics, which is a dynamical behavior exhibited
by THVMs outside of the quasi-static regime. Hence
in some cases, the Equilibrium Property and Qualita-
tive Realism may be in conflict, implying that caution
should be used when applying static models to snap-
shots of evolving networks. That said, static models do
in many cases accurately describe such snapshots; the
internet, for example, has exhibited a clear power-law
degree-tail for decades [155, 185], evidently remaining in
equilibrium from the perspective of THVMs (see the dis-
cussion in V C). We expect that the present study will
usefully inform general classifications of real-world net-
works according to the dynamics of node-properties and
of how those properties influence link-dynamics.
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Appendix A: Effective connection probabilities

Here we calculate effective connection probabilities for
general THVMs with HVs evolving by jump-dynamics
(HV-resampling with probability σ). We define the effec-
tive connection probability f̄(h, h′) to be the probability

of A
(t)
ij = 1 given h

(t)
i = h and h

(t)
j = h′, in the limit as

t→∞. That is,

f̄(h, h′) = lim
t→∞

P
(
A

(t)
ij = 1

∣∣∣h(t)
i = h, h

(t)
j = h′

)
, (A1)

where the limit t → ∞ is to wash out any initial condi-
tion. Due to the edge-resampling dynamics, the current

value of A
(t)
ij arose from being last resampled at some

time t − s, with s being a random nonnegative integer
having distribution ps = ω(1−ω)s (where ω is the prob-
ability of link-resampling at any given timestep). The

effective connection probability is given by

f̄(h, h′) =
∑
s≥0

psE
[
f
(
h

(t−s)
i , h

(t−s)
j

) ∣∣∣h(t)
i = h, h

(t)
j = h′

]
.

(A2)
To evaluate the above, we introduce a density Ps(x|h),

namely the density of h
(t−s)
i (evaluated at x) given h

(t)
i =

h. In our case, by jump-dynamics and conditioning on

h
(t)
i = h, we have

Ps(x|h) = (1− σ)s1h(x) + (1− (1− σ)s) ν(x), (A3)

because h will have arisen from x after s timesteps via
either (a) zero jumps having occurred, that event hav-
ing probability (1 − σ)s, or via (b) at least one jump
having occurred, in which case the density is completely
randomized to ν(x). The expectation value appearing in
Equation A2 is equal to

E
[
f
(
h

(t−s)
i , h

(t−s)
j

) ∣∣∣h(t)
i = h, h

(t)
j = h′

]
=

∫
X

∫
X
f(x, x′)Ps(x|h)Ps(x

′|h′)dxdx′,
(A4)

which, using Equation A3 and integrating over (x, x′),
evaluates to:

(1− σ)2sf(h, h′)

+ (1− σ)s(1− (1− σ)s) (〈f(·, h′)〉+ 〈f(h, ·)〉)
+ (1− (1− σ)s)2〈f〉,

(A5)

where 〈f(·, h)〉 = 〈f(h, ·)〉 =
∫
X f(h, x)ν(x)dx and 〈f〉 =∫

X 2 f(x, x′)ν(x)ν(x′)dxdx′. Finally, plugging Equation
A5 back into Equation A2, using ps = ω(1 − ω)s and
summing the geometric series that appear (

∑
s≥0 y

s =

1/(1− y)), we obtain

f̄(h, h′) = α2f(h, h′)

+ (α1 − α2) (〈f(·, h′)〉+ 〈f(h, ·)〉)
+ (1− 2α1 + α2)〈f〉,

(A6)

where αb = αb(σ, ω) for b ∈ {1, 2} are given by

αb(σ, ω) =
ω

1− (1− ω)(1− σ)b
. (A7)

As an aside, we note that the average degree of the
network is independent of (σ, ω). This can be seen
by averaging Equation A2 over h and h′ and mak-
ing use of

∫
X Ps(x|h)ν(h)dh = ν(x) (which is true be-

cause Ps(x|h) describes the stationary distribution, re-
gardless of whether we consider walk-dynamics or jump-
dynamics). The result is 〈f〉, regardless of σ and ω. This
can be seen more directly in the case of jump-dynamics
by averaging Equation A6 over h and h′.

Appendix B: Temporal RGG effective connection
probability

This section contains calculations of the effective con-
nection probability for random geometric graphs on
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the unit interval with periodic boundaries and jump-
dynamics. This result could be obtained from Equation
A6, but we show here an alternate derivation. The effec-
tive connection probability as a function of distances is
defined as the probability of two nodes being connected

given that they are a distance d
(t)
ij = x apart, as t→∞:

f̄(x) = lim
t→∞

P
(
A

(t)
ij = 1

∣∣∣d(t)
ij = x

)
. (B1)

To calculate the above, we introduce the probability den-
sity on distances between node-pairs s timesteps prior to
when the distance-value is x, denoted Ps(y|x). We make

use of the fact that d
(t)
ij can evolve in either of two ways:

with probability (1 − σ)2 each timestep, neither i nor j
jumps, and thus the density is preserved. Otherwise, one
or both do jump, and their distance becomes completely
randomized. The stationary density of distance x is the
uniform on [0, 1/2], i.e., equal to 2 for all x ∈ [0, 1/2]. In
a single time-advancement, jump-dynamics thus yields

P1(y|x) = (1− σ)21x(y) + 2
(
1− (1− σ)2

)
. (B2)

Iterating the above logic, Ps(y|x) has two contributions:
either neither node jumps at any time, or at least one
node jumps at least once. Therefore,

Ps(y|x) = (1− σ)2s1x(y) + 2
(
1− (1− σ)2s

)
. (B3)

We can compute f̄(x) via averaging the affinity

f(hi, hj) = 1{d(t)
ij ≤ r} over the distance-variable. That

is,

f̄(x) =
∑
s≥0

psE
[
1
{

d
(t−s)
ij ≤ r

} ∣∣∣d(t)
ij = x

]
, (B4)

where the expectation term is

E
[
1
{

d
(t−s)
ij ≤ r

} ∣∣∣d(t)
ij = x

]
=

∫ 1/2

0

Ps(y|x)1{y ≤ r}dy

=

∫ r

0

(
(1− σ)2s1x(y) + 2

(
1− (1− σ)2s

))
dy

= (1− σ)2s1{x ≤ r}+ 2r
(
1− (1− σ)2s

)
.

(B5)

Let s ∈ {0, 1, ...} be the delay since any given edge-
indicator was last resampled. Recall that s has distri-
bution ps = ω(1− ω)s. Then, using the above, we find

f̄(x) = ω
∑
s≥0

(1− ω)s(1− σ)2s1{x ≤ r}

+ ω
∑
s≥0

(1− ω)s2r
(
1− (1− σ)2s

)
= α21{x ≤ r}+ (1− α2)2r,

(B6)

with α2 = α2(σ, ω) arising from having evaluated sums
of geometric series of the form

∑
s≥0((1− ω)(1− σ)2)s:

α2(σ, ω) =
ω

1− (1− ω)(1− σ)2
. (B7)

Appendix C: Effective connection probability in
terms of products of hidden variables

This section describes effective connection probabili-
ties arising in temporal HSCMs, as studied in Section
V C. The static-model affinity f is a function of the prod-
uct of hidden variables, motivating study of the effective
connection probability f̄ as a function of the product of
HVs as well.

Consider one-dimensional hidden variables {hj}j∈[n]

each distributed uniformly on X = [0, 1]. This is appli-
cable to HSCMs via the CDF-transform of arbitrary 1D
probability densities: if h has density ν, then u = F (h) =∫ h
h−
ν(h′)dh′ is distributed uniformly on [0, 1] (h− is the

minimum value of h). Denote Ps(φ|ψ) as the probabil-

ity density of φ = h
(t−s)
i h

(t−s)
j for some arbitrary pair ij

given that h
(t)
i h

(t)
j = ψ. Then,

f̄(ψ) = ω
∑
s≥0

(1− ω)s
∫ 1

0

Ps(φ|ψ)f(φ)dφ. (C1)

For products of HVs each independently undergoing
jump-dynamics, we have

Ps(φ|ψ) = (1− σ)2s1ψ(φ)

+ (1− (1− σ)s) (1− σ)sp1(φ|ψ)

+ (1− (1− σ)s)
2
µ(φ),

(C2)

with µ(φ) denoting the product density of hidden vari-
ables and p1(φ|ψ) the product HV-density conditioned
on a single jump. Then,

f̄(ψ) = αf(ψ)

+ ω
∑
s≥0

((1− σ)(1− ω))
s

(1− (1− σ)s)

∫ 1

0

f(φ)p1(φ|ψ)dφ

+ ω
∑
s≥0

(1− ω)s (1− (1− σ)s)
2
∫ 1

0

f(φ)µ(φ)dφ.

(C3)

Note that
∫ 1

0
f(φ)µ(φ)dφ = 〈f〉 = 〈k〉/n. Then, evaluat-

ing sums,

f̄(ψ) = α2f(ψ)+(α1−α2)f1(ψ)+(1−2α1+α2)〈f〉, (C4)

with αb = ω/(1−(1−ω)(1−σ)b), and the quantity f1(ψ)
being defined as

f1(ψ) =

∫
f(φ)p1(φ|ψ)dφ, (C5)

where p1(φ|ψ) is the distribution of the product of a uni-
form random variable and of one factor of a product,
given that the value of that product is ψ. In the follow-
ing, we walk through the remaining required calculations
to obtain f1(ψ).
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FIG. 8. The probability density of the value of one member
x of a product xy conditioned on xy = ψ. In the absence of
the conditionality, both x and y are distributed uniformly on
[0, 1].

1. Finding p(x|xy = ψ)

Suppose that x and y are sampled uniformly on [0, 1].
Now condition on the fact that their product, xy, takes
on the particular value xy = ψ. Then, what is the proba-
bility density of x alone? Note first that it must reside in
[ψ, 1], since ψ is the product of two numbers each in the
range [0, 1], i.e., each reducing the value of the product.
Within the acceptable range, the density is obtained as
follows:

p(x|xy = ψ) ∝
∫ 1

0

1ψ(xy)dy

∝ 1

x

∫ 1

0

1ψ/x(y)dy

= 1/x,

(C6)

where the ratio ψ/x is guaranteed to be in the range
[0, 1] since x ≥ ψ. Combining the above with the range
of acceptable values of x given xy = ψ, we have propor-
tionality

p(x|xy = ψ) = c
1{x ∈ [ψ, 1]}

x
, (C7)

and c is determined by normalization:

1 =

∫ 1

0

p(x|xy = ψ)dx = c

∫ 1

ψ

dx

x
= c ln(1/ψ)

⇒ c =
1

ln(1/ψ)
.

(C8)

Therefore,

p(x|xy = ψ) =
1{x ∈ [ψ, 1]}
x ln(1/ψ)

, (C9)

as is confirmed numerically in Figure 8.

0.0 0.2 0.4 0.6 0.8 1.0
10 3

10 2

10 1

100

101

p 1
(

|
)

p1( | ) = min(1/ , 1/ ) 1
ln(1/ )

-- theoretical
. empirical

Density of product = xy′ given product xy =

= 0.05
= 0.30
= 0.55
= 0.80

FIG. 9. The probability density of the value φ of the product
φ = xy′, where y′ is uniformly sampled after having previ-
ously had random value y, and where xy was conditioned
to have value xy = ψ. Without any conditioning, all three
x, y, y′ have marginal density uniform on [0, 1].

2. Finding p1(φ|ψ)

Now suppose that one variable, say y, undergoes a ran-
dom jump (i.e., is resampled) and thus becomes a new
uniform variable on [0, 1]. The equality xy = ψ no longer
holds, but since it did hold prior to the jump, the vari-
able x remains distributed according to p(x|xy = ψ).
Therefore the new product’s value, which we denote by
φ = xy′ (where y′ is the post-jump version of y), has a
density p1(φ|ψ) of the following form:

p1(φ|ψ) =

∫ 1

0

1{y′ ∈ [0, 1]}p
(
φ

y′

∣∣∣∣xy = ψ

)
1

y′
dy′

=

∫ 1

0

1{φ/y′ ∈ [ψ, 1]}
(φ/y′) ln(1/ψ)

dy′

y′

=
1

φ ln(1/ψ)

∫ 1

0

1{φ/y′ ∈ [ψ, 1]}dy′.

(C10)

Continuing with a change of variables,

p1(φ|ψ) =
1

ln(1/ψ)

∫ 1/φ

0

1{y′/φ ∈ [1, 1/ψ]}d(y′/φ)

=
min(1/φ, 1/ψ)− 1

ln(1/ψ)
.

(C11)

The above is validated numerically in Figure 9.

3. Calculating f̄1(ψ)

We now average the affinity over p1(φ|ψ), to get the
contribution to the effective connection probability com-
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ing from one hidden variable jumping. This goes as

f̄1(ψ) =

∫ 1

0

f(φ)p1(φ|ψ)dφ

=

∫ 1

0

f(φ)
min(1/φ, 1/ψ)− 1

ln(1/ψ)
dφ

=
1

ln(1/ψ)

(
1

ψ

∫ ψ

0

f(φ)dφ+

∫ 1

ψ

f(φ)

φ
dφ− 1

)
.

(C12)

Using Equation C12, we can compute f̄(ψ) for a given
f(ψ) via Equation C4.

Appendix D: Walk-Dynamics

Here we describe walk-dynamics in detail. Through-
out this work, walk-dynamics in 1D is simulated by first
mapping random variables to the unit interval (by the
inverse-CDF method [186]), doing a random walk on
[0, 1], then mapping back. For any one-dimensional prob-
ability density ν(x) where x ∈ R+, we define random
variable u(x) = Fν(x), where Fν(x) =

∫ x
0
ν(y)dy. The

probability density of u(x) is the uniform on [0, 1]. A ran-
dom walk on [0, 1] is constructed via addition of uniform
noise in the range [−2σ, 2σ], parameterized by σ ∈ [0, 1].
That is, after rescaling we have hidden-variable dynamics

Ph(u′|u) =
1 {|u′ − u| ≤ 2σ}

4σ
. (D1)

Note that the choice of [−2σ, 2σ] results in a mean jump-
length equal to σ, neglecting boundary conditions; when
implementing boundary conditions, one needs only to ad-
just the probability density Ph(u′|u) according to the cir-
cumstance. See Appendix E for the case of reflecting
boundaries.

Drawing h(1) from ν, we initialize u(1) = Fν(h(1))
and iteratively time-advance as per the above to ob-
tain {u(t)}Tt=1. We then simply transform back via
h(t) = F−1

ν (u(t)), to obtain one-dimensional dynamics
whose stationary distribution is ν.

In dimensions greater than 1, walk-dynamics can be
simulated by first taking the multidimensional inverse-
CDF transform, mapping the space X to a unit cube.
Walk-dynamics can then be performed with whatever
custom boundary conditions are required on that unit
cube (boundary conditions that correspond to those of
X ), and the results can then be mapped back to the orig-
inal space X . For example in the H2 model (Appendix
F), increments of change in the angular and radial coor-
dinates were chosen to be independent; this option was
taken for simplicity, but non-independent cases would
also be interesting to explore. Any transitional proba-
bility density preserving the uniform on the unit cube
would fall within the same framework.

Appendix E: Walk-dynamics with reflecting
boundary conditions

In this appendix we study walk-dynamics on X = [0, 1]
with reflecting boundary conditions under uniform noise.
In particular, we show that the stationary density is uni-
form on [0, 1]. In turn, that implies that arbitrary 1D
dynamics with density ν(h) can be made into a random
walk of this type, by mapping initial h-values to [0, 1]
via the inverse-CDF transform, performing the reflect-
ing random walk on [0, 1], then transforming the random
walk trajectories back to the original space (see Appendix
D).

Let X = [0, 1] be the HV-space and denote by
x ←↩ U [0, 1] the value of a hidden variable. Then let
x̂ ∈ [−r, 1 + r] be an intermediate variable defined as
x̂ = x + u, where u ←↩ U [−r, r] is the uniform additive
noise which we use to simulate walk-dynamics. Lastly,
let x′ = Z(x̂) be the reflected variable, where the func-
tion Z encodes the reflecting boundary conditions. Note
that values of x′ in the ranges [0, r] and [1 − r, 1] are
obtained from one of two different of values of x̂: the
case when reflected, and the case when not reflected. To
transform the density of x̂ into that of x′, we write x′

as a function of ẑ, as x′ = Z(x̂) and use the general-
ized change-of-variables formula for probability densities
[187]. We denote the densities of x, x̂, x′ as P (x), P̂ (x̂),
and P ′(x′), respectively. The density of x̂ given x is

P̂ (x̂|x) =
1{x̂ ∈ [x− r, x+ r]}

2r
=

1{x ∈ [x̂− r, x̂+ r]}
2r

.

(E1)
Since x is uniform on [0, 1] the density of x̂ is then

P̂ (x̂) =

∫ 1

0

P̂ (x̂|x)dx

=
1

2r

∫ 1

0

1{x ∈ [x̂− r, x̂+ r]}dx

=
1

2r
|[0, 1] ∪ [x̂− r, x̂+ r]| ,

(E2)

or

P̂ (x̂) =
1

2r


x̂+ r, x̂ < r,

2r x̂ ∈ [r, 1− r],
1 + r − x̂, x̂ > 1− r.

(E3)

where the x̂-dependent coefficients of the first and third
terms arise from reflections of the form x̂ − (−r) and
1−(x̂−1). We seek a function Z : [−r, 1+r]→ [0, 1] that
encodes the reflection properties of the walk-dynamics.
The necessary Z is given by

Z(x̂) =


−x̂, x̂ < 0,

x̂, x̂ ∈ [0, 1],

2− x̂, x̂ > 1.

(E4)

The values of x̂ mapping to a given value of x′, namely
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those making up the inverse of Z, are given by

{x̂ : Z(x̂) = x′} =


{−x′, x′}, x′ < r,

{x′}, x′ ∈ [r, 1− r],
{x′, 2− x′}, x′ > 1− r.

(E5)

Let us compute the derivative of Z(x̂), neglecting the
measure-zero points of 0 and 1:

dZ(x̂)

dx̂
=


−1, x̂ < 0,

1, x̂ ∈ (0, 1),

−1, x̂ > 1.

(E6)

We now transform to find the density after one step of
dynamics, as

P ′(x′) =
∑

x̂:Z(x̂)=x′

∣∣∣∣dZ(x̂)

dx̂

∣∣∣∣−1

P̂ (x̂)

=


P̂ (−x′) + P̂ (x′), x′ < r,

P̂ (x′), x′ ∈ [r, 1− r],
P̂ (x′) + P̂ (2− x′), x′ > 1− r.

= 1.

(E7)

Therefore, the stationary distribution is uniform.

Appendix F: Hyperbolic walk-dynamics

To sample h̃ = (r̃, θ̃), and also to sample h
(1)
j (a coordi-

nate from the initial timestep, i.e. the static H2 model),
we first draw two independent random variables Ur and
Uθ, each from the uniform distribution on [0, 1]. These
are then set equal to the cumulative density functions of
νrad and νang, evaluated at r̃ and θ̃, respectively:

Uθ =

∫ θ̃

0

νang(θ)dθ =
θ̃

2π
,

Ur =

∫ r̃

0

νrad(r)dr =
cosh

(
γ−1

2 r̃
)
− 1

cosh
(
γ−1

2 R
)
− 1

.

(F1)

From the above, we can solve to obtain h̃ in terms of
(Ur, Uθ):

θ̃ = 2πUθ,

r̃ =
2

γ − 1
cosh−1

(
1 +

(
cosh

(
γ − 1

2
R

)
− 1

)
Ur

)
.

(F2)
In the temporal setting, those initial variables are set

to U
(1)
θ and U

(1)
r , after which we perform walk dynamics

on the transformed variables to obtain (U
(t)
θ , U

(t)
r ) for

t ∈ {2, ..., T}. Walk-dynamics occurs independently for
the two variables, with periodic boundary conditions for
angular coordinates and reflecting boundary conditions
for radial coordinates.

Note that we use reflecting boundary conditions for
the radial coordinate, rather than, for example, peri-
odic boundary conditions, or reflecting boundary condi-
tions with an associated angular reversal at any timestep
that a node reflects from the origin of the radial coor-
dinate (as would also seem like a natural choice for the
disk). The reason to not incorporate such angular flip-
ping is due to the interpretation of the angular coordi-
nates as similarity-encoding variables [188]. From that
perspective, it is more realistic to have nodes reflect off of
the disk’s origin and retain their similarity-coordinates,
rather than to pass through the origin and reverse their
similarity-coordinates.

Appendix G: Stationarity with Link-Response

In this appendix, we show that the static-model graph
probability distribution is preserved via the effect of link-
response as described in Section VI. Specifically, we show
that∫
H

(∑
G∈G

P(G|H)PG→G
′

H,H′

)
ρ(H)dH = P(G′|H ′), (G1)

where PG
(t)→G(t+1)

H(t),H(t+1) = PG(G(t+1)|G(t), H(t+1), H(t)). We

for now set ω = 0 and later argue that link-resampling
does not influence the results in question. First, we note
that the transition probability given (H,H ′) is separable:

PG→G
′

H,H′ =
∏

1≤i<j≤n P
Aij→A′ij
ij , with transition probabil-

ity Pα→βij = P(A′ij = β|Aij = α, h′i, h
′
j , hi, hj). Denoting

fij = f(hi, hj) and f ′ij = f(h′i, h
′
j), we evaluate the dif-

ferent transition probabilities:

P 1→1
ij = 1

{
f ′ij ≥ fij

}
+ (1− q−ij)1{f

′
ij < fij},

P 0→0
ij = 1

{
f ′ij < fij

}
+ (1− q+

ij)1{f
′
ij ≥ fij},

(G2)

with q−ij = 1 − f ′ij/fij , q
+
ij = 1 − (1 − f ′ij)/(1 − fij) as

defined in Section VI. The remaining probabilities are
obtained by normalization:

P 1→0
ij = 1− P 1→1

ij = q−ij1
{
f ′ij < fij

}
,

P 0→1
ij = 1− P 0→0

ij = q+
ij1
{
f ′ij ≥ fij

}
.

(G3)

Noting that PG→G
′

H,H′ and P(G|H) are both separable into
a product over ij : 1 ≤ i < j ≤ n, we write

P(G|H)PG→G
′

H,H′ =
∏

1≤i<j≤n

f
Aij

ij (1− fij)1−AijP
Aij→A′ij
ij .

(G4)
The sum over all graphs G of this product becomes a
product over all pairs ij of a sum over Aij ∈ {0, 1}:∑

G∈G

∏
1≤i<j≤n

y(Aij) =
∏

1≤i<j≤n

∑
Aij∈{0,1}

y(Aij). (G5)
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Using the above, and Equation 5, the parenthesized term
in Equation G1 is equal to∏

ij:A′ij=0

(
fijP

1→0
ij + (1− fij)P 0→0

ij

)
×

∏
ij:A′ij=1

(
fijP

1→1
ij + (1− fij)P 0→1

ij

)
.

(G6)

Applying equations (G2, G3) and using the expressions
for q±ij , as well as the facts that 1{f ′ij ≥ fij} + 1{f ′ij <
fij} = 1 and

∫
H ρ(H)dH = 1, Equation G1 becomes∏

ij:A′ij=1

f ′ij
∏

ij:A′ij=0

(1− f ′ij) = P(G′|H ′). (G7)

The left-hand side of the above is exactly the static
model’s graph probability distribution given a hidden-
variable configuration (see Equation 5 of the main text).
Thus the static hidden-variables model is the stationary
distribution of time-advancements with the link-response
mechanism.

To show that these results hold even upon inclusion
of the link-resampling mechanism (allowing ω > 0), con-
sider the following reasoning. Regardless of what the
link-response step yielded, each node-pair undergoing
link-resampling at rate ω will result in either (a) link-
ing according to the connection probability of the newly
updated hidden-variable configuration (with probability
ω) or (b) linking as before (ω = 0), without altering the
connection probability. Given the fact that stationarity
holds without link-resampling, in the latter case we also
have a connection probability equal to that of the up-
dated hidden-variable configuration.

Thus, upon inclusion of the link-response mechanism
whereby both H(t+1) and H(t) impact the transition from
G(t) to G(t+1), we have temporal extensions of arbi-
trary static hidden-variables models that exactly satisfy
the Equilibrium property, while retaining the Persistence
Property. Such a link-response mechanism may better
reflect reality in cases where connectivity among nodes
changes directly in response to changes in their internal
characteristics.

Appendix H: Discrete hidden variables

We consider THVMs formulated with discrete hidden
variables, and describe their relation to continous-HV
models.

We take for example the case of SBMs, described in
Section V A entirely in terms of discrete HVs, namely
group-indices which are naturally thought of as discrete.
We then have a set of discrete HVs {qj}j∈[n], each dis-
tributed into a discrete set [m] = {1, ...,m} according to
a probability distribution % : [m]→ [0, 1], and connecting
via a discrete affinity-function fq,q′ .

In a dual continuous-HV system which maps to the
above-described discrete system, suppose each node j’s
hidden variable hj has uniform density on [0, 1], and
pairwise affinities are encoded in a piecewise constant
graphon function according to occupancy of points in
nonoverlapping subregions {Lw}w∈[m] ⊆ [0, 1]m such
that |Lw| = %w and such that

f(h, h′) =
∑

(w,z)∈[m]2

fw,z1{h ∈ Lw, h′ ∈ Lz}. (H1)

Discrete node-labels can also be written directly in terms
of continuous HV-values, as

qi =
∑
q∈[m]

q1{hi ∈ Lq}. (H2)

The probability distribution % thus arises from integra-
tion of the uniform density on [0, 1], namely ν(h) =
1, over the regions {Lq}q∈[m] corresponding to specific
group-labels q ∈ [m]:

%q =

∫
X
ν(h)1{h ∈ Lq}dh =

∫
Lq

dh = |Lq|. (H3)

In the temporal setting, we can again relate dis-
crete HVs to continuous ones. To reproduce the HV-
resampling dynamics for temporal SBMs, we can simply
have continuous HVs undergo jump-dynamics in [0, 1].
Jumping to a random point in [0, 1] amounts to jumping
into a random subset Lq with probability %q = |Lq|.
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rano, “Navigability of temporal networks in hyperbolic
space,” Scientific reports 7, 15054 (2017).

[50] Dane Taylor, Sean A Myers, Aaron Clauset, Mason A
Porter, and Peter J Mucha, “Eigenvector-based central-
ity measures for temporal networks,” Multiscale Mod-
eling & Simulation 15, 537–574 (2017).

[51] Hyoungshick Kim and Ross Anderson, “Temporal node
centrality in complex networks,” Physical Review E 85,
026107 (2012).

[52] Raj Kumar Pan and Jari Saramäki, “Path lengths, cor-
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[97] Matthew I Roberts, Batı Şengül, et al., “Exceptional

times of the critical dynamical erdős–rényi graph,” The
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Frank den Hollander, and Oliver Nagy, “Linking the
mixing times of random walks on static and dynamic
random graphs,” arXiv preprint arXiv:2012.11012
(2020).

[170] Tamar Schlick, Molecular modeling and simulation:
an interdisciplinary guide: an interdisciplinary guide,
Vol. 21 (Springer Science & Business Media, 2010).

[171] Marco Antonio Rodŕıguez Flores and Fragkiskos Pa-
padopoulos, “Similarity forces and recurrent compo-
nents in human face-to-face interaction networks,”
Physical review letters 121, 258301 (2018).

[172] Emmanuel Jacob and Peter Mörters, “The contact pro-
cess on scale-free networks evolving by vertex updat-
ing,” Royal Society open science 4, 170081 (2017).

[173] Häggström Olle, Peres Yuval, and E Steif Jeffrey, “Dy-
namical percolation,” in Annales de l’Institut Henri
Poincare (B) Probability and Statistics, Vol. 33 (Else-
vier, 1997) pp. 497–528.

[174] Christophe Garban, Gábor Pete, and Oded Schramm,
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[177] Krzysztof Choromański, Micha l Matuszak, and Jacek
Mikisz, “Scale-free graph with preferential attachment
and evolving internal vertex structure,” Journal of Sta-
tistical Physics 151, 1175–1183 (2013).

[178] Guido Caldarelli, Andrea Capocci, and Diego Gar-
laschelli, “A self-organized model for network evolu-
tion,” The European Physical Journal B 64, 585–591
(2008).

[179] Lia Papadopoulos, Jason Z Kim, Jürgen Kurths, and
Danielle S Bassett, “Development of structural correla-
tions and synchronization from adaptive rewiring in net-
works of kuramoto oscillators,” Chaos: An Interdisci-
plinary Journal of Nonlinear Science 27, 073115 (2017).

[180] RTAJ Leenders, “Longitudinal behavior of network
structure and actor attributes: modeling interdepen-
dence of contagion and selection,” Evolution of social
networks 1, 165–184 (1997).

[181] Young-Ho Eom, Stefano Boccaletti, and Guido Cal-
darelli, “Concurrent enhancement of percolation and
synchronization in adaptive networks,” Scientific re-
ports 6, 1–7 (2016).

[182] Marco Mancastroppa, Raffaella Burioni, Vittoria Col-
izza, and Alessandro Vezzani, “Active and inactive
quarantine in epidemic spreading on adaptive activity-
driven networks,” arXiv preprint arXiv:2004.07902
(2020), 10.1103/physreve.102.020301.

[183] Genki Ichinose, Yoshiki Satotani, Hiroki Sayama, and
Takashi Nagatani, “Reduced mobility of infected agents
suppresses but lengthens disease in biased random
walk,” arXiv preprint arXiv:1807.01195 (2018).

[184] Nicholas J Gotelli, “Research frontiers in null model

http://dx.doi.org/10.1109/tetci.2020.3011432
http://dx.doi.org/10.1109/tetci.2020.3011432
http://dx.doi.org/10.1109/tetci.2020.3011432
https://arxiv.org/abs/1903.08889
https://arxiv.org/abs/1903.08889
https://arxiv.org/abs/1812.02289
http://dx.doi.org/10.1109/tnet.2013.2294052
http://dx.doi.org/10.1109/tnet.2013.2294052
http://dx.doi.org/10.1103/revmodphys.87.925
http://dx.doi.org/10.1103/revmodphys.87.925
http://dx.doi.org/0.1080/00018730110112519
http://dx.doi.org/10.1103/physreve.74.036121
http://dx.doi.org/10.1103/physreve.74.036121
http://dx.doi.org/10.1140/epjb/e2011-20346-0
http://dx.doi.org/10.1140/epjb/e2011-20346-0
https://arxiv.org/abs/2007.14681
http://dx.doi.org/ 10.1103/physreve.88.022808
http://dx.doi.org/ 10.1103/physreve.88.022808
http://dx.doi.org/ 10.1140/epjb/e2010-00219-x
http://dx.doi.org/10.1103/physreve.96.032312
http://dx.doi.org/10.1093/comnet/cny013
http://dx.doi.org/10.1016/j.cam.2018.07.038
http://dx.doi.org/10.1016/j.cam.2018.07.038
http://dx.doi.org/10.1016/j.cam.2018.07.038
http://dx.doi.org/ 10.1016/j.cam.2018.07.038
http://dx.doi.org/ 10.1016/j.cam.2018.07.038
http://dx.doi.org/10.1214/17-aap1289
http://dx.doi.org/10.1214/17-aap1289
http://dx.doi.org/10.1016/j.spa.2018.09.010
http://dx.doi.org/10.1016/j.spa.2018.09.010
https://arxiv.org/abs/2012.11012
https://arxiv.org/abs/2012.11012
http://dx.doi.org/10.1007/978-1-4419-6351-2
http://dx.doi.org/10.1007/978-1-4419-6351-2
http://dx.doi.org/ 10.1103/PhysRevLett.121.258301
http://dx.doi.org/10.1098/rsos.170081
http://dx.doi.org/10.1016/s0246-0203(97)80103-3
http://dx.doi.org/10.1016/s0246-0203(97)80103-3
http://dx.doi.org/10.4171/JEMS/786
http://dx.doi.org/10.4171/JEMS/786
http://dx.doi.org/10.1103/physreve.99.022309
http://dx.doi.org/10.1103/physreve.99.022309
http://dx.doi.org/10.1016/j.camwa.2012.12.005
http://dx.doi.org/10.1016/j.camwa.2012.12.005
http://dx.doi.org/ 10.1007/s10955-013-0749-1
http://dx.doi.org/ 10.1007/s10955-013-0749-1
http://dx.doi.org/ 10.1140/epjb/e2008-00243-5
http://dx.doi.org/ 10.1140/epjb/e2008-00243-5
http://dx.doi.org/10.1063/1.4994819
http://dx.doi.org/10.1063/1.4994819
http://dx.doi.org/10.1038/srep27111
http://dx.doi.org/10.1038/srep27111
http://dx.doi.org/10.1103/physreve.102.020301
http://dx.doi.org/10.1103/physreve.102.020301
https://arxiv.org/abs/1807.01195


28

analysis,” Global ecology and biogeography 10, 337–343
(2001).

[185] Georgos Siganos, Michalis Faloutsos, Petros Faloutsos,
and Christos Faloutsos, “Power laws and the as-level in-
ternet topology,” IEEE/ACM Transactions on network-
ing 11, 514–524 (2003).

[186] Luc Devroye, “Nonuniform random variate generation,”

Handbooks in operations research and management sci-
ence 13, 83–121 (2006).

[187] Patrick Billingsley, Probability and measure (John Wi-
ley & Sons, 2008).

[188] Fragkiskos Papadopoulos, Maksim Kitsak, M Ángeles
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